Code in Appendix
parent
340e0017c4
commit
e96331d072
@ -0,0 +1,52 @@
|
||||
import breeze.plot._
|
||||
import breeze.plot.DomainFunction._
|
||||
import breeze.linalg._
|
||||
import breeze.stats.distributions.Gaussian
|
||||
|
||||
val nn = new RSNN(5000, 0.0000001)
|
||||
|
||||
val g = Gaussian(0, 0.3)
|
||||
|
||||
//val data = EqSeq(-math.Pi, math.Pi, 15) map (t => (t, math.sin(t)+ g.sample(1).last))
|
||||
val (ws, evaluate) = nn.train(data, iter = 100000, lambda = (1.0/20) / 5 * (nn.n * 8) * 1)
|
||||
|
||||
val f = Figure()
|
||||
val p = f.subplot(0)
|
||||
val x = linspace(-5, 5)
|
||||
val y = x.map(evaluate)
|
||||
//print_data(nn, x, y, 3)
|
||||
p += plot(x, y)
|
||||
p += scatter(data.map(_._1), data.map(_._2), x => 0.1)
|
||||
f.saveas("lines.png")
|
||||
|
||||
|
||||
val x_i = data map {case (x,y) => x}
|
||||
val y_i = data map {case (x,y) => y}
|
||||
|
||||
def print_data(nn: RSNN, x: DenseVector[Double], y: DenseVector[Double], tlambda: Double): Unit = {
|
||||
val n = nn.n
|
||||
reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/scala_out_d_1.csv").appendAll(s"x_n_$n"+s"_tl_$tlambda;" + x.toArray.mkString(";") + "\n")
|
||||
reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/scala_out_d_1.csv").appendAll(s"y_n_$n"+s"_tl_$tlambda;" + y.toArray.mkString(";") + "\n")
|
||||
}
|
||||
reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/data_sin_d.csv").appendAll(x_i.mkString(";") + "\n")
|
||||
reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/data_sin_d.csv").appendAll(y_i.mkString(";") + "\n")
|
||||
|
||||
|
||||
reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/vals1.csv").appendAll(x.toArray.mkString(";") + "\n")
|
||||
reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/vals1.csv").appendAll(y.toArray.mkString(";") + "\n")
|
||||
|
||||
for(j <- List(0.1, 1, 3)) {
|
||||
for (i <- 3 until 4) {
|
||||
val nn = new RSNN((5 * math.pow(10, i)).asInstanceOf[Int], 0.0000001)
|
||||
val (ws, evaluate) = nn.train(data, iter = 100000, lambda = (1.0 / 20) / 5 * (nn.n * 8) * j)
|
||||
|
||||
val x = linspace(-5, 5)
|
||||
val y = x.map(evaluate)
|
||||
print_data(nn, x, y, j)
|
||||
}
|
||||
}
|
||||
|
||||
val x_i = Seq(-3.141592653589793,-2.722713633111154,-2.303834612632515,-1.8849555921538759,-1.4660765716752369,-1.0471975511965979,-0.6283185307179586,-0.2094395102393194,0.2094395102393194,0.6283185307179586,1.0471975511965974,1.4660765716752362,1.8849555921538759,2.3038346126325155,2.7227136331111543,3.1415926535897922)
|
||||
val y_i = Seq(0.0802212608585366,-0.3759376368887911,-1.3264180339054117,-0.8971334213504949,-0.7724344034354425,-0.9501497164520739,-0.6224628757084738,-0.35622668982623207,-0.18377660088356823,0.7836770998126841,0.5874762732054489,1.0696991264956026,1.1297065441952743,0.7587275382323738,-0.030547103790458163,0.044327111895927106)
|
||||
|
||||
val data = x_i zip y_i
|
@ -0,0 +1,189 @@
|
||||
\section{Code...}
|
||||
\begin{itemize}
|
||||
\item Code for randomized shallow neural network
|
||||
\item Code for keras
|
||||
\end{itemize}
|
||||
|
||||
\clearpage
|
||||
\begin{lstfloat}
|
||||
\begin{lstlisting}[language=iPython]
|
||||
import breeze.stats.distributions.Uniform
|
||||
import breeze.stats.distributions.Gaussian
|
||||
import scala.language.postfixOps
|
||||
|
||||
object Activation {
|
||||
def apply(x: Double): Double = math.max(0, x)
|
||||
|
||||
def d(x: Double): Double = if (x > 0) 1 else 0
|
||||
}
|
||||
|
||||
class RSNN(val n: Int, val gamma: Double = 0.001) {
|
||||
val g_unif = Uniform(-10, 10)
|
||||
val g_gauss = Gaussian(0, 5)
|
||||
|
||||
val xis = g_unif.sample(n)
|
||||
val vs = g_gauss.sample(n)
|
||||
val bs = xis zip vs map {case(xi, v) => xi * v}
|
||||
|
||||
def computeL1(x: Double) = (bs zip vs) map {
|
||||
case (b, v) => Activation(b + v * x) }
|
||||
|
||||
def computeL2(l1: Seq[Double], ws: Seq[Double]): Double =
|
||||
(l1 zip ws) map { case (l, w) => w * l } sum
|
||||
|
||||
def output(ws: Seq[Double])(x: Double): Double =
|
||||
computeL2(computeL1(x), ws)
|
||||
|
||||
def learn(data: Seq[(Double, Double)], ws: Seq[Double],
|
||||
lamb: Double, gamma: Double): Seq[Double] = {
|
||||
|
||||
lazy val deltas = data.map {
|
||||
case (x, y) =>
|
||||
val l1 = computeL1(x)
|
||||
val out = computeL2(l1, ws)
|
||||
(l1 zip ws) map {case (l1, w) => (l1 * 2 * (out - y) +
|
||||
lam * 2 * w) * gamma * -1}
|
||||
}
|
||||
|
||||
deltas.foldRight(ws)(
|
||||
(delta, ws) => ws zip (delta) map { case (w, d) => w + d })
|
||||
}
|
||||
|
||||
def train(data: Seq[(Double, Double)], iter: Int, lam: Double,
|
||||
gamma: Double = gamma): (Seq[Double], Double => Double)= {
|
||||
|
||||
val ws = (1 to iter).foldRight((1 to n).map(
|
||||
_ => 0.0) :Seq[Double])((i, w) => {
|
||||
println(s"Training iteration $i")
|
||||
println(w.sum/w.length)
|
||||
learn(data, w, lam, gamma / 10)
|
||||
})
|
||||
(ws, output(ws))
|
||||
}
|
||||
}
|
||||
\end{lstlisting}
|
||||
\caption{Scala code used to build and train the ridge penalized
|
||||
randomized shallow neural network in .... The parameter \textit{lam}
|
||||
in the train function represents the $\lambda$ parameter in the error
|
||||
function. The parameters \textit{n} and \textit{gamma} set the number
|
||||
of hidden nodes and the stepsize for training.}
|
||||
\label{lst:rsnn}
|
||||
\end{lstfloat}
|
||||
\clearpage
|
||||
|
||||
\begin{lstlisting}[language=iPython]
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from tensorflow.keras.callbacks import CSVLogger
|
||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||
|
||||
mnist = tf.keras.datasets.mnist
|
||||
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
|
||||
x_train = x_train / 255.0
|
||||
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
|
||||
x_test = x_test / 255.0
|
||||
|
||||
y_train = tf.keras.utils.to_categorical(y_train)
|
||||
y_test = tf.keras.utils.to_categorical(y_test)
|
||||
|
||||
model = tf.keras.models.Sequential()
|
||||
model.add(tf.keras.layers.Conv2D(24,kernel_size=5,padding='same',
|
||||
activation='relu',input_shape=(28,28,1)))
|
||||
model.add(tf.keras.layers.MaxPool2D())
|
||||
model.add(tf.keras.layers.Conv2D(64,kernel_size=5,padding='same',
|
||||
activation='relu'))
|
||||
model.add(tf.keras.layers.MaxPool2D(padding='same'))
|
||||
model.add(tf.keras.layers.Flatten())
|
||||
model.add(tf.keras.layers.Dense(256, activation='relu'))
|
||||
model.add(tf.keras.layers.Dropout(0.2))
|
||||
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
||||
model.compile(optimizer='adam', loss="categorical_crossentropy",
|
||||
metrics=["accuracy"])
|
||||
|
||||
datagen = ImageDataGenerator(
|
||||
rotation_range = 30,
|
||||
zoom_range = 0.15,
|
||||
width_shift_range=2,
|
||||
height_shift_range=2,
|
||||
shear_range = 1)
|
||||
|
||||
csv_logger = CSVLogger(<Target File>)
|
||||
|
||||
history = model.fit(datagen.flow(x_train, y_train, batch_size=50),
|
||||
validation_data=(x_test, y_test),
|
||||
epochs=125, callbacks=[csv_logger],
|
||||
steps_per_epoch = x_train.shape[0]//50)
|
||||
|
||||
\end{lstlisting}
|
||||
\clearpage
|
||||
\begin{lstlisting}[language=iPython]
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from tensorflow.keras.callbacks import CSVLogger
|
||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||
mnist = tf.keras.datasets.fashion_mnist
|
||||
|
||||
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
|
||||
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
|
||||
x_train, x_test = x_train / 255.0, x_test / 255.0
|
||||
|
||||
y_train = tf.keras.utils.to_categorical(y_train)
|
||||
y_test = tf.keras.utils.to_categorical(y_test)
|
||||
|
||||
model = tf.keras.Sequential()
|
||||
model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (3, 3),
|
||||
activation='relu', input_shape = (28, 28, 1), padding='same'))
|
||||
model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (2, 2), activation='relu', padding = 'same'))
|
||||
model.add(tf.keras.layers.MaxPool2D(strides=(2,2)))
|
||||
model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same'))
|
||||
model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same'))
|
||||
model.add(tf.keras.layers.MaxPool2D(strides=(2,2)))
|
||||
model.add(tf.keras.layers.Flatten())
|
||||
model.add(tf.keras.layers.Dense(256, activation='relu'))
|
||||
model.add(tf.keras.layers.Dropout(0.2))
|
||||
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
||||
|
||||
model.compile(optimizer=tf.keras.optimizers.Adam(lr = 1e-3), loss="categorical_crossentropy", metrics=["accuracy"])
|
||||
|
||||
datagen = ImageDataGenerator(
|
||||
rotation_range = 15,
|
||||
zoom_range = 0.1,
|
||||
width_shift_range=2,
|
||||
height_shift_range=2,
|
||||
shear_range = 0.5,
|
||||
fill_mode = 'constant',
|
||||
cval = 0)
|
||||
|
||||
csv_logger = CSVLogger(<Target File>)
|
||||
|
||||
history = model.fit(datagen.flow(x_train, y_train, batch_size=30),
|
||||
steps_per_epoch=2000,
|
||||
validation_data=(x_test, y_test),
|
||||
epochs=125, callbacks=[csv_logger],
|
||||
shuffle=True)
|
||||
|
||||
\end{lstlisting}
|
||||
\clearpage
|
||||
\begin{lstlisting}[language=iPython]
|
||||
def get_random_sample(a, b, number_of_samples=10):
|
||||
x = []
|
||||
y = []
|
||||
for category_number in range(0,10):
|
||||
# get all samples of a category
|
||||
train_data_category = a[b==category_number]
|
||||
# pick a number of random samples from the category
|
||||
train_data_category = train_data_category[np.random.randint(
|
||||
train_data_category.shape[0], size=number_of_samples), :]
|
||||
x.extend(train_data_category)
|
||||
y.append([category_number]*number_of_samples)
|
||||
|
||||
return (np.asarray(x).reshape(-1, 28, 28, 1),
|
||||
np.asarray(y).reshape(10*number_of_samples,1))
|
||||
\end{lstlisting}
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "main"
|
||||
%%% End:
|
@ -1,17 +0,0 @@
|
||||
x,y
|
||||
-3.141592653589793,0.0802212608585366
|
||||
-2.722713633111154,-0.3759376368887911
|
||||
-2.303834612632515,-1.3264180339054117
|
||||
-1.8849555921538759,-0.8971334213504949
|
||||
-1.4660765716752369,-0.7724344034354425
|
||||
-1.0471975511965979,-0.9501497164520739
|
||||
-0.6283185307179586,-0.6224628757084738
|
||||
-0.2094395102393194,-0.35622668982623207
|
||||
0.2094395102393194,-0.18377660088356823
|
||||
0.6283185307179586,0.7836770998126841
|
||||
1.0471975511965974,0.5874762732054489
|
||||
1.4660765716752362,1.0696991264956026
|
||||
1.8849555921538759,1.1297065441952743
|
||||
2.3038346126325155,0.7587275382323738
|
||||
2.7227136331111543,-0.030547103790458163
|
||||
3.1415926535897922,0.044327111895927106
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,58 +0,0 @@
|
||||
datagen_dropout_02_1
|
||||
test
|
||||
0.6604& 0.5175& 0.60136& 0.002348447
|
||||
|
||||
datagen_dropout_00_1
|
||||
test
|
||||
0.6704& 0.4878& 0.58621& 0.003600539
|
||||
|
||||
dropout_02_1
|
||||
test
|
||||
0.5312& 0.4224& 0.47137& 0.001175149
|
||||
|
||||
default_1
|
||||
test
|
||||
0.5633& 0.3230& 0.45702& 0.004021449
|
||||
|
||||
datagen_dropout_02_10
|
||||
test
|
||||
0.9441& 0.9061& 0.92322& 0.00015
|
||||
train
|
||||
1& 0.97& 0.989& 1e-04
|
||||
|
||||
datagen_dropout_00_10
|
||||
test
|
||||
0.931& 0.9018& 0.9185& 6e-05
|
||||
train
|
||||
1& 0.97& 0.99& 0.00013
|
||||
|
||||
dropout_02_10
|
||||
test
|
||||
0.9423& 0.9081& 0.92696& 0.00013
|
||||
train
|
||||
1& 0.99& 0.992& 2e-05
|
||||
|
||||
default_10
|
||||
test
|
||||
0.8585& 0.8148& 0.83771& 0.00027
|
||||
train
|
||||
1& 1& 1& 0
|
||||
|
||||
datagen_dropout_02_100
|
||||
test
|
||||
0.9805& 0.9727& 0.97826& 0
|
||||
train
|
||||
|
||||
datagen_dropout_00_100
|
||||
test
|
||||
0.981& 0.9702& 0.9769& 1e-05
|
||||
train
|
||||
|
||||
dropout_02_100
|
||||
test
|
||||
0.9796& 0.9719& 0.97703& 1e-05
|
||||
train
|
||||
|
||||
default_100
|
||||
test
|
||||
0.9637& 0.9506& 0.95823& 2e-05
