From e96331d07229ceec5af4a2f823fe9e51828d6d58 Mon Sep 17 00:00:00 2001 From: Tobias Arndt Date: Thu, 27 Aug 2020 20:29:21 +0200 Subject: [PATCH] Code in Appendix --- .gitignore | 3 + TF/Main.scala | 76 ++ TF/cnn.py | 8 +- TF/scratch.scala | 52 ++ TeX/Appendix_code.tex | 189 +++++ TeX/Figures/RN_vs_RS.tex | 5 +- TeX/Figures/mnist.tex | 20 +- TeX/Figures/pfg_test.tex | 10 +- TeX/Figures/test.tex | 146 +++- TeX/Plots/Data/data_sin_d_t.csv | 17 - TeX/Plots/Data/matlab_0.csv | 1002 ----------------------- TeX/Plots/Data/matlab_1.csv | 1002 ----------------------- TeX/Plots/Data/matlab_3.csv | 1002 ----------------------- TeX/Plots/Data/matlab_sin_d_01.csv | 1002 ----------------------- TeX/Plots/Data/matlab_sin_d_1.csv | 1002 ----------------------- TeX/Plots/Data/matlab_sin_d_3.csv | 1002 ----------------------- TeX/Plots/Data/min_max.txt | 58 -- TeX/Plots/Data/overfit.csv | 1202 ---------------------------- TeX/Plots/Data/overfit_spline.csv | 1202 ---------------------------- TeX/Plots/Data/scala_out_d_1_t.csv | 101 --- TeX/Plots/Data/scala_out_sin.csv | 101 --- TeX/Plots/Data/sin_6.csv | 7 - TeX/Plots/Data/sin_conv.csv | 64 -- TeX/Plots/RN_vs_RS.tex | 141 ---- TeX/Plots/SGD_vs_GD.tex | 93 --- TeX/Plots/_region_.tex | 71 -- TeX/Plots/fashion_mnist.tex | 53 -- TeX/Plots/gen_dropout.tex | 82 -- TeX/Plots/mnist.tex | 41 - TeX/Plots/pfg_test.tex | 301 ------- TeX/Plots/sdg_comparison.tex | 78 -- TeX/Plots/sin_conv.csv | 64 -- TeX/Plots/sin_conv.tex | 45 -- TeX/Plots/y.tex | 5 - TeX/appendixA.tex | 22 +- TeX/bibliograpy.bib | 45 ++ TeX/further_applications_of_nn.tex | 227 ++++-- TeX/main.tex | 150 +++- TeX/theo_3_8.tex | 10 +- 39 files changed, 840 insertions(+), 9861 deletions(-) create mode 100755 TF/Main.scala create mode 100755 TF/scratch.scala create mode 100644 TeX/Appendix_code.tex delete mode 100755 TeX/Plots/Data/data_sin_d_t.csv delete mode 100755 TeX/Plots/Data/matlab_0.csv delete mode 100755 TeX/Plots/Data/matlab_1.csv delete mode 100755 TeX/Plots/Data/matlab_3.csv delete mode 100755 TeX/Plots/Data/matlab_sin_d_01.csv delete mode 100755 TeX/Plots/Data/matlab_sin_d_1.csv delete mode 100755 TeX/Plots/Data/matlab_sin_d_3.csv delete mode 100755 TeX/Plots/Data/min_max.txt delete mode 100644 TeX/Plots/Data/overfit.csv delete mode 100644 TeX/Plots/Data/overfit_spline.csv delete mode 100755 TeX/Plots/Data/scala_out_d_1_t.csv delete mode 100755 TeX/Plots/Data/scala_out_sin.csv delete mode 100644 TeX/Plots/Data/sin_6.csv delete mode 100644 TeX/Plots/Data/sin_conv.csv delete mode 100644 TeX/Plots/RN_vs_RS.tex delete mode 100644 TeX/Plots/SGD_vs_GD.tex delete mode 100644 TeX/Plots/_region_.tex delete mode 100644 TeX/Plots/fashion_mnist.tex delete mode 100644 TeX/Plots/gen_dropout.tex delete mode 100644 TeX/Plots/mnist.tex delete mode 100644 TeX/Plots/pfg_test.tex delete mode 100644 TeX/Plots/sdg_comparison.tex delete mode 100644 TeX/Plots/sin_conv.csv delete mode 100644 TeX/Plots/sin_conv.tex delete mode 100644 TeX/Plots/y.tex diff --git a/.gitignore b/.gitignore index f485e2c..cc9be34 100644 --- a/.gitignore +++ b/.gitignore @@ -8,6 +8,7 @@ *.bbl *.tdo *.blg +*.lof TeX/auto/* main-blx.bib @@ -31,3 +32,5 @@ main-blx.bib # no plot data *.csv *.mean + +*Plots_* \ No newline at end of file diff --git a/TF/Main.scala b/TF/Main.scala new file mode 100755 index 0000000..79bf1e3 --- /dev/null +++ b/TF/Main.scala @@ -0,0 +1,76 @@ +import breeze.stats.distributions.Uniform +import breeze.stats.distributions.Gaussian +import scala.language.postfixOps + +object Activation { + def apply(x: Double): Double = math.max(0, x) + + def d(x: Double): Double = if (x > 0) 1 else 0 +} + +class RSNN(val n: Int, val gamma: Double = 0.001) { + val g = Uniform(-10, 10) + val g_1 = Uniform(-5, 5)//scala.math.exp(1)) + val g_3 = Gaussian(0, 5) + + val xis = g.sample(n) + val vs = g_3.sample(n) + val bs = xis zip vs map {case(xi, v) => xi * v} + //val vs = g_1.sample(n) + //val bs = g.sample(n) + + def computeL1(x: Double) = (bs zip vs) map { case (b, v) => Activation(b + v * x) } + + def computeL2(l1: Seq[Double], ws: Seq[Double]): Double = + (l1 zip ws) map { case (l, w) => w * l } sum + + def output(ws: Seq[Double])(x: Double): Double = computeL2(computeL1(x), ws) + + def learn(data: Seq[(Double, Double)], ws: Seq[Double], lambda: Double, gamma: Double): Seq[Double] = { + // data: N \times 2 + // ws: n \times 1 + + lazy val deltas = data.map { + case (x, y) => + val l1 = computeL1(x) // n + val out = computeL2(l1, ws) // 1 + (l1 zip ws) map {case (l1, w) => (l1 * 2 * (out - y) + lambda * 2 * w) * gamma * -1} // n + } + // deltas: N × n + + deltas.foldRight(ws)( + (delta, ws) => // delta: n + ws zip (delta) map { case (w, d) => w + d } // n + )// map (w => w - lambda * gamma * 2 * w) + + } + + def train(data: Seq[(Double, Double)], iter: Int, lambda: Double, gamma: Double = gamma): (Seq[Double], Double => Double)= { + val ws = (1 to iter).foldRight((1 to n).map(_ => 0.0) :Seq[Double])((i, w) => { + println(s"Training iteration $i") + println(w.sum/w.length) + learn(data, w, lambda, gamma / 10) + }) + (ws, output(ws)) + } +} + +object Main { + + def main(args: Array[String]): Unit = { + val nn = new RSNN(10, gamma = 0.0001) + val data = (1 to 100) map (_ * 0.01) map (t => (t, math.sin(t))) + val (ws, evaluate) = nn.train(data, iter = 1000, lambda = 0.8) + + val results = data.map(_._1).map(evaluate(_)) + data zip results foreach { + println(_) + } + } + +} + +object EqSeq { + def apply(left: Double, right: Double, steps: Int): Seq[Double] = + (0 to steps) map (_ * (right - left) / steps + left) +} \ No newline at end of file diff --git a/TF/cnn.py b/TF/cnn.py index a676a77..ccd4073 100644 --- a/TF/cnn.py +++ b/TF/cnn.py @@ -149,8 +149,8 @@ if __name__ == '__main__': ############################ # in between layers - start_ratio_list = [[0.4, 0.5], [0.4, 0.8], [0.4,0.8], [0.4, 0.5], [0.4, 0.8],[0.4,0.8]] - end_ratio_list = [[0.4, 0.5], [0.4, 0.8], [0.4,0.8], [0.4, 0.5], [0.4, 0.8],[0.4,0.8]] + start_ratio_list = [[0.4, 0.5], [0.4, 0.8], [0.4,0.5], [0.4, 0.8], [0.4, 0.5],[0.4,0.8]] + end_ratio_list = [[0.4, 0.5], [0.4, 0.8], [0.4,0.5], [0.4, 0.8], [0.4, 0.5],[0.4,0.8]] patch_size_list = [(3, 3), (3, 3), (2, 2), (3,3), (3, 3), (2, 2)] ind_bgn_list = range(len(patch_size_list)) text_list = ['Conv.', 'Conv.', 'Max-pool.', 'Conv.', 'Conv.', 'Max-pool.'] @@ -211,7 +211,7 @@ if __name__ == '__main__': # plt.show() fig.set_size_inches(8, 2.5) - fig_dir = '/home/tobi/Masterarbeit/TeX/Plots/Data/' + fig_dir = '/home/tobi/Masterarbeit/TeX/Figures/Data/' fig_ext = '.pdf' - fig.savefig(os.path.join(fig_dir, 'cnn_fashion_fig' + fig_ext), + fig.savefig(os.path.join(fig_dir, 'cnn_fashion_fig1' + fig_ext), bbox_inches='tight', pad_inches=0) diff --git a/TF/scratch.scala b/TF/scratch.scala new file mode 100755 index 0000000..e8ef023 --- /dev/null +++ b/TF/scratch.scala @@ -0,0 +1,52 @@ +import breeze.plot._ +import breeze.plot.DomainFunction._ +import breeze.linalg._ +import breeze.stats.distributions.Gaussian + +val nn = new RSNN(5000, 0.0000001) + +val g = Gaussian(0, 0.3) + +//val data = EqSeq(-math.Pi, math.Pi, 15) map (t => (t, math.sin(t)+ g.sample(1).last)) +val (ws, evaluate) = nn.train(data, iter = 100000, lambda = (1.0/20) / 5 * (nn.n * 8) * 1) + +val f = Figure() +val p = f.subplot(0) +val x = linspace(-5, 5) +val y = x.map(evaluate) +//print_data(nn, x, y, 3) +p += plot(x, y) +p += scatter(data.map(_._1), data.map(_._2), x => 0.1) +f.saveas("lines.png") + + +val x_i = data map {case (x,y) => x} +val y_i = data map {case (x,y) => y} + +def print_data(nn: RSNN, x: DenseVector[Double], y: DenseVector[Double], tlambda: Double): Unit = { + val n = nn.n + reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/scala_out_d_1.csv").appendAll(s"x_n_$n"+s"_tl_$tlambda;" + x.toArray.mkString(";") + "\n") + reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/scala_out_d_1.csv").appendAll(s"y_n_$n"+s"_tl_$tlambda;" + y.toArray.mkString(";") + "\n") +} +reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/data_sin_d.csv").appendAll(x_i.mkString(";") + "\n") +reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/data_sin_d.csv").appendAll(y_i.mkString(";") + "\n") + + +reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/vals1.csv").appendAll(x.toArray.mkString(";") + "\n") +reflect.io.File("C:/Users/tobia/Documents/Studium/Masterarbeit/Outputs/vals1.csv").appendAll(y.toArray.mkString(";") + "\n") + +for(j <- List(0.1, 1, 3)) { + for (i <- 3 until 4) { + val nn = new RSNN((5 * math.pow(10, i)).asInstanceOf[Int], 0.0000001) + val (ws, evaluate) = nn.train(data, iter = 100000, lambda = (1.0 / 20) / 5 * (nn.n * 8) * j) + + val x = linspace(-5, 5) + val y = x.map(evaluate) + print_data(nn, x, y, j) + } +} + +val x_i = Seq(-3.141592653589793,-2.722713633111154,-2.303834612632515,-1.8849555921538759,-1.4660765716752369,-1.0471975511965979,-0.6283185307179586,-0.2094395102393194,0.2094395102393194,0.6283185307179586,1.0471975511965974,1.4660765716752362,1.8849555921538759,2.3038346126325155,2.7227136331111543,3.1415926535897922) +val y_i = Seq(0.0802212608585366,-0.3759376368887911,-1.3264180339054117,-0.8971334213504949,-0.7724344034354425,-0.9501497164520739,-0.6224628757084738,-0.35622668982623207,-0.18377660088356823,0.7836770998126841,0.5874762732054489,1.0696991264956026,1.1297065441952743,0.7587275382323738,-0.030547103790458163,0.044327111895927106) + +val data = x_i zip y_i \ No newline at end of file diff --git a/TeX/Appendix_code.tex b/TeX/Appendix_code.tex new file mode 100644 index 0000000..ca3eaac --- /dev/null +++ b/TeX/Appendix_code.tex @@ -0,0 +1,189 @@ + \section{Code...