You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
6.4 KiB
TeX
190 lines
6.4 KiB
TeX
\section{Code...}
|
|
\begin{itemize}
|
|
\item Code for randomized shallow neural network
|
|
\item Code for keras
|
|
\end{itemize}
|
|
|
|
\clearpage
|
|
\begin{lstfloat}
|
|
\begin{lstlisting}[language=iPython]
|
|
import breeze.stats.distributions.Uniform
|
|
import breeze.stats.distributions.Gaussian
|
|
import scala.language.postfixOps
|
|
|
|
object Activation {
|
|
def apply(x: Double): Double = math.max(0, x)
|
|
|
|
def d(x: Double): Double = if (x > 0) 1 else 0
|
|
}
|
|
|
|
class RSNN(val n: Int, val gamma: Double = 0.001) {
|
|
val g_unif = Uniform(-10, 10)
|
|
val g_gauss = Gaussian(0, 5)
|
|
|
|
val xis = g_unif.sample(n)
|
|
val vs = g_gauss.sample(n)
|
|
val bs = xis zip vs map {case(xi, v) => xi * v}
|
|
|
|
def computeL1(x: Double) = (bs zip vs) map {
|
|
case (b, v) => Activation(b + v * x) }
|
|
|
|
def computeL2(l1: Seq[Double], ws: Seq[Double]): Double =
|
|
(l1 zip ws) map { case (l, w) => w * l } sum
|
|
|
|
def output(ws: Seq[Double])(x: Double): Double =
|
|
computeL2(computeL1(x), ws)
|
|
|
|
def learn(data: Seq[(Double, Double)], ws: Seq[Double],
|
|
lamb: Double, gamma: Double): Seq[Double] = {
|
|
|
|
lazy val deltas = data.map {
|
|
case (x, y) =>
|
|
val l1 = computeL1(x)
|
|
val out = computeL2(l1, ws)
|
|
(l1 zip ws) map {case (l1, w) => (l1 * 2 * (out - y) +
|
|
lam * 2 * w) * gamma * -1}
|
|
}
|
|
|
|
deltas.foldRight(ws)(
|
|
(delta, ws) => ws zip (delta) map { case (w, d) => w + d })
|
|
}
|
|
|
|
def train(data: Seq[(Double, Double)], iter: Int, lam: Double,
|
|
gamma: Double = gamma): (Seq[Double], Double => Double)= {
|
|
|
|
val ws = (1 to iter).foldRight((1 to n).map(
|
|
_ => 0.0) :Seq[Double])((i, w) => {
|
|
println(s"Training iteration $i")
|
|
println(w.sum/w.length)
|
|
learn(data, w, lam, gamma / 10)
|
|
})
|
|
(ws, output(ws))
|
|
}
|
|
}
|
|
\end{lstlisting}
|
|
\caption{Scala code used to build and train the ridge penalized
|
|
randomized shallow neural network in .... The parameter \textit{lam}
|
|
in the train function represents the $\lambda$ parameter in the error
|
|
function. The parameters \textit{n} and \textit{gamma} set the number
|
|
of hidden nodes and the stepsize for training.}
|
|
\label{lst:rsnn}
|
|
\end{lstfloat}
|
|
\clearpage
|
|
|
|
\begin{lstlisting}[language=iPython]
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
from tensorflow.keras.callbacks import CSVLogger
|
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
|
|
|
mnist = tf.keras.datasets.mnist
|
|
|
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
|
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
|
|
x_train = x_train / 255.0
|
|
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
|
|
x_test = x_test / 255.0
|
|
|
|
y_train = tf.keras.utils.to_categorical(y_train)
|
|
y_test = tf.keras.utils.to_categorical(y_test)
|
|
|
|
model = tf.keras.models.Sequential()
|
|
model.add(tf.keras.layers.Conv2D(24,kernel_size=5,padding='same',
|
|
activation='relu',input_shape=(28,28,1)))
|
|
model.add(tf.keras.layers.MaxPool2D())
|
|
model.add(tf.keras.layers.Conv2D(64,kernel_size=5,padding='same',
|
|
activation='relu'))
|
|
model.add(tf.keras.layers.MaxPool2D(padding='same'))
|
|
model.add(tf.keras.layers.Flatten())
|
|