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,101 +0,0 @@
|
||||
x_n_5000_tl_0.1,y_n_5000_tl_0.1,x_n_5000_tl_1.0,y_n_5000_tl_1.0,x_n_5000_tl_3.0,y_n_5000_tl_3.0
|
||||
-5.0,1.794615305950707,-5.0,0.3982406589003759,-5.0,-0.4811539502118497
|
||||
-4.898989898989899,1.6984389486364895,-4.898989898989899,0.35719218031912614,-4.898989898989899,-0.48887996302459025
|
||||
-4.797979797979798,1.6014200743009022,-4.797979797979798,0.3160182633093358,-4.797979797979798,-0.4966732473871599
|
||||
-4.696969696969697,1.5040575427157106,-4.696969696969697,0.27464978660531225,-4.696969696969697,-0.5045073579233731
|
||||
-4.595959595959596,1.4061194142774731,-4.595959595959596,0.23293440418365288,-4.595959595959596,-0.5123589845230747
|
||||
-4.494949494949495,1.3072651356075136,-4.494949494949495,0.19100397829173557,-4.494949494949495,-0.5202738824510786
|
||||
-4.393939393939394,1.2078259346207492,-4.393939393939394,0.1488314515422353,-4.393939393939394,-0.5282281154332915
|
||||
-4.292929292929293,1.1079271590765678,-4.292929292929293,0.10646618526238515,-4.292929292929293,-0.536250283913464
|
||||
-4.191919191919192,1.0073183089866045,-4.191919191919192,0.0637511521454329,-4.191919191919192,-0.5443068679044686
|
||||
-4.090909090909091,0.9064682044248323,-4.090909090909091,0.020965778107027506,-4.090909090909091,-0.5524049731989601
|
||||
-3.9898989898989896,0.805095064694333,-3.9898989898989896,-0.02200882631350869,-3.9898989898989896,-0.5605562335116703
|
||||
-3.888888888888889,0.7032463151196859,-3.888888888888889,-0.06548644224881082,-3.888888888888889,-0.5687680272492979
|
||||
-3.787878787878788,0.6007843964001714,-3.787878787878788,-0.10914135786185346,-3.787878787878788,-0.5770307386196555
|
||||
-3.686868686868687,0.4978572358270573,-3.686868686868687,-0.15292201515712506,-3.686868686868687,-0.5853131654059709
|
||||
-3.5858585858585856,0.39465522349482535,-3.5858585858585856,-0.19694472820060063,-3.5858585858585856,-0.593636189078738
|
||||
-3.484848484848485,0.29091175104318323,-3.484848484848485,-0.24139115547918963,-3.484848484848485,-0.6019914655156898
|
||||
-3.383838383838384,0.1868284306918275,-3.383838383838384,-0.28617728400089926,-3.383838383838384,-0.6103823599700093
|
||||
-3.282828282828283,0.0817944681090728,-3.282828282828283,-0.33119615483860937,-3.282828282828283,-0.6188088888423856
|
||||
-3.1818181818181817,-0.023670753859105602,-3.1818181818181817,-0.3764480559542342,-3.1818181818181817,-0.6272515625106694
|
||||
-3.080808080808081,-0.1299349094939808,-3.080808080808081,-0.42202262988259276,-3.080808080808081,-0.6357221532633648
|
||||
-2.9797979797979797,-0.2360705715363967,-2.9797979797979797,-0.467584017465408,-2.9797979797979797,-0.6440454918766952
|
||||
-2.878787878787879,-0.34125419448980393,-2.878787878787879,-0.5126079284225549,-2.878787878787879,-0.65203614244987
|
||||
-2.7777777777777777,-0.443504036212927,-2.7777777777777777,-0.5569084060463078,-2.7777777777777777,-0.6594896031012563
|
||||
-2.676767676767677,-0.5411482698953787,-2.676767676767677,-0.6002683604183435,-2.676767676767677,-0.6661215834468585
|
||||
-2.5757575757575757,-0.6363089624800997,-2.5757575757575757,-0.6396725440402657,-2.5757575757575757,-0.6715398637661353
|
||||
-2.474747474747475,-0.725241414197713,-2.474747474747475,-0.6753456416248385,-2.474747474747475,-0.674565545688341
|
||||
-2.3737373737373737,-0.8010191169999671,-2.3737373737373737,-0.7066964605752718,-2.3737373737373737,-0.6765307025278043
|
||||
-2.272727272727273,-0.8626605255789729,-2.272727272727273,-0.7348121862404637,-2.272727272727273,-0.6766187567521622
|
||||
-2.1717171717171717,-0.911435840482434,-2.1717171717171717,-0.7592451818361001,-2.1717171717171717,-0.6747200340049733
|
||||
-2.070707070707071,-0.9518228090965052,-2.070707070707071,-0.7755022118880182,-2.070707070707071,-0.6711535886166349
|
||||
-1.9696969696969697,-0.9791642715505677,-1.9696969696969697,-0.7889078495544403,-1.9696969696969697,-0.6653309071624213
|
||||
-1.868686868686869,-0.9959505678135467,-1.868686868686869,-0.7978655263590677,-1.868686868686869,-0.6574048849245917
|
||||
-1.7676767676767677,-1.0042572630521163,-1.7676767676767677,-0.8024926242661324,-1.7676767676767677,-0.6465258005011485
|
||||
-1.6666666666666665,-1.0031374573437621,-1.6666666666666665,-0.8024786300118695,-1.6666666666666665,-0.6326231142587367
|
||||
-1.5656565656565657,-0.9924082586558415,-1.5656565656565657,-0.7967021619463882,-1.5656565656565657,-0.6166476676023103
|
||||
-1.4646464646464645,-0.9734669180157094,-1.4646464646464645,-0.7849942222838879,-1.4646464646464645,-0.5979735104135664
|
||||
-1.3636363636363638,-0.9509454078185711,-1.3636363636363638,-0.7662349774950723,-1.3636363636363638,-0.5774876452737464
|
||||
-1.2626262626262625,-0.9231872651397443,-1.2626262626262625,-0.7433085627087517,-1.2626262626262625,-0.554712230754877
|
||||
-1.1616161616161618,-0.8903321986477033,-1.1616161616161618,-0.7150493507052204,-1.1616161616161618,-0.5295933185437713
|
||||
-1.0606060606060606,-0.8533989447900909,-1.0606060606060606,-0.6814643745239313,-1.0606060606060606,-0.5021785239088743
|
||||
-0.9595959595959593,-0.8107636317978494,-0.9595959595959593,-0.6421615608115637,-0.9595959595959593,-0.472606158673678
|
||||
-0.858585858585859,-0.7612745578549842,-0.858585858585859,-0.5973114244123007,-0.858585858585859,-0.4405007246413654
|
||||
-0.7575757575757578,-0.7079734098301842,-0.7575757575757578,-0.5483264663676062,-0.7575757575757578,-0.4059991890198415
|
||||
-0.6565656565656566,-0.6488963804386183,-0.6565656565656566,-0.49554278063844803,-0.6565656565656566,-0.3695525928005769
|
||||
-0.5555555555555554,-0.5859222961089965,-0.5555555555555554,-0.4403758682478846,-0.5555555555555554,-0.33111757514282614
|
||||
-0.45454545454545503,-0.5162955936688821,-0.45454545454545503,-0.38037108381900747,-0.45454545454545503,-0.28897806883385513
|
||||
-0.3535353535353538,-0.4413321076045784,-0.3535353535353538,-0.31690399361617216,-0.3535353535353538,-0.24421776219711205
|
||||
-0.2525252525252526,-0.3616414699818406,-0.2525252525252526,-0.25204481791119354,-0.2525252525252526,-0.19795939679257332
|
||||
-0.15151515151515138,-0.2780916794094584,-0.15151515151515138,-0.18575713332565263,-0.15151515151515138,-0.15066195015784248
|
||||
-0.050505050505050164,-0.18977454284683343,-0.050505050505050164,-0.11797643773197505,-0.050505050505050164,-0.10274021898431054
|
||||
0.050505050505050164,-0.0969321739577506,0.050505050505050164,-0.049351343645831554,0.050505050505050164,-0.05414525935109969
|
||||
0.15151515151515138,-4.4802289442360816E-4,0.15151515151515138,0.019464788799119597,0.15151515151515138,-0.005354051541524688
|
||||
0.2525252525252526,0.09918485823776255,0.2525252525252526,0.08804193897553166,0.2525252525252526,0.0433816826222638
|
||||
0.3535353535353538,0.1998735386668185,0.3535353535353538,0.15569793996298523,0.3535353535353538,0.09176342956997338
|
||||
0.45454545454545414,0.2999169047201809,0.45454545454545414,0.2218157527002848,0.45454545454545414,0.13952481930457306
|
||||
0.5555555555555554,0.3978204122760816,0.5555555555555554,0.2846069052305317,0.5555555555555554,0.18668380673527113
|
||||
0.6565656565656566,0.49120659266814587,0.6565656565656566,0.34467300454040606,0.6565656565656566,0.23277011860523958
|
||||
0.7575757575757578,0.5777980409414698,0.7575757575757578,0.40208229496894643,0.7575757575757578,0.27613740421328176
|
||||
0.8585858585858581,0.6568213676446025,0.8585858585858581,0.45705882493784666,0.8585858585858581,0.316305372116494
|
||||
0.9595959595959593,0.7305067401293432,0.9595959595959593,0.5066458373898202,0.9595959595959593,0.35343427932594923
|
||||
1.0606060606060606,0.7966609096765547,1.0606060606060606,0.5516149744358979,1.0606060606060606,0.38717949746647334
|
||||
1.1616161616161618,0.8521200140106753,1.1616161616161618,0.5878017101641295,1.1616161616161618,0.4170777567516486
|
||||
1.262626262626262,0.8975259277901253,1.262626262626262,0.6168588441570951,1.262626262626262,0.4446516626376453
|
||||
1.3636363636363633,0.9290861930067627,1.3636363636363633,0.6411836178298306,1.3636363636363633,0.46927636759559477
|
||||
1.4646464646464645,0.9508521659740165,1.4646464646464645,0.6610795923876176,1.4646464646464645,0.4901812911280025
|
||||
1.5656565656565657,0.9612143570080512,1.5656565656565657,0.6768219209716341,1.5656565656565657,0.5079918402617868
|
||||
1.666666666666667,0.9590141254017294,1.666666666666667,0.6878304863477654,1.666666666666667,0.5233400296358803
|
||||
1.7676767676767673,0.9434050911299104,1.7676767676767673,0.6925040592034013,1.7676767676767673,0.5351552186913862
|
||||
1.8686868686868685,0.9166484175947194,1.8686868686868685,0.6900246131027935,1.8686868686868685,0.5441567759439713
|
||||
1.9696969696969697,0.8762489440965586,1.9696969696969697,0.6764843940414706,1.9696969696969697,0.5496025817549586
|
||||
2.070707070707071,0.821609113516158,2.070707070707071,0.6566284893291617,2.070707070707071,0.5536820874974513
|
||||
2.1717171717171713,0.7581599898835192,2.1717171717171713,0.6308981649064993,2.1717171717171713,0.5533100035360206
|
||||
2.2727272727272725,0.6877704486402438,2.2727272727272725,0.6016976467409065,2.2727272727272725,0.550251787575325
|
||||
2.3737373737373737,0.610815603287697,2.3737373737373737,0.5704721438286479,2.3737373737373737,0.5445865851994449
|
||||
2.474747474747475,0.5275282181728166,2.474747474747475,0.5362814307290142,2.474747474747475,0.537858723684707
|
||||
2.5757575757575752,0.44098299617705367,2.5757575757575752,0.5007018478259194,2.5757575757575752,0.5301810557083476
|
||||
2.6767676767676765,0.3535127269572474,2.6767676767676765,0.4635791072799046,2.6767676767676765,0.5214280506499815
|
||||
2.7777777777777777,0.2669314340184933,2.7777777777777777,0.4252681214470508,2.7777777777777777,0.5119428002841875
|
||||
2.878787878787879,0.18244774892195767,2.878787878787879,0.3860805361925665,2.878787878787879,0.5020280103571171
|
||||
2.9797979797979792,0.10009287374461422,2.9797979797979792,0.34649978327862213,2.9797979797979792,0.4918997465440798
|
||||
3.0808080808080813,0.01825358803182036,3.0808080808080813,0.3067456416075246,3.0808080808080813,0.48152164248236273
|
||||
3.1818181818181817,-0.06257603867024951,3.1818181818181817,0.2670556605010131,3.1818181818181817,0.4710506406469346
|
||||
3.282828282828282,-0.14256250037038515,3.282828282828282,0.22747478740583862,3.282828282828282,0.46061400021772264
|
||||
3.383838383838384,-0.22183964093761221,3.383838383838384,0.18823442296238005,3.383838383838384,0.4502063176185161
|
||||
3.4848484848484844,-0.3000530710681483,3.4848484848484844,0.14930923451816047,3.4848484848484844,0.43983195563012295
|
||||
3.5858585858585865,-0.37715837046834677,3.5858585858585865,0.11064727810620513,3.5858585858585865,0.4294855408707603
|
||||
3.686868686868687,-0.4535879015098929,3.686868686868687,0.0721761317620166,3.686868686868687,0.41918651120808587
|
||||
3.787878787878787,-0.5295958753874862,3.787878787878787,0.03385158496402993,3.787878787878787,0.4089211108732785
|
||||
3.8888888888888893,-0.605341954214415,3.8888888888888893,-0.004196426105451837,3.8888888888888893,0.3986849690078671
|
||||
3.9898989898989896,-0.6805725256650321,3.9898989898989896,-0.04204424507819378,3.9898989898989896,0.3884698016669201
|
||||
4.09090909090909,-0.7553382625080638,4.09090909090909,-0.0795288839270637,4.09090909090909,0.37826736472008937
|
||||
4.191919191919192,-0.8294318073700058,4.191919191919192,-0.11675718948094181,4.191919191919192,0.36808861016948324
|
||||
4.292929292929292,-0.9025671571505313,4.292929292929292,-0.15379169226972225,4.292929292929292,0.3579396881040081
|
||||
4.3939393939393945,-0.9751233932017581,4.3939393939393945,-0.19069301489402432,4.3939393939393945,0.3478279422102407
|
||||
4.494949494949495,-1.0471623188798242,4.494949494949495,-0.227426975503073,4.494949494949495,0.3377388026398381