} + \begin{itemize} + \item Code for randomized shallow neural network + \item Code for keras + \end{itemize} + + \clearpage + \begin{lstfloat} +\begin{lstlisting}[language=iPython] +import breeze.stats.distributions.Uniform +import breeze.stats.distributions.Gaussian +import scala.language.postfixOps + +object Activation { + def apply(x: Double): Double = math.max(0, x) + + def d(x: Double): Double = if (x > 0) 1 else 0 +} + +class RSNN(val n: Int, val gamma: Double = 0.001) { + val g_unif = Uniform(-10, 10) + val g_gauss = Gaussian(0, 5) + + val xis = g_unif.sample(n) + val vs = g_gauss.sample(n) + val bs = xis zip vs map {case(xi, v) => xi * v} + + def computeL1(x: Double) = (bs zip vs) map { + case (b, v) => Activation(b + v * x) } + + def computeL2(l1: Seq[Double], ws: Seq[Double]): Double = + (l1 zip ws) map { case (l, w) => w * l } sum + + def output(ws: Seq[Double])(x: Double): Double = + computeL2(computeL1(x), ws) + + def learn(data: Seq[(Double, Double)], ws: Seq[Double], + lamb: Double, gamma: Double): Seq[Double] = { + + lazy val deltas = data.map { + case (x, y) => + val l1 = computeL1(x) + val out = computeL2(l1, ws) + (l1 zip ws) map {case (l1, w) => (l1 * 2 * (out - y) + + lam * 2 * w) * gamma * -1} + } + + deltas.foldRight(ws)( + (delta, ws) => ws zip (delta) map { case (w, d) => w + d }) + } + + def train(data: Seq[(Double, Double)], iter: Int, lam: Double, + gamma: Double = gamma): (Seq[Double], Double => Double)= { + + val ws = (1 to iter).foldRight((1 to n).map( + _ => 0.0) :Seq[Double])((i, w) => { + println(s"Training iteration $i") + println(w.sum/w.length) + learn(data, w, lam, gamma / 10) + }) + (ws, output(ws)) + } +} +\end{lstlisting} +\caption{Scala code used to build and train the ridge penalized + randomized shallow neural network in .... The parameter \textit{lam} +in the train function represents the $\lambda$ parameter in the error +function. The parameters \textit{n} and \textit{gamma} set the number +of hidden nodes and the stepsize for training.} +\label{lst:rsnn} +\end{lstfloat} +\clearpage + +\begin{lstlisting}[language=iPython] +import tensorflow as tf +import numpy as np +from tensorflow.keras.callbacks import CSVLogger +from tensorflow.keras.preprocessing.image import ImageDataGenerator + +mnist = tf.keras.datasets.mnist + +(x_train, y_train), (x_test, y_test) = mnist.load_data() +x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) +x_train = x_train / 255.0 +x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) +x_test = x_test / 255.0 + +y_train = tf.keras.utils.to_categorical(y_train) +y_test = tf.keras.utils.to_categorical(y_test) + +model = tf.keras.models.Sequential() +model.add(tf.keras.layers.Conv2D(24,kernel_size=5,padding='same', + activation='relu',input_shape=(28,28,1))) +model.add(tf.keras.layers.MaxPool2D()) +model.add(tf.keras.layers.Conv2D(64,kernel_size=5,padding='same', + activation='relu')) +model.add(tf.keras.layers.MaxPool2D(padding='same')) +model.add(tf.keras.layers.Flatten()) +model.add(tf.keras.layers.Dense(256, activation='relu')) +model.add(tf.keras.layers.Dropout(0.2)) +model.add(tf.keras.layers.Dense(10, activation='softmax')) +model.compile(optimizer='adam', loss="categorical_crossentropy", + metrics=["accuracy"]) + +datagen = ImageDataGenerator( + rotation_range = 30, + zoom_range = 0.15, + width_shift_range=2, + height_shift_range=2, + shear_range = 1) + +csv_logger = CSVLogger() + +history = model.fit(datagen.flow(x_train, y_train, batch_size=50), +validation_data=(x_test, y_test), + epochs=125, callbacks=[csv_logger], + steps_per_epoch = x_train.shape[0]//50) + +\end{lstlisting} +\clearpage +\begin{lstlisting}[language=iPython] +import tensorflow as tf +import numpy as np +from tensorflow.keras.callbacks import CSVLogger +from tensorflow.keras.preprocessing.image import ImageDataGenerator +mnist = tf.keras.datasets.fashion_mnist + +(x_train, y_train), (x_test, y_test) = mnist.load_data() +x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) +x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) +x_train, x_test = x_train / 255.0, x_test / 255.0 + +y_train = tf.keras.utils.to_categorical(y_train) +y_test = tf.keras.utils.to_categorical(y_test) + +model = tf.keras.Sequential() +model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (3, 3), + activation='relu', input_shape = (28, 28, 1), padding='same')) +model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (2, 2), activation='relu', padding = 'same')) +model.add(tf.keras.layers.MaxPool2D(strides=(2,2))) +model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same')) +model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same')) +model.add(tf.keras.layers.MaxPool2D(strides=(2,2))) +model.add(tf.keras.layers.Flatten()) +model.add(tf.keras.layers.Dense(256, activation='relu')) +model.add(tf.keras.layers.Dropout(0.2)) +model.add(tf.keras.layers.Dense(10, activation='softmax')) + +model.compile(optimizer=tf.keras.optimizers.Adam(lr = 1e-3), loss="categorical_crossentropy", metrics=["accuracy"]) + +datagen = ImageDataGenerator( + rotation_range = 15, + zoom_range = 0.1, + width_shift_range=2, + height_shift_range=2, + shear_range = 0.5, + fill_mode = 'constant', + cval = 0) + + csv_logger = CSVLogger() + + history = model.fit(datagen.flow(x_train, y_train, batch_size=30), + steps_per_epoch=2000, + validation_data=(x_test, y_test), + epochs=125, callbacks=[csv_logger], + shuffle=True) + +\end{lstlisting} +\clearpage +\begin{lstlisting}[language=iPython] +def get_random_sample(a, b, number_of_samples=10): + x = [] + y = [] + for category_number in range(0,10): + # get all samples of a category + train_data_category = a[b==category_number] + # pick a number of random samples from the category + train_data_category = train_data_category[np.random.randint( + train_data_category.shape[0], size=number_of_samples), :] + x.extend(train_data_category) + y.append([category_number]*number_of_samples) + + return (np.asarray(x).reshape(-1, 28, 28, 1), + np.asarray(y).reshape(10*number_of_samples,1)) +\end{lstlisting} +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "main" +%%% End: diff --git a/TeX/Figures/RN_vs_RS.tex b/TeX/Figures/RN_vs_RS.tex index 403e72b..a561abf 100644 --- a/TeX/Figures/RN_vs_RS.tex +++ b/TeX/Figures/RN_vs_RS.tex @@ -131,11 +131,12 @@ plot coordinates { Ridge Penalized Neural Network compared to Regression Spline, with them being trained on $\text{data}_A$ in a), b), c) and on $\text{data}_B$ in d), e), f). - The Parameters of each are given above. + The Parameters of each are given above. The implementation of the + network in Scala is given in Listing~\ref{lst:rsnn} } \label{fig:rn_vs_rs} \end{figure} %%% Local Variables: %%% mode: latex -%%% TeX-master: +%%% TeX-master: "main" %%% End: diff --git a/TeX/Figures/mnist.tex b/TeX/Figures/mnist.tex index 7f1b924..fa053d9 100644 --- a/TeX/Figures/mnist.tex +++ b/TeX/Figures/mnist.tex @@ -1,34 +1,34 @@ \begin{figure}[h] \centering \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist0.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist0.pdf} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist1.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist1.pdf} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist2.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist2.pdf} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist3.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist3.pdf} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist4.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist4.pdf} \end{subfigure}\\ \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist5.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist5.pdf} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist6.