model.add(tf.keras.layers.Dense(256, activation='relu'))
|
|
model.add(tf.keras.layers.Dropout(0.2))
|
|
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
|
model.compile(optimizer='adam', loss="categorical_crossentropy",
|
|
metrics=["accuracy"])
|
|
|
|
datagen = ImageDataGenerator(
|
|
rotation_range = 30,
|
|
zoom_range = 0.15,
|
|
width_shift_range=2,
|
|
height_shift_range=2,
|
|
shear_range = 1)
|
|
|
|
csv_logger = CSVLogger(<Target File>)
|
|
|
|
history = model.fit(datagen.flow(x_train, y_train, batch_size=50),
|
|
validation_data=(x_test, y_test),
|
|
epochs=125, callbacks=[csv_logger],
|
|
steps_per_epoch = x_train.shape[0]//50)
|
|
|
|
\end{lstlisting}
|
|
\clearpage
|
|
\begin{lstlisting}[language=iPython]
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
from tensorflow.keras.callbacks import CSVLogger
|
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
|
mnist = tf.keras.datasets.fashion_mnist
|
|
|
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
|
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
|
|
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
|
|
x_train, x_test = x_train / 255.0, x_test / 255.0
|
|
|
|
y_train = tf.keras.utils.to_categorical(y_train)
|
|
y_test = tf.keras.utils.to_categorical(y_test)
|
|
|
|
model = tf.keras.Sequential()
|
|
model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (3, 3),
|
|
activation='relu', input_shape = (28, 28, 1), padding='same'))
|
|
model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (2, 2), activation='relu', padding = 'same'))
|
|
model.add(tf.keras.layers.MaxPool2D(strides=(2,2)))
|
|
model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same'))
|
|
model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same'))
|
|
model.add(tf.keras.layers.MaxPool2D(strides=(2,2)))
|
|
model.add(tf.keras.layers.Flatten())
|
|
model.add(tf.keras.layers.Dense(256, activation='relu'))
|
|
model.add(tf.keras.layers.Dropout(0.2))
|
|
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
|
|
|
model.compile(optimizer=tf.keras.optimizers.Adam(lr = 1e-3), loss="categorical_crossentropy", metrics=["accuracy"])
|
|
|
|
datagen = ImageDataGenerator(
|
|
rotation_range = 15,
|
|
zoom_range = 0.1,
|
|
width_shift_range=2,
|
|
height_shift_range=2,
|
|
shear_range = 0.5,
|
|
fill_mode = 'constant',
|
|
cval = 0)
|
|
|
|
csv_logger = CSVLogger(<Target File>)
|
|
|
|
history = model.fit(datagen.flow(x_train, y_train, batch_size=30),
|
|
steps_per_epoch=2000,
|
|
validation_data=(x_test, y_test),
|
|
epochs=125, callbacks=[csv_logger],
|
|
shuffle=True)
|
|
|
|
\end{lstlisting}
|
|
\clearpage
|
|
\begin{lstlisting}[language=iPython]
|
|
def get_random_sample(a, b, number_of_samples=10):
|
|
x = []
|
|
y = []
|
|
for category_number in range(0,10):
|
|
# get all samples of a category
|
|
train_data_category = a[b==category_number]
|
|
# pick a number of random samples from the category
|
|
train_data_category = train_data_category[np.random.randint(
|
|
train_data_category.shape[0], size=number_of_samples), :]
|
|
x.extend(train_data_category)
|
|
y.append([category_number]*number_of_samples)
|
|
|
|
return (np.asarray(x).reshape(-1, 28, 28, 1),
|
|
np.asarray(y).reshape(10*number_of_samples,1))
|
|
\end{lstlisting}
|
|
%%% Local Variables:
|
|
%%% mode: latex
|
|
%%% TeX-master: "main"
|
|
%%% End:
|