|
||||
4.595959595959595,-1.1187532876284094,4.595959595959595,-0.263878605240927,4.595959595959595,0.32767338817749475
|
||||
4.696969696969697,-1.189660915888889,4.696969696969697,-0.3001960056492053,4.696969696969697,0.3176530967513947
|
||||
4.797979797979798,-1.2601246569645388,4.797979797979798,-0.3363281464377301,4.797979797979798,0.3076778013243957
|
||||
4.8989898989899,-1.3303637186847002,4.8989898989899,-0.37225330321499334,4.8989898989899,0.29772768053304777
|
||||
5.0,-1.4004134094571867,5.0,-0.4080316669473787,5.0,0.2878184725593889
|
|
@ -1,101 +0,0 @@
|
||||
x_n_50_tl_0.0,y_n_50_tl_0.0,x_n_500_tl_0.0,y_n_500_tl_0.0,x_n_5000_tl_0.0,y_n_5000_tl_0.0,x_n_50_tl_1.0,y_n_50_tl_1.0,x_n_500_tl_1.0,y_n_500_tl_1.0,x_n_5000_tl_1.0,y_n_5000_tl_1.0,x_n_50_tl_3.0,y_n_50_tl_3.0,x_n_500_tl_3.0,y_n_500_tl_3.0,x_n_5000_tl_3.0,y_n_5000_tl_3.0
|
||||
-5.0,-0.8599583057554976,-5.0,1.6797068787192495,-5.0,1.7379689606223239,-5.0,-0.42741272499487776,-5.0,0.23661838590976328,-5.0,0.20399386816229978,-5.0,0.13095951218866275,-5.0,-0.46242184829078237,-5.0,-0.41058629664051305
|
||||
-4.898989898989899,-0.8456047840536887,-4.898989898989899,1.5940442438460278,-4.898989898989899,1.6472202329485999,-4.898989898989899,-0.4276431031893983,-4.898989898989899,0.20862681459226723,-4.898989898989899,0.17824071850107404,-4.898989898989899,0.10539057470765349,-4.898989898989899,-0.4609018322257037,-4.898989898989899,-0.4110599614729015
|
||||
-4.797979797979798,-0.8312512623518801,-4.797979797979798,1.5066655952530659,-4.797979797979798,1.5560370024912986,-4.797979797979798,-0.42787348138391906,-4.797979797979798,0.18056404254218186,-4.797979797979798,0.1523309553054011,-4.797979797979798,0.07982163722664384,-4.797979797979798,-0.4593800781031771,-4.797979797979798,-0.41155161184122596
|
||||
-4.696969696969697,-0.8168977406500709,-4.696969696969697,1.4192486056640365,-4.696969696969697,1.4641612521550218,-4.696969696969697,-0.42810385957843955,-4.696969696969697,0.1524990189306639,-4.696969696969697,0.1262143553005724,-4.696969696969697,0.05464380509332076,-4.696969696969697,-0.4578583174084625,-4.696969696969697,-0.41205688060740875
|
||||
-4.595959595959596,-0.8025442189482614,-4.595959595959596,1.3308076153149195,-4.595959595959596,1.3718747642404912,-4.595959595959596,-0.42833423777296026,-4.595959595959596,0.12443399531914556,-4.595959595959596,0.10000299804643913,-4.595959595959596,0.029720704709016,-4.595959595959596,-0.45633655338498746,-4.595959595959596,-0.4126005212950324
|
||||
-4.494949494949495,-0.788190697246453,-4.494949494949495,1.2408764237610932,-4.494949494949495,1.2794547935729972,-4.494949494949495,-0.42856461596748074,-4.494949494949495,0.09628036393480953,-4.494949494949495,0.07370213597938947,-4.494949494949495,0.004797604324711557,-4.494949494949495,-0.45481454100468904,-4.494949494949495,-0.41317280828652125
|
||||
-4.393939393939394,-0.7757194193374484,-4.393939393939394,1.150777108936673,-4.393939393939394,1.1865984175078124,-4.393939393939394,-0.4287949941620015,-4.393939393939394,0.06803799087458409,-4.393939393939394,0.047353868838267546,-4.393939393939394,-0.019952866294811474,-4.393939393939394,-0.4532902682540511,-4.393939393939394,-0.41378088791316736
|
||||
-4.292929292929293,-0.7635428572249876,-4.292929292929293,1.0606777941122512,-4.292929292929293,1.0935156155193826,-4.292929292929293,-0.42902537235652216,-4.292929292929293,0.039745189354681264,-4.292929292929293,0.020863777423783696,-4.292929292929293,-0.04424719286600705,-4.292929292929293,-0.45176167641583376,-4.292929292929293,-0.41441903123033147
|
||||
-4.191919191919192,-0.7514991436388702,-4.191919191919192,0.9705784792878309,-4.191919191919192,0.9999451479756023,-4.191919191919192,-0.42925575055104276,-4.191919191919192,0.01144626171509771,-4.191919191919192,-0.005903721047402898,-4.191919191919192,-0.06854151943720274,-4.191919191919192,-0.4502329821869361,-4.191919191919192,-0.415076548381381
|
||||
-4.090909090909091,-0.7396941691045894,-4.090909090909091,0.8798554638230421,-4.090909090909091,0.9059203084364202,-4.090909090909091,-0.42948612874556336,-4.090909090909091,-0.016952280979816926,-4.090909090909091,-0.03298925765732338,-4.090909090909091,-0.09283584600839848,-4.090909090909091,-0.44869972853751156,-4.090909090909091,-0.4157629995846106
|
||||
-3.9898989898989896,-0.7279252765177078,-3.9898989898989896,0.7884244803113447,-3.9898989898989896,0.811474387051809,-3.9898989898989896,-0.42971650694008423,-3.9898989898989896,-0.04548036359257723,-3.9898989898989896,-0.06017986522111469,-3.9898989898989896,-0.11713017257959416,-3.9898989898989896,-0.44715472797022665,-3.9898989898989896,-0.41647096691012625
|
||||
-3.888888888888889,-0.7161580919866168,-3.888888888888889,0.6966140451148786,-3.888888888888889,0.7168906385054419,-3.888888888888889,-0.4299468851346048,-3.888888888888889,-0.07408610945271141,-3.888888888888889,-0.0874709084540591,-3.888888888888889,-0.14142449915078953,-3.888888888888889,-0.4456015995456161,-3.888888888888889,-0.4171930364234525
|
||||
-3.787878787878788,-0.7043909074555256,-3.787878787878788,0.604803249010758,-3.787878787878788,0.6219712537736367,-3.787878787878788,-0.4301772633291252,-3.787878787878788,-0.10285723661640957,-3.787878787878788,-0.11503695886523099,-3.787878787878788,-0.16571882572198493,-3.787878787878788,-0.4440477592686527,-3.787878787878788,-0.41792735866227004
|
||||
-3.686868686868687,-0.6926237229244344,-3.686868686868687,0.512070766385858,-3.686868686868687,0.5265347560169878,-3.686868686868687,-0.4304076415236461,-3.686868686868687,-0.13176620357773466,-3.686868686868687,-0.1429497539600965,-3.686868686868687,-0.19001315229318066,-3.686868686868687,-0.44249216926013074,-3.686868686868687,-0.4186788950692494
|
||||
-3.5858585858585856,-0.680856538393343,-3.5858585858585856,0.418341406261733,-3.5858585858585856,0.43037422799158725,-3.5858585858585856,-0.43063801971816673,-3.5858585858585856,-0.16072772857488207,-3.5858585858585856,-0.17103810603915154,-3.5858585858585856,-0.21430747886437626,-3.5858585858585856,-0.44093657925160834,-3.5858585858585856,-0.41944890491602094
|
||||
-3.484848484848485,-0.6690893538622519,-3.484848484848485,0.3230008626762439,-3.484848484848485,0.33347359833985296,-3.484848484848485,-0.43086839791268744,-3.484848484848485,-0.189786562504877,-3.484848484848485,-0.1992640699299042,-3.484848484848485,-0.238601805435572,-3.484848484848485,-0.4393809892430859,-3.484848484848485,-0.4202525693559286
|
||||
-3.383838383838384,-0.6573221693311603,-3.383838383838384,0.22755806300474243,-3.383838383838384,0.23599152727957395,-3.383838383838384,-0.4310987761072079,-3.383838383838384,-0.21885301172451227,-3.383838383838384,-0.22770533404467666,-3.383838383838384,-0.2628961320067672,-3.383838383838384,-0.43781693796746485,-3.383838383838384,-0.4210766722370822
|
||||
-3.282828282828283,-0.6455549848000697,-3.282828282828283,0.13172938749299176,-3.282828282828283,0.13785071540835,-3.282828282828283,-0.4313291543017285,-3.282828282828283,-0.24792012144222308,-3.282828282828283,-0.25633384693349226,-3.282828282828283,-0.28719045857796294,-3.282828282828283,-0.4362515901030497,-3.282828282828283,-0.42192705020460003
|
||||
-3.1818181818181817,-0.6337878002689783,-3.1818181818181817,0.03583960513370717,-3.1818181818181817,0.03926297085619488,-3.1818181818181817,-0.43155953249624923,-3.1818181818181817,-0.2770868438988566,-3.1818181818181817,-0.28512064843139634,-3.1818181818181817,-0.3114847851491585,-3.1818181818181817,-0.4346861097486259,-3.1818181818181817,-0.42279043662854426
|
||||
-3.080808080808081,-0.6219933944673289,-3.080808080808081,-0.06005017722557655,-3.080808080808081,-0.05953650043486377,-3.080808080808081,-0.4317899106907698,-3.080808080808081,-0.30634202732953336,-3.080808080808081,-0.3140197227479732,-3.080808080808081,-0.33577911172035446,-3.080808080808081,-0.4331124443470669,-3.080808080808081,-0.42366980349780375
|
||||
-2.9797979797979797,-0.6084802589111126,-2.9797979797979797,-0.15590935392992944,-2.9797979797979797,-0.15810366579897028,-2.9797979797979797,-0.4320202888852905,-2.9797979797979797,-0.33549678779642544,-2.9797979797979797,-0.3430021282671825,-2.9797979797979797,-0.3600734382915496,-2.9797979797979797,-0.4315218307109141,-2.9797979797979797,-0.42449207343700956
|
||||
-2.878787878787879,-0.5891232690738096,-2.878787878787879,-0.24713180817765498,-2.878787878787879,-0.2552003497036097,-2.878787878787879,-0.43225066707981114,-2.878787878787879,-0.36352866123332933,-2.878787878787879,-0.3716002292573769,-2.878787878787879,-0.38436776486274526,-2.878787878787879,-0.42982012082652077,-2.878787878787879,-0.4251380414134998
|
||||
-2.7777777777777777,-0.5636588831509095,-2.7777777777777777,-0.33701300990207655,-2.7777777777777777,-0.35066910453142525,-2.7777777777777777,-0.4324810452743318,-2.7777777777777777,-0.3911342117000581,-2.7777777777777777,-0.39951657101606874,-2.7777777777777777,-0.4086620914339411,-2.7777777777777777,-0.42794280685642583,-2.7777777777777777,-0.4254095546530059
|
||||
-2.676767676767677,-0.538194497228009,-2.676767676767677,-0.4265304961947721,-2.676767676767677,-0.4419057912445846,-2.676767676767677,-0.4295143886441945,-2.676767676767677,-0.41758811768544335,-2.676767676767677,-0.4264377612958712,-2.676767676767677,-0.4329564180051365,-2.676767676767677,-0.4251801800597513,-2.676767676767677,-0.42514350551302893
|
||||
-2.5757575757575757,-0.5127301113051083,-2.5757575757575757,-0.5160338868263108,-2.5757575757575757,-0.530562896182845,-2.5757575757575757,-0.4209813938653777,-2.5757575757575757,-0.4421888684751682,-2.5757575757575757,-0.4521958194404763,-2.5757575757575757,-0.4572507445763323,-2.5757575757575757,-0.4220835438175992,-2.5757575757575757,-0.42424941235712643
|
||||
-2.474747474747475,-0.48726572538220836,-2.474747474747475,-0.6045443334592155,-2.474747474747475,-0.615529859161848,-2.474747474747475,-0.4124483990865609,-2.474747474747475,-0.4657884717671948,-2.474747474747475,-0.4762840194362591,-2.474747474747475,-0.480179747245649,-2.474747474747475,-0.4184871960008546,-2.474747474747475,-0.4227211360179997
|
||||
-2.3737373737373737,-0.4618013394593081,-2.3737373737373737,-0.6866461198443653,-2.3737373737373737,-0.6916556206405179,-2.3737373737373737,-0.4039154043077441,-2.3737373737373737,-0.4872175481179362,-2.3737373737373737,-0.49664688375599,-2.3737373737373737,-0.5021327343044837,-2.3737373737373737,-0.4148617786025484,-2.3737373737373737,-0.42058969704823307
|
||||
-2.272727272727273,-0.4363369535364072,-2.272727272727273,-0.7664221699283893,-2.272727272727273,-0.76211944205629,-2.272727272727273,-0.3953824095289272,-2.272727272727273,-0.5066515567337302,-2.272727272727273,-0.5156479697413601,-2.272727272727273,-0.5240857213633179,-2.272727272727273,-0.4101489198915738,-2.272727272727273,-0.41773244666508813
|
||||
-2.1717171717171717,-0.41087256761350716,-2.1717171717171717,-0.8294863656303931,-2.1717171717171717,-0.8275864122047706,-2.1717171717171717,-0.38684941475011053,-2.1717171717171717,-0.5248642081767847,-2.1717171717171717,-0.5320776321494358,-2.1717171717171717,-0.5460387084221523,-2.1717171717171717,-0.40386935734460455,-2.1717171717171717,-0.41386532161191136
|
||||
-2.070707070707071,-0.38540818169060687,-2.070707070707071,-0.8777818560548117,-2.070707070707071,-0.8828614286116081,-2.070707070707071,-0.37790597680581006,-2.070707070707071,-0.5419305295559403,-2.070707070707071,-0.5450192204063132,-2.070707070707071,-0.5535021346303699,-2.070707070707071,-0.3970390682426877,-2.070707070707071,-0.40816135821642785
|
||||
-1.9696969696969697,-0.3599437957677064,-1.9696969696969697,-0.9240065596308831,-1.9696969696969697,-0.9252381701217932,-1.9696969696969697,-0.3679210297690768,-1.9696969696969697,-0.5515520831674893,-1.9696969696969697,-0.5532507694312989,-1.9696969696969697,-0.5395642887779512,-1.9696969696969697,-0.3899536977126602,-1.9696969696969697,-0.4010221140801823
|
||||
-1.868686868686869,-0.3344794098448062,-1.868686868686869,-0.9642081153190732,-1.868686868686869,-0.9553319880266173,-1.868686868686869,-0.3579360827323437,-1.868686868686869,-0.5596849243269256,-1.868686868686869,-0.556146459781286,-1.868686868686869,-0.5226399861377664,-1.868686868686869,-0.38238093755017905,-1.868686868686869,-0.3924834151653046
|
||||
-1.7676767676767677,-0.3090150239219054,-1.7676767676767677,-1.0007396420666628,-1.7676767676767677,-0.9785388909278812,-1.7676767676767677,-0.34795113569561026,-1.7676767676767677,-0.5614467949548656,-1.7676767676767677,-0.556098671354368,-1.7676767676767677,-0.4982759643499402,-1.7676767676767677,-0.37323932215085087,-1.7676767676767677,-0.3822790688909727
|
||||
-1.6666666666666665,-0.2835506379990052,-1.6666666666666665,-1.0187333297343348,-1.6666666666666665,-0.990642179129256,-1.6666666666666665,-0.3378404050890797,-1.6666666666666665,-0.5581030917440444,-1.6666666666666665,-0.5516597526410076,-1.6666666666666665,-0.47067804898067184,-1.6666666666666665,-0.3614402633008814,-1.6666666666666665,-0.37030436851426224
|
||||
-1.5656565656565657,-0.2580862520761052,-1.5656565656565657,-1.0247628857811257,-1.5656565656565657,-0.9908786897501635,-1.5656565656565657,-0.32764529263529574,-1.5656565656565657,-0.5521110428952534,-1.5656565656565657,-0.543054168961121,-1.5656565656565657,-0.44308013361140386,-1.5656565656565657,-0.34868249075072216,-1.5656565656565657,-0.35699361568660476
|
||||
-1.4646464646464645,-0.2326218661532044,-1.4646464646464645,-1.0034906902849632,-1.4646464646464645,-0.9791175953628313,-1.4646464646464645,-0.3174501801815117,-1.4646464646464645,-0.5459322825614802,-1.4646464646464645,-0.5306579767422843,-1.4646464646464645,-0.41548221824213516,-1.4646464646464645,-0.3311832422822113,-1.4646464646464645,-0.3422960409489238
|
||||
-1.3636363636363638,-0.20715748023030392,-1.3636363636363638,-0.9673348570651019,-1.3636363636363638,-0.9595107779813504,-1.3636363636363638,-0.30725506772772765,-1.3636363636363638,-0.5358046337748493,-1.3636363636363638,-0.5149935986561597,-1.3636363636363638,-0.3878843028728669,-1.3636363636363638,-0.3132121589299601,-1.3636363636363638,-0.32640862478895577
|
||||
-1.2626262626262625,-0.1816930943074038,-1.2626262626262625,-0.9225014127525308,-1.2626262626262625,-0.9337929369785798,-1.2626262626262625,-0.29705995527394363,-1.2626262626262625,-0.5219865374295057,-1.2626262626262625,-0.49551878203869837,-1.2626262626262625,-0.3602863875035988,-1.2626262626262625,-0.2946441284959401,-1.2626262626262625,-0.3093875165551468
|
||||
-1.1616161616161618,-0.15622870838450328,-1.1616161616161618,-0.8751043056611054,-1.1616161616161618,-0.8989581380947891,-1.1616161616161618,-0.2868560938657385,-1.1616161616161618,-0.5034750880272445,-1.1616161616161618,-0.47203943335323734,-1.1616161616161618,-0.33268847213433056,-1.1616161616161618,-0.274883632364574,-1.1616161616161618,-0.290930041718859
|
||||
-1.0606060606060606,-0.13076432246160322,-1.0606060606060606,-0.821606899074672,-1.0606060606060606,-0.8584249497008333,-1.0606060606060606,-0.27660353819390815,-1.0606060606060606,-0.48270847299437897,-1.0606060606060606,-0.44464074915622404,-1.0606060606060606,-0.3050905567650622,-1.0606060606060606,-0.25396600066040825,-1.0606060606060606,-0.27118022111102713
|
||||
-0.9595959595959593,-0.1052999365387022,-0.9595959595959593,-0.7640740662013277,-0.9595959595959593,-0.8091349495541134,-0.9595959595959593,-0.2663509825220778,-0.9595959595959593,-0.4531496187924299,-0.9595959595959593,-0.4131252245857649,-0.9595959595959593,-0.2774926413957938,-0.9595959595959593,-0.2325608605277687,-0.9595959595959593,-0.24999263682664583
|
||||
-0.858585858585859,-0.07983555061580246,-0.858585858585859,-0.6997648036121712,-0.858585858585859,-0.7481101580520273,-0.858585858585859,-0.24945014324598108,-0.858585858585859,-0.4128551081137216,-0.858585858585859,-0.3783375004573455,-0.858585858585859,-0.24988890615957382,-0.858585858585859,-0.20970608424200354,-0.858585858585859,-0.22760758480332924
|
||||
-0.7575757575757578,-0.054371164692902076,-0.7575757575757578,-0.6349094271338603,-0.7575757575757578,-0.6820384544330558,-0.7575757575757578,-0.22976061598357173,-0.7575757575757578,-0.37194755761368214,-0.7575757575757578,-0.34125536540984164,-0.7575757575757578,-0.22211577202959193,-0.7575757575757578,-0.18612295967753525,-0.7575757575757578,-0.20435972492122192
|
||||
-0.6565656565656566,-0.028906778770001355,-0.6565656565656566,-0.5675463340257147,-0.6565656565656566,-0.6095055279444694,-0.6565656565656566,-0.21007108872116223,-0.6565656565656566,-0.33089771921954814,-0.6565656565656566,-0.3018873155488892,-0.6565656565656566,-0.193901705770251,-0.6565656565656566,-0.16215648653127196,-0.6565656565656566,-0.17931671250996567
|
||||
-0.5555555555555554,-0.003442392847101086,-0.5555555555555554,-0.4979737843441253,-0.5555555555555554,-0.5294156894319434,-0.5555555555555554,-0.17756203711819088,-0.5555555555555554,-0.28543993548509355,-0.5555555555555554,-0.26041062451302716,-0.5555555555555554,-0.1652647608815763,-0.5555555555555554,-0.13697108727984195,-0.5555555555555554,-0.15330854213602407
|
||||
-0.45454545454545503,0.022021993075799252,-0.45454545454545503,-0.41446378537016554,-0.45454545454545503,-0.44063136513918405,-0.45454545454545503,-0.14370193132078618,-0.45454545454545503,-0.2395445410097954,-0.45454545454545503,-0.21652789115320525,-0.45454545454545503,-0.13529651419425484,-0.45454545454545503,-0.11162353028803523,-0.45454545454545503,-0.12623393965312618
|
||||
-0.3535353535353538,0.047486378998699605,-0.3535353535353538,-0.32279891003383887,-0.3535353535353538,-0.3477046435373429,-0.3535353535353538,-0.10934683153775412,-0.3535353535353538,-0.19101529776271153,-0.3535353535353538,-0.17035416577174828,-0.3535353535353538,-0.10509845793132169,-0.3535353535353538,-0.08626013443382194,-0.3535353535353538,-0.0984136402387288
|
||||
-0.2525252525252526,0.07295076492159988,-0.2525252525252526,-0.2310925448666578,-0.2525252525252526,-0.25069145628093464,-0.2525252525252526,-0.07491795886312486,-0.2525252525252526,-0.14150481827496786,-0.2525252525252526,-0.12255925867115473,-0.2525252525252526,-0.07490040166838845,-0.2525252525252526,-0.060434579838324495,-0.2525252525252526,-0.07006332009798681
|
||||
-0.15151515151515138,0.09843047923373265,-0.15151515151515138,-0.13636354870852932,-0.15151515151515138,-0.15095910699954188,-0.15151515151515138,-0.040306119685216676,-0.15151515151515138,-0.08982558834407159,-0.15151515151515138,-0.07398207558396772,-0.15151515151515138,-0.044702345405455264,-0.15151515151515138,-0.033631412543263274,-0.15151515151515138,-0.04141233375856603
|
||||
-0.050505050505050164,0.12391212075429944,-0.050505050505050164,-0.03941345742250633,-0.050505050505050164,-0.04947445191778734,-0.050505050505050164,-0.005694280507308445,-0.050505050505050164,-0.03797674651308919,-0.050505050505050164,-0.025080464074353173,-0.050505050505050164,-0.014504289142522105,-0.050505050505050164,-0.006446181090338347,-0.050505050505050164,-0.012381418678247798
|
||||
0.050505050505050164,0.14939376227486617,0.050505050505050164,0.056551574802519614,0.050505050505050164,0.0525838784102356,0.050505050505050164,0.028911158365061536,0.050505050505050164,0.013973891774473416,0.050505050505050164,0.023794553267499748,0.050505050505050164,0.01583885016218507,0.050505050505050164,0.021038028372213642,0.050505050505050164,0.016846741994686543
|
||||
0.15151515151515138,0.17487540379543332,0.15151515151515138,0.15017264202689645,0.15151515151515138,0.15408973105493792,0.15151515151515138,0.062183868537649845,0.15151515151515138,0.06589471730593952,0.15151515151515138,0.07245763138776953,0.15151515151515138,0.046508129166361926,0.15151515151515138,0.04842915541973139,0.15151515151515138,0.04601083462340586
|
||||
0.2525252525252526,0.2003570453160002,0.2525252525252526,0.24151055338001104,0.2525252525252526,0.2530277286116801,0.2525252525252526,0.09533027991528796,0.2525252525252526,0.11633887943820748,0.2525252525252526,0.11992049316059605,0.2525252525252526,0.07717740817053882,0.2525252525252526,0.07538338916654858,0.2525252525252526,0.07493657104851133
|
||||
0.3535353535353538,0.22583868683656727,0.3535353535353538,0.3245702345293225,0.3535353535353538,0.3487077570947679,0.3535353535353538,0.12847669129292608,0.3535353535353538,0.1661606781018032,0.3535353535353538,0.16626942811591283,0.3535353535353538,0.10784668717471575,0.3535353535353538,0.10205978943459323,0.3535353535353538,0.10356289911566637
|
||||
0.45454545454545414,0.25132032835713397,0.45454545454545414,0.4042440047834261,0.45454545454545414,0.4412637068427958,0.45454545454545414,0.15705349698246504,0.45454545454545414,0.21489012650224273,0.45454545454545414,0.21055873443432177,0.45454545454545414,0.1385159661788923,0.45454545454545414,0.12849799626750344,0.45454545454545414,0.13171638145035697
|
||||
0.5555555555555554,0.2768019698777009,0.5555555555555554,0.48386343064481413,0.5555555555555554,0.5292644209820558,0.5555555555555554,0.1822941322301175,0.5555555555555554,0.26332131026810235,0.5555555555555554,0.25282542280637477,0.5555555555555554,0.16918524518306918,0.5555555555555554,0.1537986605041808,0.5555555555555554,0.15885558014342485
|
||||
0.6565656565656566,0.30228361139826787,0.6565656565656566,0.5582703975525269,0.6565656565656566,0.6095279265110211,0.6565656565656566,0.20753476747777022,0.6565656565656566,0.311752494033962,0.6565656565656566,0.2926908500466596,0.6565656565656566,0.1998545241872461,0.6565656565656566,0.17827793057103108,0.6565656565656566,0.18425901109338033
|
||||
0.7575757575757578,0.3276630675001063,0.7575757575757578,0.6240165672599972,0.7575757575757578,0.6817170975194252,0.7575757575757578,0.23277540272542308,0.7575757575757578,0.35585725421977105,0.7575757575757578,0.32990973382338223,0.7575757575757578,0.23052380319142296,0.7575757575757578,0.19993717433313357,0.7575757575757578,0.20856541522380753
|
||||
0.8585858585858581,0.35294340046326517,0.8585858585858581,0.6832251591090945,0.8585858585858581,0.7490023509530548,0.8585858585858581,0.2580160379730755,0.8585858585858581,0.39411574874383437,0.8585858585858581,0.3646086605463153,0.8585858585858581,0.2611930821955996,0.8585858585858581,0.21959645347898898,0.8585858585858581,0.2319021251050189
|
||||
0.9595959595959593,0.3782237334264241,0.9595959595959593,0.7379264665053952,0.9595959595959593,0.8101967957597399,0.9595959595959593,0.28325667322072823,0.9595959595959593,0.4295026011065611,0.9595959595959593,0.39755496473819213,0.9595959595959593,0.2918623611997765,0.9595959595959593,0.23923560012200779,0.9595959595959593,0.25414437767202697
|
||||
1.0606060606060606,0.40350406638958297,1.0606060606060606,0.7921580999576039,1.0606060606060606,0.865038072851208,1.0606060606060606,0.3013557830052828,1.0606060606060606,0.4622992830762259,1.0606060606060606,0.4264742505103137,1.0606060606060606,0.3225316402039533,1.0606060606060606,0.2583177367004956,1.0606060606060606,0.27509011865395333
|
||||
1.1616161616161618,0.4287843993527419,1.1616161616161618,0.8463753861957045,1.1616161616161618,0.9101530745705552,1.1616161616161618,0.30890687222540525,1.1616161616161618,0.4901351365169132,1.1616161616161618,0.45319808589043276,1.1616161616161618,0.35276108409396234,1.1616161616161618,0.27725858987652097,1.1616161616161618,0.29560030900846
|
||||
1.262626262626262,0.4540647323159006,1.262626262626262,0.897495878378595,1.262626262626262,0.9417185837581196,1.262626262626262,0.3164579614455276,1.262626262626262,0.5145846409490937,1.262626262626262,0.4780296455205537,1.262626262626262,0.3794404038170447,1.262626262626262,0.2943968389517317,1.262626262626262,0.3152556528081
|
||||
1.3636363636363633,0.47934506527905946,1.3636363636363633,0.9371746663372353,1.3636363636363633,0.9683350572505884,1.3636363636363633,0.32400905066565,1.3636363636363633,0.5362370529858077,1.3636363636363633,0.49985847015098533,1.3636363636363633,0.4061135157391696,1.3636363636363633,0.31086438420332474,1.3636363636363633,0.33319398921001137
|
||||
1.4646464646464645,0.5046253982422182,1.4646464646464645,0.9707358108138878,1.4646464646464645,0.9850292043911345,1.4646464646464645,0.3315601398857724,1.4646464646464645,0.5531019255981576,1.4646464646464645,0.5181848921010453,1.4646464646464645,0.43278662766129444,1.4646464646464645,0.32679862313827224,1.4646464646464645,0.34908318351734496
|
||||
1.5656565656565657,0.519310758600954,1.5656565656565657,0.9906032176938914,1.5656565656565657,0.9918397190961462,1.5656565656565657,0.3391112291058948,1.5656565656565657,0.5659801950328859,1.5656565656565657,0.5323498791465002,1.5656565656565657,0.4511009412793216,1.5656565656565657,0.34162587661768695,1.5656565656565657,0.3628958484057042
|
||||
1.666666666666667,0.51401635833774,1.666666666666667,1.005715077214144,1.666666666666667,0.9899656142606021,1.666666666666667,0.346662318326017,1.666666666666667,0.575829702298404,1.666666666666667,0.541260149475436,1.666666666666667,0.4674803110925756,1.666666666666667,0.35601920704359724,1.666666666666667,0.37572761649169056
|
||||
1.7676767676767673,0.5060676795476615,1.7676767676767673,1.0131883048070176,1.7676767676767673,0.9786887428475383,1.7676767676767673,0.35421340754613934,1.7676767676767673,0.5828151703640635,1.7676767676767673,0.5455395874048847,1.7676767676767673,0.4838510153495891,1.7676767676767673,0.3703169330810678,1.7676767676767673,0.38781035405087
|
||||
1.8686868686868685,0.495017206229559,1.8686868686868685,0.9802541539054102,1.8686868686868685,0.9559310588882513,1.8686868686868685,0.3617644967662619,1.8686868686868685,0.5839088497682434,1.8686868686868685,0.5467157898697311,1.8686868686868685,0.49835864007261943,1.8686868686868685,0.38410765063343066,1.8686868686868685,0.3977196343512365
|
||||
1.9696969696969697,0.48396673291145637,1.9696969696969697,0.9263388630289161,1.9696969696969697,0.9221166683929235,1.9696969696969697,0.36931558598638414,1.9696969696969697,0.5804936028756624,1.9696969696969697,0.5450082343452209,1.9696969696969697,0.5115510651058692,1.9696969696969697,0.39647206872026003,1.9696969696969697,0.4057110985660076
|
||||
2.070707070707071,0.4729162595933537,2.070707070707071,0.8698358861835761,2.070707070707071,0.8764481362001709,2.070707070707071,0.3768666752065065,2.070707070707071,0.574716686049867,2.070707070707071,0.5394474878302619,2.070707070707071,0.5097127295818997,2.070707070707071,0.4049032898801099,2.070707070707071,0.41126316053027995
|
||||
2.1717171717171713,0.46186578627525116,2.1717171717171713,0.8081407617658106,2.1717171717171713,0.8224404974364862,2.1717171717171713,0.38441776442662906,2.1717171717171713,0.5655375705620478,2.1717171717171713,0.5300324428024472,2.1717171717171713,0.49554940844796147,2.1717171717171713,0.4101839304627971,2.1717171717171713,0.4155357725301964
|
||||
2.2727272727272725,0.4491770446280175,2.2727272727272725,0.7442526428212628,2.2727272727272725,0.7592323649828391,2.2727272727272725,0.391968853646751,2.2727272727272725,0.552350323381661,2.2727272727272725,0.5163813504127768,2.2727272727272725,0.48094925798793925,2.2727272727272725,0.413936941837358,2.2727272727272725,0.41843071308941276
|
||||
2.3737373737373737,0.43609986761848685,2.3737373737373737,0.675405575107383,2.3737373737373737,0.6874741372997285,2.3737373737373737,0.39951994286687353,2.3737373737373737,0.5335539998256553,2.3737373737373737,0.49865541506871236,2.3737373737373737,0.4655571015656922,2.3737373737373737,0.4173906236056948,2.3737373737373737,0.42027249977934045
|
||||
2.474747474747475,0.4066895271847391,2.474747474747475,0.5978840366507735,2.474747474747475,0.6073682995880296,2.474747474747475,0.40692119452733155,2.474747474747475,0.5117177142842388,2.474747474747475,0.4784532511364369,2.474747474747475,0.4501649451434452,2.474747474747475,0.4206585025597512,2.474747474747475,0.4213399238172195
|
||||
2.5757575757575752,0.3749622763477891,2.5757575757575752,0.5099585586540418,2.5757575757575752,0.5223271133442401,2.5757575757575752,0.41415264022012394,2.5757575757575752,0.4850415148130571,2.5757575757575752,0.4567094947730761,2.5757575757575752,0.43458555601387144,2.5757575757575752,0.42158324745022285,2.5757575757575752,0.42181632222498416
|
||||
2.6767676767676765,0.3432350255108388,2.6767676767676765,0.4205365946887392,2.6767676767676765,0.432906236858961,2.6767676767676765,0.4199131836378292,2.6767676767676765,0.45218830888592937,2.6767676767676765,0.4332394825941561,2.6767676767676765,0.41774264448225407,2.6767676767676765,0.42145613907090707,2.6767676767676765,0.4215504924390677
|
||||
2.7777777777777777,0.3115077746738885,2.7777777777777777,0.32930350370842715,2.7777777777777777,0.3412321347424227,2.7777777777777777,0.42274639662898705,2.7777777777777777,0.4163402713183856,2.7777777777777777,0.40851950219775013,2.7777777777777777,0.40089973295063663,2.7777777777777777,0.4209228617300304,2.7777777777777777,0.4203590184673923
|
||||
2.878787878787879,0.27978052383693824,2.878787878787879,0.23807041272811588,2.878787878787879,0.24760314946640188,2.878787878787879,0.42557960962014507,2.878787878787879,0.3802049595409251,2.878787878787879,0.383057999391408,2.878787878787879,0.3840568214190192,2.878787878787879,0.41938009129458526,2.878787878787879,0.41854626446476473
|
||||
2.9797979797979792,0.24805327299998842,2.9797979797979792,0.14646854757187647,2.9797979797979792,0.15264712621771054,2.9797979797979792,0.428104678899817,2.9797979797979792,0.3432577786602793,2.9797979797979792,0.35694448241628624,2.9797979797979792,0.367213909887402,2.9797979797979792,0.41773298189050795,2.9797979797979792,0.4163510447804036
|
||||
3.0808080808080813,0.21632602216303798,3.0808080808080813,0.05456143993271787,3.0808080808080813,0.057336396951423035,3.0808080808080813,0.42910204221273207,3.0808080808080813,0.30602019255320434,3.0808080808080813,0.3305660520102483,3.0808080808080813,0.3503709983557844,3.0808080808080813,0.41593157838764133,3.0808080808080813,0.41396474245507225
|
||||
3.1818181818181817,0.18459877132608776,3.1818181818181817,-0.03733538955626138,3.1818181818181817,-0.03779843888287274,3.1818181818181817,0.4300994055256468,3.1818181818181817,0.26873960102765904,3.1818181818181817,0.30419224859801247,3.1818181818181817,0.3335280868241671,3.1818181818181817,0.41409475876758717,3.1818181818181817,0.41152646064562604
|
||||
3.282828282828282,0.15287152048913782,3.282828282828282,-0.12920906194738088,3.282828282828282,-0.13249853932321157,3.282828282828282,0.43099899837317435,3.282828282828282,0.2314874157056526,3.282828282828282,0.27788417508140784,3.282828282828282,0.3164995410780566,3.282828282828282,0.4122620364061852,3.282828282828282,0.40912247673587887
|
||||
3.383838383838384,0.12114426965218736,3.383838383838384,-0.22108273433850145,3.383838383838384,-0.22672866959540386,3.383838383838384,0.4318917322435721,3.383838383838384,0.19424068277399548,3.383838383838384,0.25176947991950477,3.383838383838384,0.2992528546417876,3.383838383838384,0.41043205422405316,3.383838383838384,0.40674183306733336
|
||||
3.4848484848484844,0.08941701881523752,3.4848484848484844,-0.3129564067296208,3.4848484848484844,-0.3204339220693533,3.4848484848484844,0.43278446611396965,3.4848484848484844,0.15713787053146627,3.4848484848484844,0.22587592408322044,3.4848484848484844,0.2820061682055188,3.4848484848484844,0.4086021011097265,3.4848484848484844,0.4043698847877142
|
||||
3.5858585858585865,0.058162275193419995,3.5858585858585865,-0.40462815693660914,3.5858585858585865,-0.41324795154433747,3.5858585858585865,0.4336771999843675,3.5858585858585865,0.12019800234358827,3.5858585858585865,0.20009983185318994,3.5858585858585865,0.2647594817692496,3.5858585858585865,0.4067722514909233,3.5858585858585865,0.40203120630187705
|
||||
3.686868686868687,0.027654025225499562,3.686868686868687,-0.49422269067564845,3.686868686868687,-0.505293720158625,3.686868686868687,0.43456993385476517,3.686868686868687,0.08338176166505175,3.686868686868687,0.17451220690194294,3.686868686868687,0.24694025624429472,3.686868686868687,0.40494401437700783,3.686868686868687,0.39972779600606
|
||||
3.787878787878787,-0.0028542247424208616,3.787878787878787,-0.5825355853286744,3.787878787878787,-0.5971159649192432,3.787878787878787,0.4354626677251625,3.787878787878787,0.04665044899957155,3.787878787878787,0.14916273839002891,3.787878787878787,0.22899283485249716,3.787878787878787,0.40312179798093106,3.787878787878787,0.39746202764807126
|
||||
3.8888888888888893,-0.03336247471034154,3.8888888888888893,-0.6703463394238872,3.8888888888888893,-0.68824406601414,3.8888888888888893,0.4363554015955604,3.8888888888888893,0.009919136334091362,3.8888888888888893,0.12414842115967273,3.8888888888888893,0.21104541346069938,3.8888888888888893,0.4013011021954902,3.8888888888888893,0.3952295870367829
|
||||
3.9898989898989896,-0.06387072467826214,3.9898989898989896,-0.7575928168757736,3.9898989898989896,-0.7784133912470257,3.9898989898989896,0.437248135465958,3.9898989898989896,-0.026722390982327433,3.9898989898989896,0.09939234299162882,3.9898989898989896,0.19309799206890174,3.9898989898989896,0.399484052282032,3.9898989898989896,0.3930265651896393
|
||||
4.09090909090909,-0.0943789746461824,4.09090909090909,-0.8443788481067765,4.09090909090909,-0.8681309126980375,4.09090909090909,0.43814086933635565,4.09090909090909,-0.06308596529257729,4.09090909090909,0.07491765400345742,4.09090909090909,0.1750164743635475,4.09090909090909,0.39766754707663343,4.09090909090909,0.3908577509521082
|
||||
4.191919191919192,-0.12488722461410334,4.191919191919192,-0.9297917533069101,4.191919191919192,-0.9573364023412008,4.191919191919192,0.4390336032067535,4.191919191919192,-0.09929539509789244,4.191919191919192,0.05074971564267564,4.191919191919192,0.1568727764842795,4.191919191919192,0.3958543351530404,4.191919191919192,0.38872432233841003
|
||||
4.292929292929292,-0.15539547458202363,4.292929292929292,-1.0140884125491687,4.292929292929292,-1.0459165238042567,4.292929292929292,0.4399263370771512,4.292929292929292,-0.1349334585206603,4.292929292929292,0.02675516616820918,4.292929292929292,0.13872907860501169,4.292929292929292,0.3940418892740997,4.292929292929292,0.38661923148208605
|
||||
4.3939393939393945,-0.18590372454994458,4.3939393939393945,-1.0972974392893766,4.3939393939393945,-1.1342383379633272,4.3939393939393945,0.4408190709475487,4.3939393939393945,-0.16982980680843562,4.3939393939393945,0.002964652994963484,4.3939393939393945,0.11796054958424437,4.3939393939393945,0.3922298874756054,4.3939393939393945,0.3845302650106349
|
||||
4.494949494949495,-0.216411974517865,4.494949494949495,-1.179182894055243,4.494949494949495,-1.2221355458185688,4.494949494949495,0.44032091498508585,4.494949494949495,-0.20469748939648835,4.494949494949495,-0.0206002794035424,4.494949494949495,0.09701325884395126,4.494949494949495,0.39041788567711144,4.494949494949495,0.38248614430609396
|
||||
4.595959595959595,-0.24692022448578524,4.595959595959595,-1.2601894992373368,4.595959595959595,-1.3091379548259912,4.595959595959595,0.4390119198940737,4.595959595959595,-0.239564339118166,4.595959595959595,-0.044064215802437315,4.595959595959595,0.07606596810365834,4.595959595959595,0.38861853091288373,4.595959595959595,0.3804739406387159
|
||||
4.696969696969697,-0.2774284744537062,4.696969696969697,-1.3408190143954206,4.696969696969697,-1.395667382198044,4.696969696969697,0.4377029248030613,4.696969696969697,-0.2744311888398445,4.696969696969697,-0.06739710896332894,4.696969696969697,0.05511867736336504,4.696969696969697,0.38683625018149875,4.696969696969697,0.37848669218529357
|
||||
4.797979797979798,-0.3079367244216266,4.797979797979798,-1.4214485295534998,4.797979797979798,-1.4814148159277154,4.797979797979798,0.436393929712049,4.797979797979798,-0.3092980385615221,4.797979797979798,-0.09057526494106827,4.797979797979798,0.034171386623072064,4.797979797979798,0.3850542123238927,4.797979797979798,0.37652869146057905
|
||||
4.8989898989899,-0.3384449743895474,4.8989898989899,-1.5019215376311323,4.8989898989899,-1.5662892316768398,4.8989898989899,0.4350560618496009,4.8989898989899,-0.34416306870335767,4.8989898989899,-0.11357143325279366,4.8989898989899,0.013224095882778591,4.8989898989899,0.383272237289863,4.8989898989899,0.37460430584833954
|
||||
5.0,-0.3689532243574676,5.0,-1.5820215750973248,5.0,-1.6508596672714462,5.0,0.43307940950570034,5.0,-0.37879161071248096,5.0,-0.13636462992911846,5.0,-0.007723194857514326,5.0,0.38149127984729847,5.0,0.37272620912380855
|
|
@ -1,7 +0,0 @@
|
||||
x,y
|
||||
-3.14159265358979 , -1.22464679914735e-16
|
||||
-1.88495559215388 , -0.951056516295154
|
||||
-0.628318530717959 , -0.587785252292473
|
||||
0.628318530717959 , 0.587785252292473
|
||||
1.88495559215388 , 0.951056516295154
|
||||
3.14159265358979 , 1.22464679914735e-16
|
|
@ -1,64 +0,0 @@
|
||||
,x_i,y_i,x_d,y_d,x,y
|
||||
"1",0,0,-0.251688505259414,-0.109203329280437,-0.0838961684198045,-0.0364011097601456
|
||||
"2",0.1,0.0998334166468282,0.216143831477992,0.112557051753147,0.00912581751114394,0.0102181849309398
|
||||
"3",0.2,0.198669330795061,0.351879533708722,0.52138915851383,0.120991434720523,0.180094983253476
|
||||
"4",0.3,0.29552020666134,-0.0169121548298757,0.0870956013269369,0.0836131805695847,0.163690012207993
|
||||
"5",0.4,0.389418342308651,0.278503661037003,0.464752686490904,0.182421968363305,0.294268636359638
|
||||
"6",0.5,0.479425538604203,0.241783494554983,0.521480762031938,0.216291763003623,0.399960258238722
|
||||
"7",0.6,0.564642473395035,0.67288177436767,0.617435509386938,0.35521581484916,0.469717955748659
|
||||
"8",0.7,0.644217687237691,0.692239292735764,0.395366561077235,0.492895242512842,0.472257444593698
|
||||
"9",0.8,0.717356090899523,0.779946606884677,0.830045203984444,0.621840812496715,0.609161571471379
|
||||
"10",0.9,0.783326909627483,0.796987424421658,0.801263132114778,0.723333122197902,0.682652280249237
|
||||
"11",1,0.841470984807897,1.06821012817873,0.869642838589798,0.860323524382936,0.752971972337735
|
||||
"12",1.1,0.891207360061435,1.50128637982775,0.899079529605641,1.09148187598916,0.835465707990221
|
||||
"13",1.2,0.932039085967226,1.1194263347154,0.906626360727432,1.13393429991233,0.875953352580199
|
||||
"14",1.3,0.963558185417193,1.24675170552299,1.07848030956084,1.2135821540696,0.950969562327306
|
||||
"15",1.4,0.98544972998846,1.32784804980202,0.76685418220594,1.2818141129714,0.899892140468108
|
||||
"16",1.5,0.997494986604054,1.23565831982523,1.07310713979952,1.2548338349408,0.961170357331681
|
||||
"17",1.6,0.999573603041505,1.90289281875567,0.88003153305018,1.47254506382487,0.94006950203764
|
||||
"18",1.7,0.991664810452469,1.68871194985252,1.01829329437246,1.56940444551462,0.955793455192302
|
||||
"19",1.8,0.973847630878195,1.72179983981017,1.02268013575533,1.64902528694529,0.988666907865147
|
||||
"20",1.9,0.946300087687414,2.0758716236832,0.805032560816536,1.83908127693465,0.928000158917177
|
||||
"21",2,0.909297426825682,2.11118945422405,1.0134691646089,1.94365432453739,0.957334347939419
|
||||
"22",2.1,0.863209366648874,2.00475777514698,0.86568986134637,1.9826265174693,0.924298444442167
|
||||
"23",2.2,0.80849640381959,2.40773948766051,0.667018023975934,2.15807575978944,0.826761739840873
|
||||
"24",2.3,0.74570521217672,2.14892522112975,0.872704236332415,2.17485332420928,0.839957045849706
|
||||
"25",2.4,0.675463180551151,2.41696701330131,0.253955021611832,2.26412064248401,0.631186439537074
|
||||
"26",2.5,0.598472144103957,2.4087686184711,0.49450592290142,2.33847747374241,0.557319074033222
|
||||
"27",2.6,0.515501371821464,2.55312145187913,0.343944677655963,2.4151672191424,0.467867318187242
|
||||
"28",2.7,0.42737988023383,2.6585492172135,0.528990826178838,2.51649125567521,0.447178678139147
|
||||
"29",2.8,0.334988150155905,2.86281283456189,0.311400289332401,2.65184232661008,0.399952143417531
|
||||
"30",2.9,0.239249329213982,2.74379162744449,0.501282616227342,2.70796893413474,0.432791852065713
|
||||
"31",3,0.141120008059867,2.95951338295806,0.241385538727577,2.81576254355573,0.373424929745113
|
||||
"32",3.1,0.0415806624332905,2.87268165585702,0.0764217470113609,2.85626015646841,0.264426413128825
|
||||
"33",3.2,-0.0583741434275801,3.29898326143096,-0.272500742891131,3.0101734240017,0.0756660807058224
|
||||
"34",3.3,-0.157745694143249,3.64473302259565,-0.24394459655987,3.24463496592626,-0.0688606479078372
|
||||
"35",3.4,-0.255541102026832,3.46698556586598,-0.184272732807665,3.35339770834784,-0.15210430721581
|
||||
"36",3.5,-0.35078322768962,3.67208160089566,-0.119933071489115,3.51318482264886,-0.176430496141549
|
||||
"37",3.6,-0.442520443294852,3.73738883546162,-0.486197268315415,3.62961845872181,-0.283186040443485
|
||||
"38",3.7,-0.529836140908493,3.77209072631297,-0.70275845349803,3.68619468325631,-0.422698101171958
|
||||
"39",3.8,-0.611857890942719,3.66424718733509,-0.482410535792735,3.69727905622484,-0.462935060857071
|
||||
"40",3.9,-0.687766159183974,3.72257849834575,-0.58477261395861,3.71784166083333,-0.543108060927685
|
||||
"41",4,-0.756802495307928,3.85906293918747,-0.703015362823377,3.76539960460785,-0.618449987254768
|
||||
"42",4.1,-0.818277111064411,4.0131961543859,-0.900410257326814,3.84632588679948,-0.708384794580195
|
||||
"43",4.2,-0.871575772413588,4.0263131749378,-0.906044808231391,3.92085812717095,-0.789303202089581
|
||||
"44",4.3,-0.916165936749455,4.77220075671212,-0.530827398816399,4.22925719163087,-0.729943577630504
|
||||
"45",4.4,-0.951602073889516,4.4795636311648,-1.26672674728111,4.35331987391088,-0.921377204806384
|
||||
"46",4.5,-0.977530117665097,4.5088210845027,-0.886168448505782,4.44898342417679,-0.914264630323723
|
||||
"47",4.6,-0.993691003633465,4.70645816063034,-1.1082213336257,4.58861983576766,-0.97806804633887
|
||||
"48",4.7,-0.999923257564101,4.48408312008838,-0.98352521226689,4.55827710678399,-1.01979325501755
|
||||
"49",4.8,-0.996164608835841,4.97817348334347,-1.03043977928678,4.69715193557134,-1.02203657500247
|
||||
"50",4.9,-0.982452612624332,5.09171179984929,-0.948912592308037,4.8484480091335,-0.999631162740658
|
||||
"51",5,-0.958924274663138,4.87710566000798,-0.825224506141761,4.87693462801326,-0.937722874707385
|
||||
"52",5.1,-0.925814682327732,5.04139294635392,-0.718936957124138,4.97198282698482,-0.856650521199568
|
||||
"53",5.2,-0.883454655720153,4.94893136398377,-0.992753696742329,4.98294046406006,-0.885371127105841
|
||||
"54",5.3,-0.832267442223901,5.38128555915899,-0.717434652733088,5.10670981664685,-0.816103747160468
|
||||
"55",5.4,-0.772764487555987,5.46192736637355,-0.724060934669406,5.2398375587704,-0.780347098915984
|
||||
"56",5.5,-0.705540325570392,5.30834840605735,-0.721772537926303,5.28807996342596,-0.766498807502665
|
||||
"57",5.6,-0.631266637872321,5.53199687756185,-0.583133415115471,5.40779902870202,-0.688843253413245
|
||||
"58",5.7,-0.550685542597638,5.9238064899769,-0.541063721566544,5.59865656961444,-0.627040990301198
|
||||
"59",5.8,-0.464602179413757,5.8067999294844,-0.43156566524513,5.68077207716296,-0.552246304884294
|
||||
"60",5.9,-0.373876664830236,5.93089453525347,-0.604056792592816,5.80084302534748,-0.550733954237757
|
||||
"61",6,-0.279415498198926,6.02965160059402,-0.234452930170458,5.91786841211583,-0.434812265604247
|
||||
"62",6.1,-0.182162504272095,5.88697419016579,-0.135764844759742,5.91990685000071,-0.323660336266941
|
||||
"63",6.2,-0.0830894028174964,5.91445270773648,-0.0073552500992853,5.92798052258888,-0.205537962618181
|
|
@ -1,141 +0,0 @@
|
||||
\pgfplotsset{
|
||||
compat=1.11,
|
||||
legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.075cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.15cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[b]{0.5\textwidth}
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
ytick = {-1, 0, 1, 2},
|
||||
yticklabels = {$-1$, $\phantom{-0.}0$, $1$, $2$},]
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Plots/Data/sin_6.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col
|
||||
sep=comma, mark=none] {Plots/Data/matlab_0.csv};
|
||||
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.0,
|
||||
y=y_n_5000_tl_0.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
|
||||
\addlegendentry{$f_1^{*, 0.1}$};
|
||||
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{$\lambda = 0.1$}
|
||||
\end{subfigure}\\
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Plots/Data/sin_6.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_1.csv};
|
||||
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0,
|
||||
y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
|
||||
\addlegendentry{$f_1^{*, 1.0}$};
|
||||
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{$\lambda = 1.0$}
|
||||
\end{subfigure}\\
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Plots/Data/sin_6.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_3.csv};
|
||||
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0,
|
||||
y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
|
||||
\addlegendentry{$f_1^{*, 3.0}$};
|
||||
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{$\lambda = 3.0$}
|
||||
\end{subfigure}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[b]{0.5\textwidth}
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.245\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
ytick = {-2,-1, 0, 1, 2},
|
||||
yticklabels = {$-2$,$-1$, $\phantom{-0.}0$, $1$, $2$},]
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Plots/Data/data_sin_d_t.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_01.csv};
|
||||
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.1,
|
||||
y=y_n_5000_tl_0.1, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
|
||||
\addlegendentry{$f_1^{*, 0.1}$};
|
||||
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{$\lambda = 0.1$}
|
||||
\end{subfigure}\\
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Plots/Data/data_sin_d_t.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_1.csv};
|
||||
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0,
|
||||
y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
|
||||
\addlegendentry{$f_1^{*, 1.0}$};
|
||||
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda},*}$};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{$\lambda = 1.0$}
|
||||
\end{subfigure}\\
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Plots/Data/data_sin_d_t.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_3.csv};
|
||||
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0,
|
||||
y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
|
||||
\addlegendentry{$f_1^{*, 3.0}$};
|
||||
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{$\lambda = 3.0$}
|
||||
\end{subfigure}
|
||||
\end{subfigure}
|
||||
\caption[Comparison of shallow neural networks and regression
|
||||
splines]{% In these Figures the behaviour stated in ... is
|
||||
% visualized
|
||||
% in two exaples. For $(a), (b), (c)$ six values of sinus equidistantly
|
||||
% spaced on $[-\pi, \pi]$ have been used as training data. For
|
||||
% $(d),(e),(f)$ 15 equidistand values have been used, where
|
||||
% $y_i^{train} = \sin(x_i^{train}) + \varepsilon_i$ and
|
||||
% $\varepsilon_i \sim \mathcal{N}(0, 0.3)$. For
|
||||
% $\mathcal{RN}_w^{\tilde{\lambda, *}}$ the random weights are
|
||||
% distributed as follows
|
||||
% \begin{align*}
|
||||
% \xi_k &\sim
|
||||
% \end{align*}
|
||||
Ridge Penalized Neural Network compared to Regression Spline,
|
||||
with them being trained on $\text{data}_A$ in a), b), c) and on
|
||||
$\text{data}_B$ in d), e), f).
|
||||
The Parameters of each are given above.
|
||||
}
|
||||
\label{fig:rn_vs_rs}
|
||||
\end{figure}
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master:
|
||||
%%% End:
|
@ -1,93 +0,0 @@
|
||||
\pgfplotsset{
|
||||
compat=1.11,
|
||||
legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.0cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.0cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[h!]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth,
|
||||
xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||
xticklabels = {$2$, $4$, $6$, $8$,
|
||||
$10$,$12$,$14$,$16$,$18$,$20$},
|
||||
xlabel = {training epoch}, ylabel = {classification accuracy}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_01.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_05.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_1.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma]
|
||||
{Plots/Data/SGD_01_b32.log};
|
||||
|
||||
\addlegendentry{GD$_{0.01}$}
|
||||
\addlegendentry{GD$_{0.05}$}
|
||||
\addlegendentry{GD$_{0.1}$}
|
||||
\addlegendentry{SGD$_{0.01}$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
%\caption{Classification accuracy}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth,
|
||||
ytick = {0, 1, 2, 3, 4},
|
||||
yticklabels = {$0$, $1$, $\phantom{0.}2$, $3$, $4$},
|
||||
xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||
xticklabels = {$2$, $4$, $6$, $8$,
|
||||
$10$,$12$,$14$,$16$,$18$,$20$},
|
||||
xlabel = {training epoch}, ylabel = {error measure\vphantom{fy}}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_01.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_05.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_1.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/SGD_01_b32.log};
|
||||
|
||||
\addlegendentry{GD$_{0.01}$}
|
||||
\addlegendentry{GD$_{0.05}$}
|
||||
\addlegendentry{GD$_{0.1}$}
|
||||
\addlegendentry{SGD$_{0.01}$}
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{Performance metrics during training}
|
||||
\end{subfigure}
|
||||
% \\~\\
|
||||
\caption[Performance comparison of SDG and GD]{The neural network given in ?? trained with different
|
||||
algorithms on the MNIST handwritten digits data set. For gradient
|
||||
descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{\cdot}$). For
|
||||
stochastic gradient descend a batch size of 32 and learning rate
|
||||
of 0.01 is used (SDG$_{0.01}$).}
|
||||
\label{fig:sgd_vs_gd}
|
||||
\end{figure}
|
||||
|
||||
\begin{table}[h]
|
||||
\begin{tabu} to \textwidth {@{} *4{X[c]}c*4{X[c]} @{}}
|
||||
\multicolumn{4}{c}{Classification Accuracy}
|
||||
&~&\multicolumn{4}{c}{Error Measure}
|
||||
\\\cline{1-4}\cline{6-9}
|
||||
GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$
|
||||
\\\cline{1-4}\cline{6-9}
|
||||
\multicolumn{9}{c}{test}\\
|
||||
0.265&0.633&0.203&0.989&&2.267&1.947&3.91&0.032
|
||||
\end{tabu}
|
||||
\caption{Performance metrics of the networks trained in
|
||||
Figure~\ref{fig:sgd_vs_gd} after 20 training epochs.}
|
||||
\label{table:sgd_vs_gd}
|
||||
\end{table}
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "../main"
|
||||
%%% End:
|
@ -1,71 +0,0 @@
|
||||
\message{ !name(pfg_test.tex)}\documentclass{article}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{filecontents}
|
||||
\usepackage{subcaption}
|
||||
\usepackage{adjustbox}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{graphicx}
|
||||
\usetikzlibrary{calc, 3d}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\message{ !name(pfg_test.tex) !offset(6) }
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{True position (\textcolor{red}{red}), distorted data (black)}
|
||||
\end{figure}
|
||||
\begin{center}
|
||||
\begin{figure}[h]
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/klammern.jpg}
|
||||
\caption{Original Picure}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/image_conv4.png}
|
||||
\caption{test}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/image_conv5.png}
|
||||
\caption{test}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.49\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/image_conv6.png}
|
||||
\caption{test}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
|
||||
\begin{figure}
|
||||
\begin{adjustbox}{width=\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
|
||||
\node[canvas is xy plane at z=0, transform shape] at (0,0)
|
||||
{\includegraphics[width=5cm]{Data/klammern_r.jpg}};
|
||||
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
|
||||
{\includegraphics[width=5cm]{Data/klammern_g.jpg}};
|
||||
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
|
||||
{\includegraphics[width=5cm]{Data/klammern_b.jpg}};
|
||||
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
|
||||
{\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{On the right the red, green and blue chanels of the picture
|
||||
are displayed. In order to better visualize the color channes the
|
||||
black and white picture of each channel has been colored in the
|
||||
respective color. Combining the layers results in the image on the
|
||||
left}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\message{ !name(pfg_test.tex) !offset(3) }
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: t
|
||||
%%% End:
|
@ -1,53 +0,0 @@
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist0.pdf}
|
||||
\caption{T-shirt/top}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist1.pdf}
|
||||
\caption{Trousers}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist2.pdf}
|
||||
\caption{Pullover}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist3.pdf}
|
||||
\caption{Dress}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist4.pdf}
|
||||
\caption{Coat}
|
||||
\end{subfigure}\\
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist5.pdf}
|
||||
\caption{Sandal}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist6.pdf}
|
||||
\caption{Shirt}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist7.pdf}
|
||||
\caption{Sneaker}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist8.pdf}
|
||||
\caption{Bag}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist9.pdf}
|
||||
\caption{Ankle boot}
|
||||
\end{subfigure}
|
||||
\caption[Fashion MNIST data set]{The fashtion MNIST data set contains 70.000 images of
|
||||
preprocessed product images from Zalando, which are categorized as
|
||||
T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
|
||||
Sneaker, Bag, Ankle boot. Of these images 60.000 are used as training images, while
|
||||
the rest are used to validate the models trained.}
|
||||
\label{fig:MNIST}
|
||||
\end{figure}
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "../main"
|
||||
%%% End:
|
@ -1,82 +0,0 @@
|
||||
\pgfplotsset{
|
||||
compat=1.11,
|
||||
legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.15cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.3cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth, ymin = 0.988, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch}, ylabel = {Classification Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width =1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adam_datagen_full_mean.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adam_datagen_dropout_02_full_mean.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adam_datagen_dropout_04_full_mean.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adam_dropout_02_full_mean.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adam_dropout_04_full_mean.log};
|
||||
\addplot [dashed] table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adam_full_mean.log};
|
||||
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.4}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{Classification accuracy}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{1.0\linewidth}
|
||||
\begin{tabu} to \textwidth {@{}lc*5{X[c]}@{}}
|
||||
\Tstrut \Bstrut & \textsc{\,Adam\,} & D. 0.2 & D. 0.4 & G. &G.+D.\,0.2 & G.+D.\,0.4 \\
|
||||
\hline
|
||||
\multicolumn{7}{c}{Test Accuracy}\Bstrut \\
|
||||
\cline{2-7}
|
||||
mean \Tstrut & 0.9914 & 0.9923 & 0.9930 & 0.9937 & 0.9938 & 0.9943 \\
|
||||
max & 0.9926 & 0.9930 & 0.9934 & 0.9946 & 0.9955 & 0.9956 \\
|
||||
min & 0.9887 & 0.9909 & 0.9922 & 0.9929 & 0.9929 & 0.9934 \\
|
||||
\hline
|
||||
\multicolumn{7}{c}{Training Accuracy}\Bstrut \\
|
||||
\cline{2-7}
|
||||
mean \Tstrut & 0.9994 & 0.9991 & 0.9989 & 0.9967 & 0.9954 & 0.9926 \\
|
||||
max & 0.9996 & 0.9996 & 0.9992 & 0.9979 & 0.9971 & 0.9937 \\
|
||||
min & 0.9992 & 0.9990 & 0.9984 & 0.9947 & 0.9926 & 0.9908 \\
|
||||
\end{tabu}
|
||||
\caption{Mean and maximum accuracy after 48 epochs of training.}
|
||||
\label{fig:gen_dropout_b}
|
||||
\end{subfigure}
|
||||
\caption[Performance comparison of overfitting measures]{Accuracy for the net given in ... with Dropout (D.),
|
||||
data generation (G.), a combination, or neither (Default) implemented and trained
|
||||
with \textsc{Adam}. For each epoch the 60.000 training samples
|
||||
were used, or for data generation 10.000 steps with each using
|
||||
batches of 60 generated data points. For each configuration the
|
||||
model was trained 5 times and the average accuracies at each epoch
|
||||
are given in (a). Mean, maximum and minimum values of accuracy on
|
||||
the test and training set are given in (b).}
|
||||
\label{fig:gen_dropout}
|
||||
\end{figure}
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "../main"
|
||||
%%% End:
|
@ -1,41 +0,0 @@
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist0.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist1.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist2.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist3.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist4.pdf}
|
||||
\end{subfigure}\\
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist5.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist6.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist7.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist8.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Plots/Data/mnist9.pdf}
|
||||
\end{subfigure}
|
||||
\caption[MNIST data set]{The MNIST data set contains 70.000 images of preprocessed handwritten
|
||||
digits. Of these images 60.000 are used as training images, while
|
||||
the rest are used to validate the models trained.}
|
||||
\label{fig:MNIST}
|
||||
\end{figure}
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "../main"
|
||||
%%% End:
|
@ -1,301 +0,0 @@
|
||||
\documentclass[a4paper, 12pt, draft=true]{article}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{filecontents}
|
||||
\usepackage{subcaption}
|
||||
\usepackage{adjustbox}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{tabu}
|
||||
\usepackage{showframe}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{titlecaps}
|
||||
\usetikzlibrary{calc, 3d}
|
||||
\usepgfplotslibrary{colorbrewer}
|
||||
|
||||
\newcommand\Tstrut{\rule{0pt}{2.6ex}} % = `top' strut
|
||||
\newcommand\Bstrut{\rule[-0.9ex]{0pt}{0pt}} % = `bottom' strut
|
||||
|
||||
\begin{document}
|
||||
\pgfplotsset{
|
||||
compat=1.11,
|
||||
legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.3cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.6cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
% \addplot [dashed] table
|
||||
% [x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
% {Data/adam_datagen_full.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_1.mean};
|
||||
% \addplot [dashed] table
|
||||
% [x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
% {Data/adam_datagen_dropout_02_full.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_datagen_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_datagen_dropout_02_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_dropout_02_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.4}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 sample per class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_dropout_02_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_datagen_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_datagen_dropout_02_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.4}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 samples per class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}, ymin = {0.92}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_dropout_02_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_datagen_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Data/adam_datagen_dropout_02_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.4}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 samples per class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption{Accuracy for the net given in ... with Dropout (D.),
|
||||
data generation (G.), a combination, or neither (Default) implemented and trained
|
||||
with \textsc{Adam}. For each epoch the 60.000 training samples
|
||||
were used, or for data generation 10.000 steps with each using
|
||||
batches of 60 generated data points. For each configuration the
|
||||
model was trained 5 times and the average accuracies at each epoch
|
||||
are given in (a). Mean, maximum and minimum values of accuracy on
|
||||
the test and training set are given in (b).}
|
||||
\end{figure}
|
||||
\begin{table}
|
||||
\centering
|
||||
\begin{tabu} to \textwidth {@{}l*4{X[c]}@{}}
|
||||
\Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\
|
||||
\hline
|
||||
&
|
||||
\multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\
|
||||
\cline{2-5}
|
||||
max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\
|
||||
min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\
|
||||
mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\
|
||||
var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\
|
||||
\hline
|
||||
&
|
||||
\multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\
|
||||
\cline{2-5}
|
||||
max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\
|
||||
min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\
|
||||
mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\
|
||||
var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\
|
||||
\hline
|
||||
&
|
||||
\multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\
|
||||
\cline{2-5}
|
||||
max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\
|
||||
min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\
|
||||
mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\
|
||||
var & 2e-05 & 1e-05 & 1e-05 & 0 \\
|
||||
\hline
|
||||
\end{tabu}
|
||||
\caption{Values of the test accuracy of the model trained 10 times
|
||||
of random training sets containing 1, 10 and 100 data points per
|
||||
class.}
|
||||
\end{table}
|
||||
|
||||
\begin{center}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist0.pdf}
|
||||
\caption{original\\image}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist_gen_zoom.pdf}
|
||||
\caption{random\\zoom}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist_gen_shear.pdf}
|
||||
\caption{random\\shear}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist_gen_rotation.pdf}
|
||||
\caption{random\\rotation}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist_gen_shift.pdf}
|
||||
\caption{random\\positional shift}
|
||||
\end{subfigure}\\
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist5.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist6.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist7.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist8.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Data/mnist9.pdf}
|
||||
\end{subfigure}
|
||||
\caption{The MNIST data set contains 70.000 images of preprocessed handwritten
|
||||
digits. Of these images 60.000 are used as training images, while
|
||||
the rest are used to validate the models trained.}
|
||||
\end{figure}
|
||||
\end{center}
|
||||
|
||||
\begin{figure}
|
||||
\begin{adjustbox}{width=\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
|
||||
\node[canvas is xy plane at z=0, transform shape] at (0,0)
|
||||
{\includegraphics[width=5cm]{Data/klammern_r.jpg}};
|
||||
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
|
||||
{\includegraphics[width=5cm]{Data/klammern_g.jpg}};
|
||||
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
|
||||
{\includegraphics[width=5cm]{Data/klammern_b.jpg}};
|
||||
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
|
||||
{\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{On the right the red, green and blue chanels of the picture
|
||||
are displayed. In order to better visualize the color channes the
|
||||
black and white picture of each channel has been colored in the
|
||||
respective color. Combining the layers results in the image on the
|
||||
left}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{subfigure}{.45\linewidth}
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[enlargelimits=false, ymin=0, ymax = 1, width=\textwidth]
|
||||
\addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.45\linewidth}
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[enlargelimits=false, width=\textwidth]
|
||||
\addplot[domain=-5:5, samples=100]{tanh(x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.45\linewidth}
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[enlargelimits=false, width=\textwidth,
|
||||
ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1]
|
||||
\addplot[domain=-5:5, samples=100]{max(0,x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.45\linewidth}
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1,
|
||||
ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}]
|
||||
\addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{subfigure}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[enlargelimits=false]
|
||||
\addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
|
||||
\addplot[domain=-5:5, samples=100]{tanh(x)};
|
||||
\addplot[domain=-5:5, samples=100]{max(0,x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[enlargelimits=false]
|
||||
\addplot[domain=-2*pi:2*pi, samples=100]{cos(deg(x))};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: t
|
||||
%%% End:
|
@ -1,78 +0,0 @@
|
||||
\pgfplotsset{
|
||||
compat=1.11,
|
||||
legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.0cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.0cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth, ymin = 0.92, legend style={at={(0.9825,0.75)},anchor=north east},
|
||||
xlabel = {epoch}, ylabel = {Classification Accuracy}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adagrad.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adadelta.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Plots/Data/adam.log};
|
||||
|
||||
\addlegendentry{\footnotesize{ADAGRAD}}
|
||||
\addlegendentry{\footnotesize{ADADELTA}}
|
||||
\addlegendentry{\footnotesize{ADAM}}
|
||||
\addlegendentry{SGD$_{0.01}$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
%\caption{Classification accuracy}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
% \begin{subfigure}[b]{\textwidth}
|
||||
% \begin{tikzpicture}
|
||||
% \begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
% height = 0.6\textwidth, ymax = 0.5,
|
||||
% xlabel = {epoch}, ylabel = {Error Measure\vphantom{y}},ytick ={0,0.1,0.2,0.3,0.4,0.45,0.5}, yticklabels =
|
||||
% {0,0.1,0.2,0.3,0.4,\phantom{0.94},0.5}]
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_loss, col sep=comma, mark = none] {Plots/Data/adagrad.log};
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_loss, col sep=comma, mark = none] {Plots/Data/adadelta.log};
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_loss, col sep=comma, mark = none] {Plots/Data/adam.log};
|
||||
|
||||
% \addlegendentry{\footnotesize{ADAGRAD}}
|
||||
% \addlegendentry{\footnotesize{ADADELTA}}
|
||||
% \addlegendentry{\footnotesize{ADAM}}
|
||||
% \addlegendentry{SGD$_{0.01}$}
|
||||
|
||||
% \end{axis}
|
||||
% \end{tikzpicture}
|
||||
% \caption{Performance metrics during training}
|
||||
% \vspace{.25cm}
|
||||
% \end{subfigure}
|
||||
\begin{subfigure}[b]{1.0\linewidth}
|
||||
\begin{tabu} to \textwidth {@{} *3{X[c]}c*3{X[c]} @{}}
|
||||
\multicolumn{3}{c}{Classification Accuracy}
|
||||
&~&\multicolumn{3}{c}{Error Measure}
|
||||
\\\cline{1-3}\cline{5-7}
|
||||
ADAGRAD&ADADELTA&ADAM&&ADAGRAD&ADADELTA&ADAM
|
||||
\\\cline{1-3}\cline{5-7}
|
||||
1&1&1&&1&1&1
|
||||
\end{tabu}
|
||||
\caption{Performace metrics after 20 epochs}
|
||||
\end{subfigure}
|
||||
\caption[Performance comparison of training algorithms]{Classification accuracy on the test set and ...Performance metrics of the network given in ... trained
|
||||
with different optimization algorithms}
|
||||
\label{fig:comp_alg}
|
||||
\end{figure}
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "../main"
|
||||
%%% End:
|
@ -1,64 +0,0 @@
|
||||
"","x_i","y_i","x_d","y_d","x","y"
|
||||
"1",0,0,0.0815633019993375,0.095134925029757,0.0815633019993375,0.095134925029757
|
||||
"2",0.1,0.0998334166468282,-0.137539012603596,0.503920419784276,-0.137539012603596,0.503920419784276
|
||||
"3",0.2,0.198669330795061,0.219868163218743,0.32022289024623,0.219868163218743,0.32022289024623
|
||||
"4",0.3,0.29552020666134,0.378332723534869,0.474906286765401,0.378332723534869,0.474906286765401
|
||||
"5",0.4,0.389418342308651,0.286034335293811,0.422891394375764,0.215056588291437,0.412478430748051
|
||||
"6",0.5,0.479425538604203,-0.109871707385461,0.229661026779107,0.122574532557623,0.353221043330047
|
||||
"7",0.6,0.564642473395035,0.91036951450573,0.56079130435097,0.451160317716352,0.452893574072324
|
||||
"8",0.7,0.644217687237691,0.899001194675409,0.714355793051917,0.491731451724399,0.514477919331008
|
||||
"9",0.8,0.717356090899523,0.733791390723896,0.694085383523086,0.488943974889845,0.530054084580656
|
||||
"10",0.9,0.783326909627483,0.893642943873427,0.739792642916928,0.599785378272423,0.575149967162231
|
||||
"11",1,0.841470984807897,0.895913227983752,0.658288213778898,0.650886140047209,0.577618711891772
|
||||
"12",1.1,0.891207360061435,1.01252219752013,0.808981437684505,0.726263244907525,0.643161394030218
|
||||
"13",1.2,0.932039085967226,1.30930912337975,1.04111824066026,0.872590842152803,0.745714536528734
|
||||
"14",1.3,0.963558185417193,1.0448292335495,0.741250429230841,0.850147062957694,0.687171673021914
|
||||
"15",1.4,0.98544972998846,1.57369086195552,1.17277927321094,1.06520673597544,0.847936751231165
|
||||
"16",1.5,0.997494986604054,1.61427415976939,1.3908361301708,1.15616745244604,0.969474391592075
|
||||
"17",1.6,0.999573603041505,1.34409615749122,0.976992098566069,1.13543598207093,0.889434319996364
|
||||
"18",1.7,0.991664810452469,1.79278028030419,1.02939764179765,1.33272772191879,0.935067381106346
|
||||
"19",1.8,0.973847630878195,1.50721559744085,0.903076361857071,1.30862923824728,0.91665506605512
|
||||
"20",1.9,0.946300087687414,1.835014641556,0.830477479204284,1.45242210409837,0.889715842048808
|
||||
"21",2,0.909297426825682,1.98589997236352,0.887302138185342,1.56569111721857,0.901843632635883
|
||||
"22",2.1,0.863209366648874,2.31436634488224,0.890096618924313,1.73810390755555,0.899632162941341
|
||||
"23",2.2,0.80849640381959,2.14663445612581,0.697012453130415,1.77071083163663,0.831732978616874
|
||||
"24",2.3,0.74570521217672,2.17162372560288,0.614243640399509,1.84774268936257,0.787400621584077
|
||||
"25",2.4,0.675463180551151,2.2488591417345,0.447664288915269,1.93366609303299,0.707449056213168
|
||||
"26",2.5,0.598472144103957,2.56271588872389,0.553368843490625,2.08922735802261,0.702402440783529
|
||||
"27",2.6,0.515501371821464,2.60986205081511,0.503762006272682,2.17548673152621,0.657831176057599
|
||||
"28",2.7,0.42737988023383,2.47840649766003,0.215060732402894,2.20251747034638,0.533903400086802
|
||||
"29",2.8,0.334988150155905,2.99861119922542,0.28503285049582,2.43015164462239,0.512492561673074
|
||||
"30",2.9,0.239249329213982,3.09513467852082,0.245355736487949,2.54679545455398,0.461447717313721
|
||||
"31",3,0.141120008059867,2.86247369846558,0.0960140633436418,2.55274767368554,0.371740588261606
|
||||
"32",3.1,0.0415806624332905,2.79458017090243,-0.187923650913249,2.59422388058738,0.234694070506915
|
||||
"33",3.2,-0.0583741434275801,3.6498183243501,-0.186738431858275,2.9216851043241,0.173308072295566
|
||||
"34",3.3,-0.157745694143249,3.19424275971809,-0.221908035274934,2.86681135711315,0.101325637659584
|
||||
"35",3.4,-0.255541102026832,3.53166785156005,-0.295496842654793,3.03827050777863,0.0191967841533109
|
||||
"36",3.5,-0.35078322768962,3.53250700922714,-0.364585027403596,3.12709094619305,-0.0558446366563474
|
||||
"37",3.6,-0.442520443294852,3.52114271616751,-0.363845774016092,3.18702722489489,-0.10585071711408
|
||||
"38",3.7,-0.529836140908493,3.72033580551176,-0.386489608468821,3.31200591645168,-0.158195730190865
|
||||
"39",3.8,-0.611857890942719,4.0803717995796,-0.64779795182054,3.49862620703954,-0.284999326812438
|
||||
"40",3.9,-0.687766159183974,3.88351729419721,-0.604406622894426,3.51908925124143,-0.324791870057922
|
||||
"41",4,-0.756802495307928,3.9941257036697,-0.8061112437715,3.62222513609486,-0.438560071688316
|
||||
"42",4.1,-0.818277111064411,3.81674488816054,-0.548538951165239,3.63032709398802,-0.41285438330036
|
||||
"43",4.2,-0.871575772413588,4.47703348424544,-0.998992385231986,3.88581748102334,-0.592305016590357
|
||||
"44",4.3,-0.916165936749455,4.46179199544059,-0.969288921090897,3.96444243944485,-0.643076376622242
|
||||
"45",4.4,-0.951602073889516,4.15184730382548,-1.11987501275525,3.93838897981045,-0.743258835859858
|
||||
"46",4.5,-0.977530117665097,4.64522916494355,-0.772872365801468,4.15504805602606,-0.691414328153313
|
||||
"47",4.6,-0.993691003633465,4.68087925098283,-0.650422764094352,4.24176417425486,-0.675107584174976
|
||||
"48",4.7,-0.999923257564101,5.00475403211142,-0.922605880059771,4.41432228408005,-0.770625346502085
|
||||
"49",4.8,-0.996164608835841,4.71428836112322,-1.14280193223997,4.41279031790692,-0.861010494025717
|
||||
"50",4.9,-0.982452612624332,5.02115518218406,-0.9819618243158,4.57449352886454,-0.843786948015608
|
||||
"51",5,-0.958924274663138,4.92057344952522,-0.872931430146499,4.61418118503201,-0.836318916150308
|
||||
"52",5.1,-0.925814682327732,5.37277893732831,-0.91444926304078,4.81555148166217,-0.864686555983682
|
||||
"53",5.2,-0.883454655720153,5.19524942845082,-1.41169784739596,4.84152902094499,-1.03768305406186
|
||||
"54",5.3,-0.832267442223901,5.4432222181271,-0.726481337519931,4.98565483155961,-0.856094353978009
|
||||
"55",5.4,-0.772764487555987,4.98285013865449,-0.692803346852181,4.90897053115903,-0.838425020062396
|
||||
"56",5.5,-0.705540325570392,5.33298025214155,-0.343702005257262,5.0497327607228,-0.711573964373115
|
||||
"57",5.6,-0.631266637872321,5.49935694796791,-0.828968673188174,5.15036520204232,-0.816467931201244
|
||||
"58",5.7,-0.550685542597638,5.69204187550805,-0.481580461165225,5.26232964126231,-0.689500817105975
|
||||
"59",5.8,-0.464602179413757,5.84391772412888,-0.20453899468884,5.38069867877875,-0.564365367144995
|
||||
"60",5.9,-0.373876664830236,5.48166674139637,-0.597796931577294,5.3357436834558,-0.649913835818738
|
||||
"61",6,-0.279415498198926,5.77474590863769,-0.280234463056808,5.46956415981143,-0.524503219480344
|
||||
"62",6.1,-0.182162504272095,6.36764321572312,-0.0996286988755344,5.7169871104113,-0.422854073705143
|
||||
"63",6.2,-0.0830894028174964,6.46175133910451,-0.025702847911482,5.83540227044819,-0.355719019286555
|
|
@ -1,45 +0,0 @@
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{subfigure}[b]{0.49\textwidth}
|
||||
\centering
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, xticklabel = \empty,
|
||||
yticklabel=\empty]
|
||||
\addplot [mark options={scale = 0.7}, mark = o] table
|
||||
[x=x_d,y=y_d, col sep = comma] {Plots/Data/sin_conv.csv};
|
||||
\addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Plots/Data/sin_conv.csv};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{True position (\textcolor{red}{red}), distorted position data (black)}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[b]{0.49\textwidth}
|
||||
\centering
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, xticklabel = \empty,
|
||||
yticklabel=\empty]
|
||||
\addplot [mark options={scale = 0.7}, mark = o] table [x=x,y=y, col
|
||||
sep = comma] {Plots/Data/sin_conv.csv};
|
||||
\addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Plots/Data/sin_conv.csv};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{adjustbox}
|
||||
\caption{True position (\textcolor{red}{red}), filtered position data (black)}
|
||||
\end{subfigure}
|
||||
\caption[Signal smoothing using convolution]{Example for noise reduction using convolution with simulated
|
||||
positional data. As filter
|
||||
$g(i)=\left(\nicefrac{1}{3},\nicefrac{1}{4},\nicefrac{1}{5},\nicefrac{1}{6},\nicefrac{1}{20}\right)_{(i-1)}$
|
||||
is chosen and applied to the $x$ and $y$ coordinate
|
||||
data seperately. The convolution of both signals with $g$
|
||||
improves the MSE of the positions from 0.196 to 0.170 and
|
||||
visibly smoothes the data.
|
||||
}
|
||||
\label{fig:sin_conv}
|
||||
\end{figure}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "../main"
|
||||
%%% End:
|
@ -1,5 +0,0 @@
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "../main"
|
||||
%%% End:
|
Loading…
Reference in New Issue