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist6.pdf} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist7.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist7.pdf} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist8.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist8.pdf} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist9.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist9.pdf} \end{subfigure} \caption[MNIST data set]{The MNIST data set contains 70.000 images of preprocessed handwritten digits. Of these images 60.000 are used as training images, while diff --git a/TeX/Figures/pfg_test.tex b/TeX/Figures/pfg_test.tex index 93be6c4..1228eac 100644 --- a/TeX/Figures/pfg_test.tex +++ b/TeX/Figures/pfg_test.tex @@ -177,12 +177,12 @@ plot coordinates { \begin{center} \begin{figure}[h] \centering - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist0.pdf} + \begin{subfigure}{\textwidth} + \includegraphics[width=\textwidth]{Data/cnn_fashion_fig.pdf} \caption{original\\image} \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist_gen_zoom.pdf} + \begin{subfigure}{\textwidth} + \includegraphics[width=\textwidth]{Data/cnn_fashion_fig1.pdf} \caption{random\\zoom} \end{subfigure} \begin{subfigure}{0.19\textwidth} @@ -196,7 +196,7 @@ plot coordinates { \begin{subfigure}{0.19\textwidth} \includegraphics[width=\textwidth]{Data/mnist_gen_shift.pdf} \caption{random\\positional shift} - \end{subfigure}\\ + \end{subfigure}\\ \begin{subfigure}{0.19\textwidth} \includegraphics[width=\textwidth]{Data/mnist5.pdf} \end{subfigure} diff --git a/TeX/Figures/test.tex b/TeX/Figures/test.tex index 65d1d42..e06ea10 100644 --- a/TeX/Figures/test.tex +++ b/TeX/Figures/test.tex @@ -11,9 +11,15 @@ \definecolor{ipython_red}{RGB}{186, 33, 33} \definecolor{ipython_green}{RGB}{0, 128, 0} \definecolor{ipython_cyan}{RGB}{64, 128, 128} -\definecolor{ipython_purple}{RGB}{170, 34, 255} +\definecolor{ipython_purple}{RGB}{110, 64, 130} \usepackage{listings} +\usepackage{float} + +\newfloat{lstfloat}{htbp}{lop} +\floatname{lstfloat}{Listing} +\def\lstfloatautorefname{Listing} + \lstset{ breaklines=true, % @@ -38,10 +44,11 @@ %% modified by me (should not have empty lines) %% \lstdefinelanguage{iPython}{ - morekeywords={access,and,break,class,continue,def,del,elif,else,except,exec,finally,for,from,global,if,import,in,is,lambda,not,or,pass,print,raise,return,try,while},% + morekeywords={access,and,break,class,continue,def,del,elif,else,except,exec,finally,for,from,global,if,import, + in,is,lambda,not,or,pass,print,raise,return,try,while},% % % Built-ins - morekeywords=[2]{abs,all,any,basestring,bin,bool,bytearray,callable,chr,classmethod,cmp,compile,complex,delattr,dict,dir,divmod,enumerate,eval,execfile,file,filter,float,format,frozenset,getattr,globals,hasattr,hash,help,hex,id,input,int,isinstance,issubclass,iter,len,list,locals,long,map,max,memoryview,min,next,object,oct,open,ord,pow,property,range,raw_input,reduce,reload,repr,reversed,round,set,setattr,slice,sorted,staticmethod,str,sum,super,tuple,type,unichr,unicode,vars,xrange,zip,apply,buffer,coerce,intern},% + morekeywords=[2]{abs,all,any,basestring,bin,bool,bytearray,callable,chr,classmethod,cmp,compile,complex,delattr,dict,dir,divmod,enumerate,eval,execfile,file,filter,float,format,frozenset,getattr,globals,hasattr,hash,help,hex,id,input,int,isinstance,issubclass,iter,len,list,locals,long,map,max,memoryview,min,next,object,oct,open,ord,pow,property,range,raw_input,reduce,reload,repr,reversed,round,set,setattr,slice,sorted,staticmethod,str,sum,super,tuple,type,unichr,unicode,vars,xrange,zip,apply,buffer,coerce,intern,val},% % sensitive=true,% morecomment=[l]\#,% @@ -91,7 +98,7 @@ {?}{{{\color{ipython_purple}?}}}1, % identifierstyle=\color{black}\ttfamily, - commentstyle=\color{ipython_cyan}\ttfamily, + commentstyle=\color{ipython_red}\ttfamily, stringstyle=\color{ipython_red}\ttfamily, keepspaces=true, showspaces=false, @@ -109,9 +116,80 @@ % extendedchars=true, basicstyle=\scriptsize, keywordstyle=\color{ipython_green}\ttfamily, + morekeywords = [3]{Int, Double}, + morekeywords = [2]{foldRight, case}, + keywordstyle = [3]{\color{ipython_purple}\ttfamily}, + keywordstyle = [2]{\color{ipython_cyan}\ttfamily}, } + \begin{document} + +\begin{lstfloat} +\begin{lstlisting}[language=iPython] +import breeze.stats.distributions.Uniform +import breeze.stats.distributions.Gaussian +import scala.language.postfixOps + +object Activation { + def apply(x: Double): Double = math.max(0, x) + + def d(x: Double): Double = if (x > 0) 1 else 0 +} + +class RSNN(val n: Int, val gamma: Double = 0.001) { + val g_unif = Uniform(-10, 10) + val g_gauss = Gaussian(0, 5) + + val xis = g_unif.sample(n) + val vs = g_gauss.sample(n) + val bs = xis zip vs map {case(xi, v) => xi * v} + + def computeL1(x: Double) = (bs zip vs) map { + case (b, v) => Activation(b + v * x) } + + def computeL2(l1: Seq[Double], ws: Seq[Double]): Double = + (l1 zip ws) map { case (l, w) => w * l } sum + + def output(ws: Seq[Double])(x: Double): Double = + computeL2(computeL1(x), ws) + + def learn(data: Seq[(Double, Double)], ws: Seq[Double], + lamb: Double, gamma: Double): Seq[Double] = { + + lazy val deltas = data.map { + case (x, y) => + val l1 = computeL1(x) // n + val out = computeL2(l1, ws) // 1 + (l1 zip ws) map {case (l1, w) => (l1 * 2 * (out - y) + + lam * 2 * w) * gamma * -1} + } + + deltas.foldRight(ws)( + (delta, ws) => ws zip (delta) map { case (w, d) => w + d }) + } + + def train(data: Seq[(Double, Double)], iter: Int, lam: Double, + gamma: Double = gamma): (Seq[Double], Double => Double)= { + + val ws = (1 to iter).foldRight((1 to n).map( + _ => 0.0) :Seq[Double])((i, w) => { + println(s"Training iteration $i") + println(w.sum/w.length) + learn(data, w, lam, gamma / 10) + }) + (ws, output(ws)) + } +} +\end{lstlisting} +\caption{Scala code used to build and train the ridge penalized + randomized shallow neural network in .... The parameter \textit{lam} +in the train function represents the $\lambda$ parameter in the error +function. The parameters \textit{n} and \textit{gamma} set the number +of hidden nodes and the stepsize for training.} +\end{lstfloat} +\clearpage + \begin{lstlisting}[language=iPython] import tensorflow as tf import numpy as np @@ -136,7 +214,7 @@ model.add(tf.keras.layers.Conv2D(64,kernel_size=5,padding='same',activation='rel model.add(tf.keras.layers.MaxPool2D(padding='same')) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(256, activation='relu')) -model.add(tf.keras.layers.Dropout(j)) +model.add(tf.keras.layers.Dropout(0.2)) model.add(tf.keras.layers.Dense(10, activation='softmax')) model.compile(optimizer='adam', loss="categorical_crossentropy", metrics=["accuracy"]) @@ -150,10 +228,59 @@ datagen = ImageDataGenerator( csv_logger = CSVLogger() -history = model.fit(datagen.flow(x_train_, y_train_, batch_size=50), - validation_data=(x_test, y_test), epochs=125, - callbacks=[csv_logger], - steps_per_epoch = x_train_.shape[0]//50) +history = model.fit(datagen.flow(x_train, y_train, batch_size=50), +validation_data=(x_test, y_test), + epochs=125, callbacks=[csv_logger], + steps_per_epoch = x_train.shape[0]//50) + +\end{lstlisting} +\clearpage +\begin{lstlisting}[language=iPython] +import tensorflow as tf +import numpy as np +from tensorflow.keras.callbacks import CSVLogger +from tensorflow.keras.preprocessing.image import ImageDataGenerator +mnist = tf.keras.datasets.fashion_mnist + +(x_train, y_train), (x_test, y_test) = mnist.load_data() +x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) +x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) +x_train, x_test = x_train / 255.0, x_test / 255.0 + +y_train = tf.keras.utils.to_categorical(y_train) +y_test = tf.keras.utils.to_categorical(y_test) + +model = tf.keras.Sequential() +model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (3, 3), activation='relu', + input_shape = (28, 28, 1), padding='same')) +model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (2, 2), activation='relu', padding = 'same')) +model.add(tf.keras.layers.MaxPool2D(strides=(2,2))) +model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same')) +model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same')) +model.add(tf.keras.layers.MaxPool2D(strides=(2,2))) +model.add(tf.keras.layers.Flatten()) +model.add(tf.keras.layers.Dense(256, activation='relu')) +model.add(tf.keras.layers.Dropout(0.2)) +model.add(tf.keras.layers.Dense(10, activation='softmax')) + +model.compile(optimizer=tf.keras.optimizers.Adam(lr = 1e-3), loss="categorical_crossentropy", metrics=["accuracy"]) + +datagen = ImageDataGenerator( + rotation_range = 15, + zoom_range = 0.1, + width_shift_range=2, + height_shift_range=2, + shear_range = 0.5, + fill_mode = 'constant', + cval = 0) + + csv_logger = CSVLogger() + + history = model.fit(datagen.flow(x_train, y_train, batch_size=30), + steps_per_epoch=2000, + validation_data=(x_test, y_test), + epochs=125, callbacks=[csv_logger], + shuffle=True) \end{lstlisting} \begin{lstlisting}[language=iPython] @@ -172,4 +299,5 @@ def get_random_sample(a, b, number_of_samples=10): return (np.asarray(x).reshape(-1, 28, 28, 1), np.asarray(y).reshape(10*number_of_samples,1)) \end{lstlisting} + \end{document} \ No newline at end of file diff --git a/TeX/Plots/Data/data_sin_d_t.csv b/TeX/Plots/Data/data_sin_d_t.csv deleted file mode 100755 index 3320476..0000000 --- a/TeX/Plots/Data/data_sin_d_t.csv +++ /dev/null @@ -1,17 +0,0 @@ -x,y --3.141592653589793,0.0802212608585366 --2.722713633111154,-0.3759376368887911 --2.303834612632515,-1.3264180339054117 --1.8849555921538759,-0.8971334213504949 --1.4660765716752369,-0.7724344034354425 --1.0471975511965979,-0.9501497164520739 --0.6283185307179586,-0.6224628757084738 --0.2094395102393194,-0.35622668982623207 -0.2094395102393194,-0.18377660088356823 -0.6283185307179586,0.7836770998126841 -1.0471975511965974,0.5874762732054489 -1.4660765716752362,1.0696991264956026 -1.8849555921538759,1.1297065441952743 -2.3038346126325155,0.7587275382323738 -2.7227136331111543,-0.030547103790458163 -3.1415926535897922,0.044327111895927106 diff --git a/TeX/Plots/Data/matlab_0.csv b/TeX/Plots/Data/matlab_0.csv deleted file mode 100755 index 13a2f91..0000000 --- a/TeX/Plots/Data/matlab_0.csv +++ /dev/null @@ -1,1002 +0,0 @@ -x,y --5,0.90686 --4.99,0.9118 --4.98,0.91659 --4.97,0.92122 --4.96,0.92569 --4.95,0.93001 --4.94,0.93417 --4.93,0.93818 --4.92,0.94203 --4.91,0.94573 --4.9,0.94927 --4.89,0.95267 --4.88,0.95591 --4.87,0.95901 --4.86,0.96196 --4.85,0.96475 --4.84,0.96741 --4.83,0.96991 --4.82,0.97227 --4.81,0.97449 --4.8,0.97656 --4.79,0.97849 --4.78,0.98028 --4.77,0.98192 --4.76,0.98343 --4.75,0.9848 --4.74,0.98602 --4.73,0.98712 --4.72,0.98807 --4.71,0.98889 --4.7,0.98957 --4.69,0.99012 --4.68,0.99054 --4.67,0.99082 --4.66,0.99098 --4.65,0.991 --4.64,0.99089 --4.63,0.99065 --4.62,0.99029 --4.61,0.98979 --4.6,0.98918 --4.59,0.98843 --4.58,0.98756 --4.57,0.98657 --4.56,0.98546 --4.55,0.98422 --4.54,0.98286 --4.53,0.98138 --4.52,0.97978 --4.51,0.97806 --4.5,0.97623 --4.49,0.97428 --4.48,0.97221 --4.47,0.97003 --4.46,0.96773 --4.45,0.96532 --4.44,0.96279 --4.43,0.96016 --4.42,0.95741 --4.41,0.95456 --4.4,0.95159 --4.39,0.94852 --4.38,0.94534 --4.37,0.94205 --4.36,0.93866 --4.35,0.93516 --4.34,0.93156 --4.33,0.92785 --4.32,0.92405 --4.31,0.92014 --4.3,0.91613 --4.29,0.91202 --4.28,0.90781 --4.27,0.9035 --4.26,0.8991 --4.25,0.8946 --4.24,0.89001 --4.23,0.88532 --4.22,0.88054 --4.21,0.87566 --4.2,0.87069 --4.19,0.86563 --4.18,0.86049 --4.17,0.85525 --4.16,0.84992 --4.15,0.84451 --4.14,0.83901 --4.13,0.83342 --4.12,0.82775 --4.11,0.82199 --4.1,0.81615 --4.09,0.81023 --4.08,0.80423 --4.07,0.79814 --4.06,0.79198 --4.05,0.78573 --4.04,0.77941 --4.03,0.77301 --4.02,0.76654 --4.01,0.75999 --4,0.75336 --3.99,0.74666 --3.98,0.73989 --3.97,0.73305 --3.96,0.72613 --3.95,0.71914 --3.94,0.71209 --3.93,0.70496 --3.92,0.69777 --3.91,0.69051 --3.9,0.68319 --3.89,0.67579 --3.88,0.66834 --3.87,0.66082 --3.86,0.65324 --3.85,0.6456 --3.84,0.63789 --3.83,0.63013 --3.82,0.6223 --3.81,0.61442 --3.8,0.60648 --3.79,0.59849 --3.78,0.59044 --3.77,0.58233 --3.76,0.57417 --3.75,0.56595 --3.74,0.55769 --3.73,0.54937 --3.72,0.541 --3.71,0.53258 --3.7,0.52411 --3.69,0.5156 --3.68,0.50704 --3.67,0.49843 --3.66,0.48977 --3.65,0.48107 --3.64,0.47233 --3.63,0.46355 --3.62,0.45472 --3.61,0.44585 --3.6,0.43694 --3.59,0.42799 --3.58,0.41901 --3.57,0.40998 --3.56,0.40092 --3.55,0.39182 --3.54,0.38269 --3.53,0.37352 --3.52,0.36432 --3.51,0.35509 --3.5,0.34582 --3.49,0.33653 --3.48,0.3272 --3.47,0.31785 --3.46,0.30846 --3.45,0.29905 --3.44,0.28962 --3.43,0.28015 --3.42,0.27067 --3.41,0.26115 --3.4,0.25162 --3.39,0.24206 --3.38,0.23248 --3.37,0.22289 --3.36,0.21327 --3.35,0.20363 --3.34,0.19398 --3.33,0.1843 --3.32,0.17462 --3.31,0.16491 --3.3,0.15519 --3.29,0.14546 --3.28,0.13572 --3.27,0.12596 --3.26,0.11619 --3.25,0.10642 --3.24,0.096628 --3.23,0.086833 --3.22,0.07703 --3.21,0.06722 --3.2,0.057404 --3.19,0.047583 --3.18,0.037758 --3.17,0.02793 --3.16,0.018099 --3.15,0.0082669 --3.14,-0.0015661 --3.13,-0.011399 --3.12,-0.021231 --3.11,-0.031061 --3.1,-0.040888 --3.09,-0.050712 --3.08,-0.060531 --3.07,-0.070345 --3.06,-0.080153 --3.05,-0.089954 --3.04,-0.099747 --3.03,-0.10953 --3.02,-0.11931 --3.01,-0.12907 --3,-0.13882 --2.99,-0.14856 --2.98,-0.15829 --2.97,-0.168 --2.96,-0.1777 --2.95,-0.18739 --2.94,-0.19705 --2.93,-0.2067 --2.92,-0.21633 --2.91,-0.22595 --2.9,-0.23554 --2.89,-0.24511 --2.88,-0.25466 --2.87,-0.26419 --2.86,-0.27369 --2.85,-0.28317 --2.84,-0.29262 --2.83,-0.30205 --2.82,-0.31146 --2.81,-0.32083 --2.8,-0.33017 --2.79,-0.33949 --2.78,-0.34878 --2.77,-0.35803 --2.76,-0.36725 --2.75,-0.37644 --2.74,-0.3856 --2.73,-0.39472 --2.72,-0.40381 --2.71,-0.41286 --2.7,-0.42187 --2.69,-0.43085 --2.68,-0.43978 --2.67,-0.44868 --2.66,-0.45754 --2.65,-0.46635 --2.64,-0.47512 --2.63,-0.48385 --2.62,-0.49254 --2.61,-0.50118 --2.6,-0.50977 --2.59,-0.51832 --2.58,-0.52682 --2.57,-0.53527 --2.56,-0.54367 --2.55,-0.55202 --2.54,-0.56033 --2.53,-0.56858 --2.52,-0.57677 --2.51,-0.58492 --2.5,-0.59301 --2.49,-0.60104 --2.48,-0.60902 --2.47,-0.61694 --2.46,-0.6248 --2.45,-0.63261 --2.44,-0.64035 --2.43,-0.64804 --2.42,-0.65566 --2.41,-0.66322 --2.4,-0.67072 --2.39,-0.67816 --2.38,-0.68553 --2.37,-0.69283 --2.36,-0.70007 --2.35,-0.70724 --2.34,-0.71434 --2.33,-0.72138 --2.32,-0.72834 --2.31,-0.73523 --2.3,-0.74206 --2.29,-0.7488 --2.28,-0.75548 --2.27,-0.76208 --2.26,-0.76861 --2.25,-0.77506 --2.24,-0.78143 --2.23,-0.78773 --2.22,-0.79395 --2.21,-0.80009 --2.2,-0.80615 --2.19,-0.81212 --2.18,-0.81802 --2.17,-0.82383 --2.16,-0.82956 --2.15,-0.83521 --2.14,-0.84077 --2.13,-0.84624 --2.12,-0.85163 --2.11,-0.85693 --2.1,-0.86214 --2.09,-0.86726 --2.08,-0.87229 --2.07,-0.87722 --2.06,-0.88207 --2.05,-0.88682 --2.04,-0.89148 --2.03,-0.89605 --2.02,-0.90051 --2.01,-0.90489 --2,-0.90916 --1.99,-0.91334 --1.98,-0.91742 --1.97,-0.92139 --1.96,-0.92527 --1.95,-0.92904 --1.94,-0.93272 --1.93,-0.93629 --1.92,-0.93975 --1.91,-0.94311 --1.9,-0.94636 --1.89,-0.94951 --1.88,-0.95255 --1.87,-0.95548 --1.86,-0.9583 --1.85,-0.96102 --1.84,-0.96363 --1.83,-0.96613 --1.82,-0.96853 --1.81,-0.97082 --1.8,-0.973 --1.79,-0.97508 --1.78,-0.97706 --1.77,-0.97892 --1.76,-0.98069 --1.75,-0.98235 --1.74,-0.98391 --1.73,-0.98536 --1.72,-0.98671 --1.71,-0.98796 --1.7,-0.98911 --1.69,-0.99015 --1.68,-0.99109 --1.67,-0.99193 --1.66,-0.99267 --1.65,-0.99331 --1.64,-0.99385 --1.63,-0.99429 --1.62,-0.99463 --1.61,-0.99487 --1.6,-0.99501 --1.59,-0.99505 --1.58,-0.99499 --1.57,-0.99484 --1.56,-0.99458 --1.55,-0.99423 --1.54,-0.99378 --1.53,-0.99324 --1.52,-0.9926 --1.51,-0.99186 --1.5,-0.99103 --1.49,-0.9901 --1.48,-0.98908 --1.47,-0.98796 --1.46,-0.98675 --1.45,-0.98544 --1.44,-0.98404 --1.43,-0.98254 --1.42,-0.98096 --1.41,-0.97928 --1.4,-0.9775 --1.39,-0.97564 --1.38,-0.97368 --1.37,-0.97163 --1.36,-0.96949 --1.35,-0.96726 --1.34,-0.96494 --1.33,-0.96253 --1.32,-0.96003 --1.31,-0.95744 --1.3,-0.95476 --1.29,-0.95199 --1.28,-0.94913 --1.27,-0.94618 --1.26,-0.94315 --1.25,-0.94003 --1.24,-0.93682 --1.23,-0.93352 --1.22,-0.93014 --1.21,-0.92667 --1.2,-0.92312 --1.19,-0.91948 --1.18,-0.91575 --1.17,-0.91194 --1.16,-0.90805 --1.15,-0.90407 --1.14,-0.90001 --1.13,-0.89586 --1.12,-0.89163 --1.11,-0.88732 --1.1,-0.88292 --1.09,-0.87844 --1.08,-0.87388 --1.07,-0.86924 --1.06,-0.86452 --1.05,-0.85971 --1.04,-0.85483 --1.03,-0.84986 --1.02,-0.84482 --1.01,-0.83969 --1,-0.83449 --0.99,-0.8292 --0.98,-0.82384 --0.97,-0.8184 --0.96,-0.81288 --0.95,-0.80729 --0.94,-0.80161 --0.93,-0.79586 --0.92,-0.79003 --0.91,-0.78413 --0.9,-0.77815 --0.89,-0.77209 --0.88,-0.76596 --0.87,-0.75975 --0.86,-0.75347 --0.85,-0.74712 --0.84,-0.74069 --0.83,-0.73418 --0.82,-0.72761 --0.81,-0.72096 --0.8,-0.71423 --0.79,-0.70744 --0.78,-0.70057 --0.77,-0.69363 --0.76,-0.68662 --0.75,-0.67954 --0.74,-0.67239 --0.73,-0.66516 --0.72,-0.65787 --0.71,-0.6505 --0.7,-0.64307 --0.69,-0.63557 --0.68,-0.628 --0.67,-0.62036 --0.66,-0.61265 --0.65,-0.60488 --0.64,-0.59703 --0.63,-0.58912 --0.62,-0.58114 --0.61,-0.5731 --0.6,-0.56499 --0.59,-0.55682 --0.58,-0.54859 --0.57,-0.54029 --0.56,-0.53193 --0.55,-0.52352 --0.54,-0.51504 --0.53,-0.50651 --0.52,-0.49792 --0.51,-0.48928 --0.5,-0.48058 --0.49,-0.47183 --0.48,-0.46302 --0.47,-0.45417 --0.46,-0.44526 --0.45,-0.43631 --0.44,-0.42731 --0.43,-0.41826 --0.42,-0.40917 --0.41,-0.40003 --0.4,-0.39084 --0.39,-0.38162 --0.38,-0.37235 --0.37,-0.36305 --0.36,-0.3537 --0.35,-0.34432 --0.34,-0.33489 --0.33,-0.32544 --0.32,-0.31594 --0.31,-0.30642 --0.3,-0.29686 --0.29,-0.28726 --0.28,-0.27764 --0.27,-0.26799 --0.26,-0.25831 --0.25,-0.2486 --0.24,-0.23886 --0.23,-0.2291 --0.22,-0.21932 --0.21,-0.20951 --0.2,-0.19968 --0.19,-0.18982 --0.18,-0.17995 --0.17,-0.17006 --0.16,-0.16015 --0.15,-0.15022 --0.14,-0.14028 --0.13,-0.13032 --0.12,-0.12035 --0.11,-0.11037 --0.1,-0.10037 --0.09,-0.090364 --0.08,-0.080347 --0.07,-0.070323 --0.06,-0.06029 --0.05,-0.050252 --0.04,-0.040208 --0.03,-0.03016 --0.02,-0.020108 --0.01,-0.010055 -0,0 -0.01,0.010055 -0.02,0.020108 -0.03,0.03016 -0.04,0.040208 -0.05,0.050252 -0.06,0.06029 -0.07,0.070323 -0.08,0.080347 -0.09,0.090364 -0.1,0.10037 -0.11,0.11037 -0.12,0.12035 -0.13,0.13032 -0.14,0.14028 -0.15,0.15022 -0.16,0.16015 -0.17,0.17006 -0.18,0.17995 -0.19,0.18982 -0.2,0.19968 -0.21,0.20951 -0.22,0.21932 -0.23,0.2291 -0.24,0.23886 -0.25,0.2486 -0.26,0.25831 -0.27,0.26799 -0.28,0.27764 -0.29,0.28726 -0.3,0.29686 -0.31,0.30642 -0.32,0.31594 -0.33,0.32544 -0.34,0.33489 -0.35,0.34432 -0.36,0.3537 -0.37,0.36305 -0.38,0.37235 -0.39,0.38162 -0.4,0.39084 -0.41,0.40003 -0.42,0.40917 -0.43,0.41826 -0.44,0.42731 -0.45,0.43631 -0.46,0.44526 -0.47,0.45417 -0.48,0.46302 -0.49,0.47183 -0.5,0.48058 -0.51,0.48928 -0.52,0.49792 -0.53,0.50651 -0.54,0.51504 -0.55,0.52352 -0.56,0.53193 -0.57,0.54029 -0.58,0.54859 -0.59,0.55682 -0.6,0.56499 -0.61,0.5731 -0.62,0.58114 -0.63,0.58912 -0.64,0.59703 -0.65,0.60488 -0.66,0.61265 -0.67,0.62036 -0.68,0.628 -0.69,0.63557 -0.7,0.64307 -0.71,0.6505 -0.72,0.65787 -0.73,0.66516 -0.74,0.67239 -0.75,0.67954 -0.76,0.68662 -0.77,0.69363 -0.78,0.70057 -0.79,0.70744 -0.8,0.71423 -0.81,0.72096 -0.82,0.72761 -0.83,0.73418 -0.84,0.74069 -0.85,0.74712 -0.86,0.75347 -0.87,0.75975 -0.88,0.76596 -0.89,0.77209 -0.9,0.77815 -0.91,0.78413 -0.92,0.79003 -0.93,0.79586 -0.94,0.80161 -0.95,0.80729 -0.96,0.81288 -0.97,0.8184 -0.98,0.82384 -0.99,0.8292 -1,0.83449 -1.01,0.83969 -1.02,0.84482 -1.03,0.84986 -1.04,0.85483 -1.05,0.85971 -1.06,0.86452 -1.07,0.86924 -1.08,0.87388 -1.09,0.87844 -1.1,0.88292 -1.11,0.88732 -1.12,0.89163 -1.13,0.89586 -1.14,0.90001 -1.15,0.90407 -1.16,0.90805 -1.17,0.91194 -1.18,0.91575 -1.19,0.91948 -1.2,0.92312 -1.21,0.92667 -1.22,0.93014 -1.23,0.93352 -1.24,0.93682 -1.25,0.94003 -1.26,0.94315 -1.27,0.94618 -1.28,0.94913 -1.29,0.95199 -1.3,0.95476 -1.31,0.95744 -1.32,0.96003 -1.33,0.96253 -1.34,0.96494 -1.35,0.96726 -1.36,0.96949 -1.37,0.97163 -1.38,0.97368 -1.39,0.97564 -1.4,0.9775 -1.41,0.97928 -1.42,0.98096 -1.43,0.98254 -1.44,0.98404 -1.45,0.98544 -1.46,0.98675 -1.47,0.98796 -1.48,0.98908 -1.49,0.9901 -1.5,0.99103 -1.51,0.99186 -1.52,0.9926 -1.53,0.99324 -1.54,0.99378 -1.55,0.99423 -1.56,0.99458 -1.57,0.99484 -1.58,0.99499 -1.59,0.99505 -1.6,0.99501 -1.61,0.99487 -1.62,0.99463 -1.63,0.99429 -1.64,0.99385 -1.65,0.99331 -1.66,0.99267 -1.67,0.99193 -1.68,0.99109 -1.69,0.99015 -1.7,0.98911 -1.71,0.98796 -1.72,0.98671 -1.73,0.98536 -1.74,0.98391 -1.75,0.98235 -1.76,0.98069 -1.77,0.97892 -1.78,0.97706 -1.79,0.97508 -1.8,0.973 -1.81,0.97082 -1.82,0.96853 -1.83,0.96613 -1.84,0.96363 -1.85,0.96102 -1.86,0.9583 -1.87,0.95548 -1.88,0.95255 -1.89,0.94951 -1.9,0.94636 -1.91,0.94311 -1.92,0.93975 -1.93,0.93629 -1.94,0.93272 -1.95,0.92904 -1.96,0.92527 -1.97,0.92139 -1.98,0.91742 -1.99,0.91334 -2,0.90916 -2.01,0.90489 -2.02,0.90051 -2.03,0.89605 -2.04,0.89148 -2.05,0.88682 -2.06,0.88207 -2.07,0.87722 -2.08,0.87229 -2.09,0.86726 -2.1,0.86214 -2.11,0.85693 -2.12,0.85163 -2.13,0.84624 -2.14,0.84077 -2.15,0.83521 -2.16,0.82956 -2.17,0.82383 -2.18,0.81802 -2.19,0.81212 -2.2,0.80615 -2.21,0.80009 -2.22,0.79395 -2.23,0.78773 -2.24,0.78143 -2.25,0.77506 -2.26,0.76861 -2.27,0.76208 -2.28,0.75548 -2.29,0.7488 -2.3,0.74206 -2.31,0.73523 -2.32,0.72834 -2.33,0.72138 -2.34,0.71434 -2.35,0.70724 -2.36,0.70007 -2.37,0.69283 -2.38,0.68553 -2.39,0.67816 -2.4,0.67072 -2.41,0.66322 -2.42,0.65566 -2.43,0.64804 -2.44,0.64035 -2.45,0.63261 -2.46,0.6248 -2.47,0.61694 -2.48,0.60902 -2.49,0.60104 -2.5,0.59301 -2.51,0.58492 -2.52,0.57677 -2.53,0.56858 -2.54,0.56033 -2.55,0.55202 -2.56,0.54367 -2.57,0.53527 -2.58,0.52682 -2.59,0.51832 -2.6,0.50977 -2.61,0.50118 -2.62,0.49254 -2.63,0.48385 -2.64,0.47512 -2.65,0.46635 -2.66,0.45754 -2.67,0.44868 -2.68,0.43978 -2.69,0.43085 -2.7,0.42187 -2.71,0.41286 -2.72,0.40381 -2.73,0.39472 -2.74,0.3856 -2.75,0.37644 -2.76,0.36725 -2.77,0.35803 -2.78,0.34878 -2.79,0.33949 -2.8,0.33017 -2.81,0.32083 -2.82,0.31146 -2.83,0.30205 -2.84,0.29262 -2.85,0.28317 -2.86,0.27369 -2.87,0.26419 -2.88,0.25466 -2.89,0.24511 -2.9,0.23554 -2.91,0.22595 -2.92,0.21633 -2.93,0.2067 -2.94,0.19705 -2.95,0.18739 -2.96,0.1777 -2.97,0.168 -2.98,0.15829 -2.99,0.14856 -3,0.13882 -3.01,0.12907 -3.02,0.11931 -3.03,0.10953 -3.04,0.099747 -3.05,0.089954 -3.06,0.080153 -3.07,0.070345 -3.08,0.060531 -3.09,0.050712 -3.1,0.040888 -3.11,0.031061 -3.12,0.021231 -3.13,0.011399 -3.14,0.0015661 -3.15,-0.0082669 -3.16,-0.018099 -3.17,-0.02793 -3.18,-0.037758 -3.19,-0.047583 -3.2,-0.057404 -3.21,-0.06722 -3.22,-0.07703 -3.23,-0.086833 -3.24,-0.096628 -3.25,-0.10642 -3.26,-0.11619 -3.27,-0.12596 -3.28,-0.13572 -3.29,-0.14546 -3.3,-0.15519 -3.31,-0.16491 -3.32,-0.17462 -3.33,-0.1843 -3.34,-0.19398 -3.35,-0.20363 -3.36,-0.21327 -3.37,-0.22289 -3.38,-0.23248 -3.39,-0.24206 -3.4,-0.25162 -3.41,-0.26115 -3.42,-0.27067 -3.43,-0.28015 -3.44,-0.28962 -3.45,-0.29905 -3.46,-0.30846 -3.47,-0.31785 -3.48,-0.3272 -3.49,-0.33653 -3.5,-0.34582 -3.51,-0.35509 -3.52,-0.36432 -3.53,-0.37352 -3.54,-0.38269 -3.55,-0.39182 -3.56,-0.40092 -3.57,-0.40998 -3.58,-0.41901 -3.59,-0.42799 -3.6,-0.43694 -3.61,-0.44585 -3.62,-0.45472 -3.63,-0.46355 -3.64,-0.47233 -3.65,-0.48107 -3.66,-0.48977 -3.67,-0.49843 -3.68,-0.50704 -3.69,-0.5156 -3.7,-0.52411 -3.71,-0.53258 -3.72,-0.541 -3.73,-0.54937 -3.74,-0.55769 -3.75,-0.56595 -3.76,-0.57417 -3.77,-0.58233 -3.78,-0.59044 -3.79,-0.59849 -3.8,-0.60648 -3.81,-0.61442 -3.82,-0.6223 -3.83,-0.63013 -3.84,-0.63789 -3.85,-0.6456 -3.86,-0.65324 -3.87,-0.66082 -3.88,-0.66834 -3.89,-0.67579 -3.9,-0.68319 -3.91,-0.69051 -3.92,-0.69777 -3.93,-0.70496 -3.94,-0.71209 -3.95,-0.71914 -3.96,-0.72613 -3.97,-0.73305 -3.98,-0.73989 -3.99,-0.74666 -4,-0.75336 -4.01,-0.75999 -4.02,-0.76654 -4.03,-0.77301 -4.04,-0.77941 -4.05,-0.78573 -4.06,-0.79198 -4.07,-0.79814 -4.08,-0.80423 -4.09,-0.81023 -4.1,-0.81615 -4.11,-0.82199 -4.12,-0.82775 -4.13,-0.83342 -4.14,-0.83901 -4.15,-0.84451 -4.16,-0.84992 -4.17,-0.85525 -4.18,-0.86049 -4.19,-0.86563 -4.2,-0.87069 -4.21,-0.87566 -4.22,-0.88054 -4.23,-0.88532 -4.24,-0.89001 -4.25,-0.8946 -4.26,-0.8991 -4.27,-0.9035 -4.28,-0.90781 -4.29,-0.91202 -4.3,-0.91613 -4.31,-0.92014 -4.32,-0.92405 -4.33,-0.92785 -4.34,-0.93156 -4.35,-0.93516 -4.36,-0.93866 -4.37,-0.94205 -4.38,-0.94534 -4.39,-0.94852 -4.4,-0.95159 -4.41,-0.95456 -4.42,-0.95741 -4.43,-0.96016 -4.44,-0.96279 -4.45,-0.96532 -4.46,-0.96773 -4.47,-0.97003 -4.48,-0.97221 -4.49,-0.97428 -4.5,-0.97623 -4.51,-0.97806 -4.52,-0.97978 -4.53,-0.98138 -4.54,-0.98286 -4.55,-0.98422 -4.56,-0.98546 -4.57,-0.98657 -4.58,-0.98756 -4.59,-0.98843 -4.6,-0.98918 -4.61,-0.98979 -4.62,-0.99029 -4.63,-0.99065 -4.64,-0.99089 -4.65,-0.991 -4.66,-0.99098 -4.67,-0.99082 -4.68,-0.99054 -4.69,-0.99012 -4.7,-0.98957 -4.71,-0.98889 -4.72,-0.98807 -4.73,-0.98712 -4.74,-0.98602 -4.75,-0.9848 -4.76,-0.98343 -4.77,-0.98192 -4.78,-0.98028 -4.79,-0.97849 -4.8,-0.97656 -4.81,-0.97449 -4.82,-0.97227 -4.83,-0.96991 -4.84,-0.96741 -4.85,-0.96475 -4.86,-0.96196 -4.87,-0.95901 -4.88,-0.95591 -4.89,-0.95267 -4.9,-0.94927 -4.91,-0.94573 -4.92,-0.94203 -4.93,-0.93818 -4.94,-0.93417 -4.95,-0.93001 -4.96,-0.92569 -4.97,-0.92122 -4.98,-0.91659 -4.99,-0.9118 -5,-0.90686 diff --git a/TeX/Plots/Data/matlab_1.csv b/TeX/Plots/Data/matlab_1.csv deleted file mode 100755 index 790981a..0000000 --- a/TeX/Plots/Data/matlab_1.csv +++ /dev/null @@ -1,1002 +0,0 @@ -x,y --5,-0.15899 --4.99,-0.15625 --4.98,-0.15358 --4.97,-0.15096 --4.96,-0.1484 --4.95,-0.1459 --4.94,-0.14345 --4.93,-0.14106 --4.92,-0.13872 --4.91,-0.13644 --4.9,-0.13421 --4.89,-0.13204 --4.88,-0.12992 --4.87,-0.12786 --4.86,-0.12585 --4.85,-0.12389 --4.84,-0.12199 --4.83,-0.12014 --4.82,-0.11834 --4.81,-0.1166 --4.8,-0.1149 --4.79,-0.11326 --4.78,-0.11167 --4.77,-0.11013 --4.76,-0.10864 --4.75,-0.1072 --4.74,-0.10581 --4.73,-0.10447 --4.72,-0.10318 --4.71,-0.10194 --4.7,-0.10075 --4.69,-0.099604 --4.68,-0.098508 --4.67,-0.09746 --4.66,-0.09646 --4.65,-0.095506 --4.64,-0.0946 --4.63,-0.09374 --4.62,-0.092926 --4.61,-0.092158 --4.6,-0.091436 --4.59,-0.090759 --4.58,-0.090128 --4.57,-0.089541 --4.56,-0.088998 --4.55,-0.088499 --4.54,-0.088045 --4.53,-0.087633 --4.52,-0.087265 --4.51,-0.08694 --4.5,-0.086657 --4.49,-0.086416 --4.48,-0.086217 --4.47,-0.08606 --4.46,-0.085944 --4.45,-0.08587 --4.44,-0.085835 --4.43,-0.085841 --4.42,-0.085888 --4.41,-0.085974 --4.4,-0.086099 --4.39,-0.086263 --4.38,-0.086467 --4.37,-0.086708 --4.36,-0.086988 --4.35,-0.087306 --4.34,-0.087661 --4.33,-0.088054 --4.32,-0.088483 --4.31,-0.088949 --4.3,-0.089452 --4.29,-0.08999 --4.28,-0.090564 --4.27,-0.091174 --4.26,-0.091818 --4.25,-0.092498 --4.24,-0.093211 --4.23,-0.093959 --4.22,-0.094741 --4.21,-0.095556 --4.2,-0.096405 --4.19,-0.097286 --4.18,-0.0982 --4.17,-0.099146 --4.16,-0.10012 --4.15,-0.10113 --4.14,-0.10218 --4.13,-0.10325 --4.12,-0.10435 --4.11,-0.10548 --4.1,-0.10665 --4.09,-0.10784 --4.08,-0.10906 --4.07,-0.11031 --4.06,-0.11159 --4.05,-0.1129 --4.04,-0.11424 --4.03,-0.11561 --4.02,-0.117 --4.01,-0.11842 --4,-0.11987 --3.99,-0.12134 --3.98,-0.12284 --3.97,-0.12437 --3.96,-0.12592 --3.95,-0.1275 --3.94,-0.1291 --3.93,-0.13073 --3.92,-0.13238 --3.91,-0.13406 --3.9,-0.13576 --3.89,-0.13748 --3.88,-0.13923 --3.87,-0.141 --3.86,-0.14279 --3.85,-0.1446 --3.84,-0.14644 --3.83,-0.1483 --3.82,-0.15018 --3.81,-0.15208 --3.8,-0.154 --3.79,-0.15594 --3.78,-0.15791 --3.77,-0.15989 --3.76,-0.16189 --3.75,-0.16391 --3.74,-0.16595 --3.73,-0.16801 --3.72,-0.17009 --3.71,-0.17218 --3.7,-0.17429 --3.69,-0.17642 --3.68,-0.17857 --3.67,-0.18073 --3.66,-0.18291 --3.65,-0.18511 --3.64,-0.18732 --3.63,-0.18955 --3.62,-0.19179 --3.61,-0.19405 --3.6,-0.19632 --3.59,-0.1986 --3.58,-0.20091 --3.57,-0.20322 --3.56,-0.20555 --3.55,-0.20789 --3.54,-0.21024 --3.53,-0.2126 --3.52,-0.21498 --3.51,-0.21737 --3.5,-0.21977 --3.49,-0.22218 --3.48,-0.2246 --3.47,-0.22704 --3.46,-0.22948 --3.45,-0.23193 --3.44,-0.2344 --3.43,-0.23687 --3.42,-0.23935 --3.41,-0.24184 --3.4,-0.24434 --3.39,-0.24684 --3.38,-0.24935 --3.37,-0.25188 --3.36,-0.2544 --3.35,-0.25694 --3.34,-0.25948 --3.33,-0.26203 --3.32,-0.26458 --3.31,-0.26714 --3.3,-0.2697 --3.29,-0.27227 --3.28,-0.27485 --3.27,-0.27742 --3.26,-0.28001 --3.25,-0.28259 --3.24,-0.28518 --3.23,-0.28777 --3.22,-0.29037 --3.21,-0.29296 --3.2,-0.29556 --3.19,-0.29817 --3.18,-0.30077 --3.17,-0.30337 --3.16,-0.30598 --3.15,-0.30858 --3.14,-0.31119 --3.13,-0.31379 --3.12,-0.3164 --3.11,-0.319 --3.1,-0.32161 --3.09,-0.32421 --3.08,-0.32681 --3.07,-0.32941 --3.06,-0.332 --3.05,-0.3346 --3.04,-0.33719 --3.03,-0.33978 --3.02,-0.34236 --3.01,-0.34494 --3,-0.34752 --2.99,-0.35009 --2.98,-0.35266 --2.97,-0.35522 --2.96,-0.35778 --2.95,-0.36033 --2.94,-0.36288 --2.93,-0.36541 --2.92,-0.36795 --2.91,-0.37047 --2.9,-0.37299 --2.89,-0.3755 --2.88,-0.37801 --2.87,-0.3805 --2.86,-0.38299 --2.85,-0.38547 --2.84,-0.38793 --2.83,-0.39039 --2.82,-0.39284 --2.81,-0.39528 --2.8,-0.39771 --2.79,-0.40013 --2.78,-0.40254 --2.77,-0.40494 --2.76,-0.40732 --2.75,-0.4097 --2.74,-0.41206 --2.73,-0.41441 --2.72,-0.41674 --2.71,-0.41906 --2.7,-0.42137 --2.69,-0.42367 --2.68,-0.42595 --2.67,-0.42822 --2.66,-0.43047 --2.65,-0.43271 --2.64,-0.43493 --2.63,-0.43714 --2.62,-0.43933 --2.61,-0.4415 --2.6,-0.44366 --2.59,-0.4458 --2.58,-0.44793 --2.57,-0.45003 --2.56,-0.45212 --2.55,-0.45419 --2.54,-0.45625 --2.53,-0.45828 --2.52,-0.4603 --2.51,-0.46229 --2.5,-0.46427 --2.49,-0.46622 --2.48,-0.46816 --2.47,-0.47007 --2.46,-0.47197 --2.45,-0.47384 --2.44,-0.47569 --2.43,-0.47752 --2.42,-0.47933 --2.41,-0.48112 --2.4,-0.48288 --2.39,-0.48462 --2.38,-0.48633 --2.37,-0.48803 --2.36,-0.48969 --2.35,-0.49134 --2.34,-0.49296 --2.33,-0.49455 --2.32,-0.49612 --2.31,-0.49767 --2.3,-0.49918 --2.29,-0.50068 --2.28,-0.50214 --2.27,-0.50358 --2.26,-0.50499 --2.25,-0.50638 --2.24,-0.50773 --2.23,-0.50906 --2.22,-0.51036 --2.21,-0.51163 --2.2,-0.51287 --2.19,-0.51409 --2.18,-0.51527 --2.17,-0.51643 --2.16,-0.51755 --2.15,-0.51864 --2.14,-0.5197 --2.13,-0.52074 --2.12,-0.52174 --2.11,-0.5227 --2.1,-0.52364 --2.09,-0.52454 --2.08,-0.52541 --2.07,-0.52625 --2.06,-0.52706 --2.05,-0.52783 --2.04,-0.52856 --2.03,-0.52927 --2.02,-0.52994 --2.01,-0.53057 --2,-0.53117 --1.99,-0.53173 --1.98,-0.53226 --1.97,-0.53275 --1.96,-0.5332 --1.95,-0.53362 --1.94,-0.534 --1.93,-0.53434 --1.92,-0.53465 --1.91,-0.53492 --1.9,-0.53515 --1.89,-0.53534 --1.88,-0.53549 --1.87,-0.5356 --1.86,-0.53568 --1.85,-0.53571 --1.84,-0.53571 --1.83,-0.53567 --1.82,-0.53559 --1.81,-0.53547 --1.8,-0.53531 --1.79,-0.53512 --1.78,-0.53488 --1.77,-0.53461 --1.76,-0.5343 --1.75,-0.53396 --1.74,-0.53357 --1.73,-0.53315 --1.72,-0.53269 --1.71,-0.53219 --1.7,-0.53166 --1.69,-0.53109 --1.68,-0.53048 --1.67,-0.52983 --1.66,-0.52915 --1.65,-0.52843 --1.64,-0.52768 --1.63,-0.52689 --1.62,-0.52606 --1.61,-0.5252 --1.6,-0.5243 --1.59,-0.52336 --1.58,-0.52239 --1.57,-0.52138 --1.56,-0.52033 --1.55,-0.51925 --1.54,-0.51814 --1.53,-0.51699 --1.52,-0.5158 --1.51,-0.51458 --1.5,-0.51333 --1.49,-0.51203 --1.48,-0.51071 --1.47,-0.50935 --1.46,-0.50795 --1.45,-0.50652 --1.44,-0.50506 --1.43,-0.50356 --1.42,-0.50202 --1.41,-0.50046 --1.4,-0.49885 --1.39,-0.49722 --1.38,-0.49555 --1.37,-0.49385 --1.36,-0.49211 --1.35,-0.49034 --1.34,-0.48853 --1.33,-0.4867 --1.32,-0.48483 --1.31,-0.48292 --1.3,-0.48099 --1.29,-0.47902 --1.28,-0.47701 --1.27,-0.47498 --1.26,-0.47291 --1.25,-0.47081 --1.24,-0.46868 --1.23,-0.46651 --1.22,-0.46432 --1.21,-0.46209 --1.2,-0.45983 --1.19,-0.45753 --1.18,-0.45521 --1.17,-0.45285 --1.16,-0.45046 --1.15,-0.44804 --1.14,-0.44559 --1.13,-0.44311 --1.12,-0.4406 --1.11,-0.43805 --1.1,-0.43548 --1.09,-0.43287 --1.08,-0.43024 --1.07,-0.42757 --1.06,-0.42487 --1.05,-0.42214 --1.04,-0.41938 --1.03,-0.4166 --1.02,-0.41378 --1.01,-0.41093 --1,-0.40805 --0.99,-0.40514 --0.98,-0.4022 --0.97,-0.39924 --0.96,-0.39624 --0.95,-0.39321 --0.94,-0.39016 --0.93,-0.38707 --0.92,-0.38396 --0.91,-0.38081 --0.9,-0.37764 --0.89,-0.37444 --0.88,-0.37121 --0.87,-0.36796 --0.86,-0.36467 --0.85,-0.36136 --0.84,-0.35801 --0.83,-0.35464 --0.82,-0.35124 --0.81,-0.34782 --0.8,-0.34436 --0.79,-0.34088 --0.78,-0.33737 --0.77,-0.33384 --0.76,-0.33027 --0.75,-0.32668 --0.74,-0.32306 --0.73,-0.31942 --0.72,-0.31574 --0.71,-0.31204 --0.7,-0.30832 --0.69,-0.30456 --0.68,-0.30079 --0.67,-0.29698 --0.66,-0.29315 --0.65,-0.28929 --0.64,-0.28541 --0.63,-0.28149 --0.62,-0.27756 --0.61,-0.2736 --0.6,-0.26961 --0.59,-0.2656 --0.58,-0.26156 --0.57,-0.2575 --0.56,-0.25342 --0.55,-0.24931 --0.54,-0.24518 --0.53,-0.24103 --0.52,-0.23686 --0.51,-0.23267 --0.5,-0.22845 --0.49,-0.22421 --0.48,-0.21996 --0.47,-0.21568 --0.46,-0.21139 --0.45,-0.20707 --0.44,-0.20274 --0.43,-0.19839 --0.42,-0.19402 --0.41,-0.18963 --0.4,-0.18523 --0.39,-0.18081 --0.38,-0.17638 --0.37,-0.17193 --0.36,-0.16746 --0.35,-0.16298 --0.34,-0.15848 --0.33,-0.15397 --0.32,-0.14945 --0.31,-0.14491 --0.3,-0.14036 --0.29,-0.1358 --0.28,-0.13123 --0.27,-0.12664 --0.26,-0.12205 --0.25,-0.11744 --0.24,-0.11283 --0.23,-0.1082 --0.22,-0.10356 --0.21,-0.098917 --0.2,-0.094263 --0.19,-0.0896 --0.18,-0.08493 --0.17,-0.080253 --0.16,-0.075568 --0.15,-0.070877 --0.14,-0.06618 --0.13,-0.061477 --0.12,-0.056768 --0.11,-0.052055 --0.1,-0.047337 --0.09,-0.042615 --0.08,-0.03789 --0.07,-0.033161 --0.06,-0.028429 --0.05,-0.023694 --0.04,-0.018958 --0.03,-0.01422 --0.02,-0.0094806 --0.01,-0.0047405 -0,0 -0.01,0.0047405 -0.02,0.0094806 -0.03,0.01422 -0.04,0.018958 -0.05,0.023694 -0.06,0.028429 -0.07,0.033161 -0.08,0.03789 -0.09,0.042615 -0.1,0.047337 -0.11,0.052055 -0.12,0.056768 -0.13,0.061477 -0.14,0.06618 -0.15,0.070877 -0.16,0.075568 -0.17,0.080253 -0.18,0.08493 -0.19,0.0896 -0.2,0.094263 -0.21,0.098917 -0.22,0.10356 -0.23,0.1082 -0.24,0.11283 -0.25,0.11744 -0.26,0.12205 -0.27,0.12664 -0.28,0.13123 -0.29,0.1358 -0.3,0.14036 -0.31,0.14491 -0.32,0.14945 -0.33,0.15397 -0.34,0.15848 -0.35,0.16298 -0.36,0.16746 -0.37,0.17193 -0.38,0.17638 -0.39,0.18081 -0.4,0.18523 -0.41,0.18963 -0.42,0.19402 -0.43,0.19839 -0.44,0.20274 -0.45,0.20707 -0.46,0.21139 -0.47,0.21568 -0.48,0.21996 -0.49,0.22421 -0.5,0.22845 -0.51,0.23267 -0.52,0.23686 -0.53,0.24103 -0.54,0.24518 -0.55,0.24931 -0.56,0.25342 -0.57,0.2575 -0.58,0.26156 -0.59,0.2656 -0.6,0.26961 -0.61,0.2736 -0.62,0.27756 -0.63,0.28149 -0.64,0.28541 -0.65,0.28929 -0.66,0.29315 -0.67,0.29698 -0.68,0.30079 -0.69,0.30456 -0.7,0.30832 -0.71,0.31204 -0.72,0.31574 -0.73,0.31942 -0.74,0.32306 -0.75,0.32668 -0.76,0.33027 -0.77,0.33384 -0.78,0.33737 -0.79,0.34088 -0.8,0.34436 -0.81,0.34782 -0.82,0.35124 -0.83,0.35464 -0.84,0.35801 -0.85,0.36136 -0.86,0.36467 -0.87,0.36796 -0.88,0.37121 -0.89,0.37444 -0.9,0.37764 -0.91,0.38081 -0.92,0.38396 -0.93,0.38707 -0.94,0.39016 -0.95,0.39321 -0.96,0.39624 -0.97,0.39924 -0.98,0.4022 -0.99,0.40514 -1,0.40805 -1.01,0.41093 -1.02,0.41378 -1.03,0.4166 -1.04,0.41938 -1.05,0.42214 -1.06,0.42487 -1.07,0.42757 -1.08,0.43024 -1.09,0.43287 -1.1,0.43548 -1.11,0.43805 -1.12,0.4406 -1.13,0.44311 -1.14,0.44559 -1.15,0.44804 -1.16,0.45046 -1.17,0.45285 -1.18,0.45521 -1.19,0.45753 -1.2,0.45983 -1.21,0.46209 -1.22,0.46432 -1.23,0.46651 -1.24,0.46868 -1.25,0.47081 -1.26,0.47291 -1.27,0.47498 -1.28,0.47701 -1.29,0.47902 -1.3,0.48099 -1.31,0.48292 -1.32,0.48483 -1.33,0.4867 -1.34,0.48853 -1.35,0.49034 -1.36,0.49211 -1.37,0.49385 -1.38,0.49555 -1.39,0.49722 -1.4,0.49885 -1.41,0.50046 -1.42,0.50202 -1.43,0.50356 -1.44,0.50506 -1.45,0.50652 -1.46,0.50795 -1.47,0.50935 -1.48,0.51071 -1.49,0.51203 -1.5,0.51333 -1.51,0.51458 -1.52,0.5158 -1.53,0.51699 -1.54,0.51814 -1.55,0.51925 -1.56,0.52033 -1.57,0.52138 -1.58,0.52239 -1.59,0.52336 -1.6,0.5243 -1.61,0.5252 -1.62,0.52606 -1.63,0.52689 -1.64,0.52768 -1.65,0.52843 -1.66,0.52915 -1.67,0.52983 -1.68,0.53048 -1.69,0.53109 -1.7,0.53166 -1.71,0.53219 -1.72,0.53269 -1.73,0.53315 -1.74,0.53357 -1.75,0.53396 -1.76,0.5343 -1.77,0.53461 -1.78,0.53488 -1.79,0.53512 -1.8,0.53531 -1.81,0.53547 -1.82,0.53559 -1.83,0.53567 -1.84,0.53571 -1.85,0.53571 -1.86,0.53568 -1.87,0.5356 -1.88,0.53549 -1.89,0.53534 -1.9,0.53515 -1.91,0.53492 -1.92,0.53465 -1.93,0.53434 -1.94,0.534 -1.95,0.53362 -1.96,0.5332 -1.97,0.53275 -1.98,0.53226 -1.99,0.53173 -2,0.53117 -2.01,0.53057 -2.02,0.52994 -2.03,0.52927 -2.04,0.52856 -2.05,0.52783 -2.06,0.52706 -2.07,0.52625 -2.08,0.52541 -2.09,0.52454 -2.1,0.52364 -2.11,0.5227 -2.12,0.52174 -2.13,0.52074 -2.14,0.5197 -2.15,0.51864 -2.16,0.51755 -2.17,0.51643 -2.18,0.51527 -2.19,0.51409 -2.2,0.51287 -2.21,0.51163 -2.22,0.51036 -2.23,0.50906 -2.24,0.50773 -2.25,0.50638 -2.26,0.50499 -2.27,0.50358 -2.28,0.50214 -2.29,0.50068 -2.3,0.49918 -2.31,0.49767 -2.32,0.49612 -2.33,0.49455 -2.34,0.49296 -2.35,0.49134 -2.36,0.48969 -2.37,0.48803 -2.38,0.48633 -2.39,0.48462 -2.4,0.48288 -2.41,0.48112 -2.42,0.47933 -2.43,0.47752 -2.44,0.47569 -2.45,0.47384 -2.46,0.47197 -2.47,0.47007 -2.48,0.46816 -2.49,0.46622 -2.5,0.46427 -2.51,0.46229 -2.52,0.4603 -2.53,0.45828 -2.54,0.45625 -2.55,0.45419 -2.56,0.45212 -2.57,0.45003 -2.58,0.44793 -2.59,0.4458 -2.6,0.44366 -2.61,0.4415 -2.62,0.43933 -2.63,0.43714 -2.64,0.43493 -2.65,0.43271 -2.66,0.43047 -2.67,0.42822 -2.68,0.42595 -2.69,0.42367 -2.7,0.42137 -2.71,0.41906 -2.72,0.41674 -2.73,0.41441 -2.74,0.41206 -2.75,0.4097 -2.76,0.40732 -2.77,0.40494 -2.78,0.40254 -2.79,0.40013 -2.8,0.39771 -2.81,0.39528 -2.82,0.39284 -2.83,0.39039 -2.84,0.38793 -2.85,0.38547 -2.86,0.38299 -2.87,0.3805 -2.88,0.37801 -2.89,0.3755 -2.9,0.37299 -2.91,0.37047 -2.92,0.36795 -2.93,0.36541 -2.94,0.36288 -2.95,0.36033 -2.96,0.35778 -2.97,0.35522 -2.98,0.35266 -2.99,0.35009 -3,0.34752 -3.01,0.34494 -3.02,0.34236 -3.03,0.33978 -3.04,0.33719 -3.05,0.3346 -3.06,0.332 -3.07,0.32941 -3.08,0.32681 -3.09,0.32421 -3.1,0.32161 -3.11,0.319 -3.12,0.3164 -3.13,0.31379 -3.14,0.31119 -3.15,0.30858 -3.16,0.30598 -3.17,0.30337 -3.18,0.30077 -3.19,0.29817 -3.2,0.29556 -3.21,0.29296 -3.22,0.29037 -3.23,0.28777 -3.24,0.28518 -3.25,0.28259 -3.26,0.28001 -3.27,0.27742 -3.28,0.27485 -3.29,0.27227 -3.3,0.2697 -3.31,0.26714 -3.32,0.26458 -3.33,0.26203 -3.34,0.25948 -3.35,0.25694 -3.36,0.2544 -3.37,0.25188 -3.38,0.24935 -3.39,0.24684 -3.4,0.24434 -3.41,0.24184 -3.42,0.23935 -3.43,0.23687 -3.44,0.2344 -3.45,0.23193 -3.46,0.22948 -3.47,0.22704 -3.48,0.2246 -3.49,0.22218 -3.5,0.21977 -3.51,0.21737 -3.52,0.21498 -3.53,0.2126 -3.54,0.21024 -3.55,0.20789 -3.56,0.20555 -3.57,0.20322 -3.58,0.20091 -3.59,0.1986 -3.6,0.19632 -3.61,0.19405 -3.62,0.19179 -3.63,0.18955 -3.64,0.18732 -3.65,0.18511 -3.66,0.18291 -3.67,0.18073 -3.68,0.17857 -3.69,0.17642 -3.7,0.17429 -3.71,0.17218 -3.72,0.17009 -3.73,0.16801 -3.74,0.16595 -3.75,0.16391 -3.76,0.16189 -3.77,0.15989 -3.78,0.15791 -3.79,0.15594 -3.8,0.154 -3.81,0.15208 -3.82,0.15018 -3.83,0.1483 -3.84,0.14644 -3.85,0.1446 -3.86,0.14279 -3.87,0.141 -3.88,0.13923 -3.89,0.13748 -3.9,0.13576 -3.91,0.13406 -3.92,0.13238 -3.93,0.13073 -3.94,0.1291 -3.95,0.1275 -3.96,0.12592 -3.97,0.12437 -3.98,0.12284 -3.99,0.12134 -4,0.11987 -4.01,0.11842 -4.02,0.117 -4.03,0.11561 -4.04,0.11424 -4.05,0.1129 -4.06,0.11159 -4.07,0.11031 -4.08,0.10906 -4.09,0.10784 -4.1,0.10665 -4.11,0.10548 -4.12,0.10435 -4.13,0.10325 -4.14,0.10218 -4.15,0.10113 -4.16,0.10012 -4.17,0.099146 -4.18,0.0982 -4.19,0.097286 -4.2,0.096405 -4.21,0.095556 -4.22,0.094741 -4.23,0.093959 -4.24,0.093211 -4.25,0.092498 -4.26,0.091818 -4.27,0.091174 -4.28,0.090564 -4.29,0.08999 -4.3,0.089452 -4.31,0.088949 -4.32,0.088483 -4.33,0.088054 -4.34,0.087661 -4.35,0.087306 -4.36,0.086988 -4.37,0.086708 -4.38,0.086467 -4.39,0.086263 -4.4,0.086099 -4.41,0.085974 -4.42,0.085888 -4.43,0.085841 -4.44,0.085835 -4.45,0.08587 -4.46,0.085944 -4.47,0.08606 -4.48,0.086217 -4.49,0.086416 -4.5,0.086657 -4.51,0.08694 -4.52,0.087265 -4.53,0.087633 -4.54,0.088045 -4.55,0.088499 -4.56,0.088998 -4.57,0.089541 -4.58,0.090128 -4.59,0.090759 -4.6,0.091436 -4.61,0.092158 -4.62,0.092926 -4.63,0.09374 -4.64,0.0946 -4.65,0.095506 -4.66,0.09646 -4.67,0.09746 -4.68,0.098508 -4.69,0.099604 -4.7,0.10075 -4.71,0.10194 -4.72,0.10318 -4.73,0.10447 -4.74,0.10581 -4.75,0.1072 -4.76,0.10864 -4.77,0.11013 -4.78,0.11167 -4.79,0.11326 -4.8,0.1149 -4.81,0.1166 -4.82,0.11834 -4.83,0.12014 -4.84,0.12199 -4.85,0.12389 -4.86,0.12585 -4.87,0.12786 -4.88,0.12992 -4.89,0.13204 -4.9,0.13421 -4.91,0.13644 -4.92,0.13872 -4.93,0.14106 -4.94,0.14345 -4.95,0.1459 -4.96,0.1484 -4.97,0.15096 -4.98,0.15358 -4.99,0.15625 -5,0.15899 diff --git a/TeX/Plots/Data/matlab_3.csv b/TeX/Plots/Data/matlab_3.csv deleted file mode 100755 index aec36fc..0000000 --- a/TeX/Plots/Data/matlab_3.csv +++ /dev/null @@ -1,1002 +0,0 @@ -x,y --5,-0.50686 --4.99,-0.50478 --4.98,-0.50273 --4.97,-0.5007 --4.96,-0.4987 --4.95,-0.49672 --4.94,-0.49477 --4.93,-0.49284 --4.92,-0.49093 --4.91,-0.48905 --4.9,-0.4872 --4.89,-0.48536 --4.88,-0.48356 --4.87,-0.48177 --4.86,-0.48001 --4.85,-0.47828 --4.84,-0.47656 --4.83,-0.47487 --4.82,-0.47321 --4.81,-0.47156 --4.8,-0.46994 --4.79,-0.46834 --4.78,-0.46677 --4.77,-0.46522 --4.76,-0.46368 --4.75,-0.46218 --4.74,-0.46069 --4.73,-0.45923 --4.72,-0.45778 --4.71,-0.45636 --4.7,-0.45496 --4.69,-0.45358 --4.68,-0.45223 --4.67,-0.45089 --4.66,-0.44958 --4.65,-0.44828 --4.64,-0.44701 --4.63,-0.44576 --4.62,-0.44453 --4.61,-0.44331 --4.6,-0.44212 --4.59,-0.44095 --4.58,-0.4398 --4.57,-0.43867 --4.56,-0.43755 --4.55,-0.43646 --4.54,-0.43539 --4.53,-0.43433 --4.52,-0.4333 --4.51,-0.43228 --4.5,-0.43128 --4.49,-0.4303 --4.48,-0.42934 --4.47,-0.4284 --4.46,-0.42748 --4.45,-0.42657 --4.44,-0.42568 --4.43,-0.42481 --4.42,-0.42396 --4.41,-0.42313 --4.4,-0.42231 --4.39,-0.42151 --4.38,-0.42073 --4.37,-0.41996 --4.36,-0.41921 --4.35,-0.41848 --4.34,-0.41776 --4.33,-0.41706 --4.32,-0.41638 --4.31,-0.41571 --4.3,-0.41506 --4.29,-0.41443 --4.28,-0.41381 --4.27,-0.4132 --4.26,-0.41261 --4.25,-0.41204 --4.24,-0.41148 --4.23,-0.41094 --4.22,-0.41041 --4.21,-0.4099 --4.2,-0.4094 --4.19,-0.40892 --4.18,-0.40845 --4.17,-0.40799 --4.16,-0.40755 --4.15,-0.40713 --4.14,-0.40671 --4.13,-0.40631 --4.12,-0.40593 --4.11,-0.40556 --4.1,-0.4052 --4.09,-0.40485 --4.08,-0.40452 --4.07,-0.4042 --4.06,-0.40389 --4.05,-0.4036 --4.04,-0.40331 --4.03,-0.40304 --4.02,-0.40279 --4.01,-0.40254 --4,-0.40231 --3.99,-0.40208 --3.98,-0.40187 --3.97,-0.40167 --3.96,-0.40149 --3.95,-0.40131 --3.94,-0.40115 --3.93,-0.40099 --3.92,-0.40085 --3.91,-0.40072 --3.9,-0.40059 --3.89,-0.40048 --3.88,-0.40038 --3.87,-0.40029 --3.86,-0.40021 --3.85,-0.40014 --3.84,-0.40007 --3.83,-0.40002 --3.82,-0.39998 --3.81,-0.39995 --3.8,-0.39992 --3.79,-0.39991 --3.78,-0.3999 --3.77,-0.3999 --3.76,-0.39991 --3.75,-0.39993 --3.74,-0.39996 --3.73,-0.4 --3.72,-0.40004 --3.71,-0.40009 --3.7,-0.40015 --3.69,-0.40022 --3.68,-0.4003 --3.67,-0.40038 --3.66,-0.40047 --3.65,-0.40056 --3.64,-0.40067 --3.63,-0.40078 --3.62,-0.4009 --3.61,-0.40102 --3.6,-0.40115 --3.59,-0.40129 --3.58,-0.40143 --3.57,-0.40158 --3.56,-0.40173 --3.55,-0.40189 --3.54,-0.40206 --3.53,-0.40223 --3.52,-0.40241 --3.51,-0.40259 --3.5,-0.40278 --3.49,-0.40297 --3.48,-0.40317 --3.47,-0.40337 --3.46,-0.40357 --3.45,-0.40378 --3.44,-0.404 --3.43,-0.40422 --3.42,-0.40444 --3.41,-0.40467 --3.4,-0.4049 --3.39,-0.40513 --3.38,-0.40537 --3.37,-0.40561 --3.36,-0.40585 --3.35,-0.4061 --3.34,-0.40635 --3.33,-0.4066 --3.32,-0.40685 --3.31,-0.40711 --3.3,-0.40737 --3.29,-0.40763 --3.28,-0.40789 --3.27,-0.40816 --3.26,-0.40843 --3.25,-0.4087 --3.24,-0.40897 --3.23,-0.40924 --3.22,-0.40951 --3.21,-0.40978 --3.2,-0.41006 --3.19,-0.41034 --3.18,-0.41061 --3.17,-0.41089 --3.16,-0.41117 --3.15,-0.41144 --3.14,-0.41172 --3.13,-0.412 --3.12,-0.41228 --3.11,-0.41255 --3.1,-0.41283 --3.09,-0.41311 --3.08,-0.41338 --3.07,-0.41366 --3.06,-0.41393 --3.05,-0.4142 --3.04,-0.41447 --3.03,-0.41474 --3.02,-0.41501 --3.01,-0.41528 --3,-0.41554 --2.99,-0.41581 --2.98,-0.41607 --2.97,-0.41633 --2.96,-0.41658 --2.95,-0.41684 --2.94,-0.41709 --2.93,-0.41734 --2.92,-0.41758 --2.91,-0.41782 --2.9,-0.41806 --2.89,-0.4183 --2.88,-0.41853 --2.87,-0.41876 --2.86,-0.41899 --2.85,-0.41921 --2.84,-0.41942 --2.83,-0.41964 --2.82,-0.41985 --2.81,-0.42005 --2.8,-0.42025 --2.79,-0.42045 --2.78,-0.42064 --2.77,-0.42082 --2.76,-0.421 --2.75,-0.42118 --2.74,-0.42135 --2.73,-0.42151 --2.72,-0.42167 --2.71,-0.42182 --2.7,-0.42197 --2.69,-0.42211 --2.68,-0.42225 --2.67,-0.42237 --2.66,-0.4225 --2.65,-0.42261 --2.64,-0.42272 --2.63,-0.42282 --2.62,-0.42292 --2.61,-0.423 --2.6,-0.42308 --2.59,-0.42316 --2.58,-0.42322 --2.57,-0.42328 --2.56,-0.42333 --2.55,-0.42337 --2.54,-0.4234 --2.53,-0.42343 --2.52,-0.42345 --2.51,-0.42345 --2.5,-0.42345 --2.49,-0.42344 --2.48,-0.42343 --2.47,-0.4234 --2.46,-0.42336 --2.45,-0.42332 --2.44,-0.42326 --2.43,-0.4232 --2.42,-0.42312 --2.41,-0.42304 --2.4,-0.42294 --2.39,-0.42284 --2.38,-0.42272 --2.37,-0.4226 --2.36,-0.42246 --2.35,-0.42231 --2.34,-0.42216 --2.33,-0.42199 --2.32,-0.42181 --2.31,-0.42162 --2.3,-0.42141 --2.29,-0.4212 --2.28,-0.42097 --2.27,-0.42074 --2.26,-0.42049 --2.25,-0.42023 --2.24,-0.41995 --2.23,-0.41967 --2.22,-0.41937 --2.21,-0.41906 --2.2,-0.41873 --2.19,-0.41839 --2.18,-0.41804 --2.17,-0.41768 --2.16,-0.4173 --2.15,-0.41691 --2.14,-0.41651 --2.13,-0.41609 --2.12,-0.41566 --2.11,-0.41522 --2.1,-0.41476 --2.09,-0.41428 --2.08,-0.41379 --2.07,-0.41329 --2.06,-0.41277 --2.05,-0.41224 --2.04,-0.41169 --2.03,-0.41113 --2.02,-0.41055 --2.01,-0.40996 --2,-0.40935 --1.99,-0.40873 --1.98,-0.40809 --1.97,-0.40743 --1.96,-0.40676 --1.95,-0.40607 --1.94,-0.40537 --1.93,-0.40464 --1.92,-0.40391 --1.91,-0.40315 --1.9,-0.40238 --1.89,-0.40159 --1.88,-0.40079 --1.87,-0.39996 --1.86,-0.39912 --1.85,-0.39827 --1.84,-0.39739 --1.83,-0.3965 --1.82,-0.39559 --1.81,-0.39467 --1.8,-0.39372 --1.79,-0.39277 --1.78,-0.39179 --1.77,-0.3908 --1.76,-0.38979 --1.75,-0.38876 --1.74,-0.38772 --1.73,-0.38666 --1.72,-0.38558 --1.71,-0.38449 --1.7,-0.38338 --1.69,-0.38226 --1.68,-0.38112 --1.67,-0.37996 --1.66,-0.37878 --1.65,-0.37759 --1.64,-0.37639 --1.63,-0.37517 --1.62,-0.37393 --1.61,-0.37267 --1.6,-0.3714 --1.59,-0.37012 --1.58,-0.36881 --1.57,-0.3675 --1.56,-0.36616 --1.55,-0.36481 --1.54,-0.36345 --1.53,-0.36207 --1.52,-0.36067 --1.51,-0.35926 --1.5,-0.35783 --1.49,-0.35639 --1.48,-0.35493 --1.47,-0.35345 --1.46,-0.35196 --1.45,-0.35046 --1.44,-0.34894 --1.43,-0.3474 --1.42,-0.34585 --1.41,-0.34429 --1.4,-0.34271 --1.39,-0.34111 --1.38,-0.3395 --1.37,-0.33788 --1.36,-0.33624 --1.35,-0.33458 --1.34,-0.33291 --1.33,-0.33123 --1.32,-0.32953 --1.31,-0.32781 --1.3,-0.32609 --1.29,-0.32434 --1.28,-0.32259 --1.27,-0.32081 --1.26,-0.31903 --1.25,-0.31723 --1.24,-0.31541 --1.23,-0.31358 --1.22,-0.31174 --1.21,-0.30988 --1.2,-0.30801 --1.19,-0.30612 --1.18,-0.30422 --1.17,-0.30231 --1.16,-0.30038 --1.15,-0.29844 --1.14,-0.29648 --1.13,-0.29451 --1.12,-0.29253 --1.11,-0.29053 --1.1,-0.28852 --1.09,-0.2865 --1.08,-0.28446 --1.07,-0.28241 --1.06,-0.28035 --1.05,-0.27827 --1.04,-0.27618 --1.03,-0.27407 --1.02,-0.27195 --1.01,-0.26982 --1,-0.26768 --0.99,-0.26552 --0.98,-0.26335 --0.97,-0.26116 --0.96,-0.25896 --0.95,-0.25675 --0.94,-0.25453 --0.93,-0.25229 --0.92,-0.25005 --0.91,-0.24778 --0.9,-0.24551 --0.89,-0.24322 --0.88,-0.24092 --0.87,-0.23861 --0.86,-0.23629 --0.85,-0.23395 --0.84,-0.2316 --0.83,-0.22924 --0.82,-0.22686 --0.81,-0.22447 --0.8,-0.22207 --0.79,-0.21966 --0.78,-0.21724 --0.77,-0.2148 --0.76,-0.21235 --0.75,-0.20989 --0.74,-0.20742 --0.73,-0.20494 --0.72,-0.20244 --0.71,-0.19993 --0.7,-0.19741 --0.69,-0.19488 --0.68,-0.19234 --0.67,-0.18978 --0.66,-0.18722 --0.65,-0.18464 --0.64,-0.18205 --0.63,-0.17945 --0.62,-0.17683 --0.61,-0.17421 --0.6,-0.17157 --0.59,-0.16893 --0.58,-0.16627 --0.57,-0.1636 --0.56,-0.16093 --0.55,-0.15824 --0.54,-0.15554 --0.53,-0.15283 --0.52,-0.15011 --0.51,-0.14739 --0.5,-0.14465 --0.49,-0.1419 --0.48,-0.13915 --0.47,-0.13639 --0.46,-0.13361 --0.45,-0.13083 --0.44,-0.12805 --0.43,-0.12525 --0.42,-0.12245 --0.41,-0.11963 --0.4,-0.11681 --0.39,-0.11399 --0.38,-0.11115 --0.37,-0.10831 --0.36,-0.10546 --0.35,-0.10261 --0.34,-0.09975 --0.33,-0.096884 --0.32,-0.094011 --0.31,-0.091133 --0.3,-0.088248 --0.29,-0.085359 --0.28,-0.082464 --0.27,-0.079564 --0.26,-0.076659 --0.25,-0.073749 --0.24,-0.070835 --0.23,-0.067916 --0.22,-0.064994 --0.21,-0.062067 --0.2,-0.059136 --0.19,-0.056202 --0.18,-0.053264 --0.17,-0.050323 --0.16,-0.047379 --0.15,-0.044432 --0.14,-0.041482 --0.13,-0.03853 --0.12,-0.035575 --0.11,-0.032618 --0.1,-0.029659 --0.09,-0.026698 --0.08,-0.023736 --0.07,-0.020772 --0.06,-0.017807 --0.05,-0.014841 --0.04,-0.011874 --0.03,-0.0089061 --0.02,-0.0059377 --0.01,-0.0029689 -0,-8.3267e-17 -0.01,0.0029689 -0.02,0.0059377 -0.03,0.0089061 -0.04,0.011874 -0.05,0.014841 -0.06,0.017807 -0.07,0.020772 -0.08,0.023736 -0.09,0.026698 -0.1,0.029659 -0.11,0.032618 -0.12,0.035575 -0.13,0.03853 -0.14,0.041482 -0.15,0.044432 -0.16,0.047379 -0.17,0.050323 -0.18,0.053264 -0.19,0.056202 -0.2,0.059136 -0.21,0.062067 -0.22,0.064994 -0.23,0.067916 -0.24,0.070835 -0.25,0.073749 -0.26,0.076659 -0.27,0.079564 -0.28,0.082464 -0.29,0.085359 -0.3,0.088248 -0.31,0.091133 -0.32,0.094011 -0.33,0.096884 -0.34,0.09975 -0.35,0.10261 -0.36,0.10546 -0.37,0.10831 -0.38,0.11115 -0.39,0.11399 -0.4,0.11681 -0.41,0.11963 -0.42,0.12245 -0.43,0.12525 -0.44,0.12805 -0.45,0.13083 -0.46,0.13361 -0.47,0.13639 -0.48,0.13915 -0.49,0.1419 -0.5,0.14465 -0.51,0.14739 -0.52,0.15011 -0.53,0.15283 -0.54,0.15554 -0.55,0.15824 -0.56,0.16093 -0.57,0.1636 -0.58,0.16627 -0.59,0.16893 -0.6,0.17157 -0.61,0.17421 -0.62,0.17683 -0.63,0.17945 -0.64,0.18205 -0.65,0.18464 -0.66,0.18722 -0.67,0.18978 -0.68,0.19234 -0.69,0.19488 -0.7,0.19741 -0.71,0.19993 -0.72,0.20244 -0.73,0.20494 -0.74,0.20742 -0.75,0.20989 -0.76,0.21235 -0.77,0.2148 -0.78,0.21724 -0.79,0.21966 -0.8,0.22207 -0.81,0.22447 -0.82,0.22686 -0.83,0.22924 -0.84,0.2316 -0.85,0.23395 -0.86,0.23629 -0.87,0.23861 -0.88,0.24092 -0.89,0.24322 -0.9,0.24551 -0.91,0.24778 -0.92,0.25005 -0.93,0.25229 -0.94,0.25453 -0.95,0.25675 -0.96,0.25896 -0.97,0.26116 -0.98,0.26335 -0.99,0.26552 -1,0.26768 -1.01,0.26982 -1.02,0.27195 -1.03,0.27407 -1.04,0.27618 -1.05,0.27827 -1.06,0.28035 -1.07,0.28241 -1.08,0.28446 -1.09,0.2865 -1.1,0.28852 -1.11,0.29053 -1.12,0.29253 -1.13,0.29451 -1.14,0.29648 -1.15,0.29844 -1.16,0.30038 -1.17,0.30231 -1.18,0.30422 -1.19,0.30612 -1.2,0.30801 -1.21,0.30988 -1.22,0.31174 -1.23,0.31358 -1.24,0.31541 -1.25,0.31723 -1.26,0.31903 -1.27,0.32081 -1.28,0.32259 -1.29,0.32434 -1.3,0.32609 -1.31,0.32781 -1.32,0.32953 -1.33,0.33123 -1.34,0.33291 -1.35,0.33458 -1.36,0.33624 -1.37,0.33788 -1.38,0.3395 -1.39,0.34111 -1.4,0.34271 -1.41,0.34429 -1.42,0.34585 -1.43,0.3474 -1.44,0.34894 -1.45,0.35046 -1.46,0.35196 -1.47,0.35345 -1.48,0.35493 -1.49,0.35639 -1.5,0.35783 -1.51,0.35926 -1.52,0.36067 -1.53,0.36207 -1.54,0.36345 -1.55,0.36481 -1.56,0.36616 -1.57,0.3675 -1.58,0.36881 -1.59,0.37012 -1.6,0.3714 -1.61,0.37267 -1.62,0.37393 -1.63,0.37517 -1.64,0.37639 -1.65,0.37759 -1.66,0.37878 -1.67,0.37996 -1.68,0.38112 -1.69,0.38226 -1.7,0.38338 -1.71,0.38449 -1.72,0.38558 -1.73,0.38666 -1.74,0.38772 -1.75,0.38876 -1.76,0.38979 -1.77,0.3908 -1.78,0.39179 -1.79,0.39277 -1.8,0.39372 -1.81,0.39467 -1.82,0.39559 -1.83,0.3965 -1.84,0.39739 -1.85,0.39827 -1.86,0.39912 -1.87,0.39996 -1.88,0.40079 -1.89,0.40159 -1.9,0.40238 -1.91,0.40315 -1.92,0.40391 -1.93,0.40464 -1.94,0.40537 -1.95,0.40607 -1.96,0.40676 -1.97,0.40743 -1.98,0.40809 -1.99,0.40873 -2,0.40935 -2.01,0.40996 -2.02,0.41055 -2.03,0.41113 -2.04,0.41169 -2.05,0.41224 -2.06,0.41277 -2.07,0.41329 -2.08,0.41379 -2.09,0.41428 -2.1,0.41476 -2.11,0.41522 -2.12,0.41566 -2.13,0.41609 -2.14,0.41651 -2.15,0.41691 -2.16,0.4173 -2.17,0.41768 -2.18,0.41804 -2.19,0.41839 -2.2,0.41873 -2.21,0.41906 -2.22,0.41937 -2.23,0.41967 -2.24,0.41995 -2.25,0.42023 -2.26,0.42049 -2.27,0.42074 -2.28,0.42097 -2.29,0.4212 -2.3,0.42141 -2.31,0.42162 -2.32,0.42181 -2.33,0.42199 -2.34,0.42216 -2.35,0.42231 -2.36,0.42246 -2.37,0.4226 -2.38,0.42272 -2.39,0.42284 -2.4,0.42294 -2.41,0.42304 -2.42,0.42312 -2.43,0.4232 -2.44,0.42326 -2.45,0.42332 -2.46,0.42336 -2.47,0.4234 -2.48,0.42343 -2.49,0.42344 -2.5,0.42345 -2.51,0.42345 -2.52,0.42345 -2.53,0.42343 -2.54,0.4234 -2.55,0.42337 -2.56,0.42333 -2.57,0.42328 -2.58,0.42322 -2.59,0.42316 -2.6,0.42308 -2.61,0.423 -2.62,0.42292 -2.63,0.42282 -2.64,0.42272 -2.65,0.42261 -2.66,0.4225 -2.67,0.42237 -2.68,0.42225 -2.69,0.42211 -2.7,0.42197 -2.71,0.42182 -2.72,0.42167 -2.73,0.42151 -2.74,0.42135 -2.75,0.42118 -2.76,0.421 -2.77,0.42082 -2.78,0.42064 -2.79,0.42045 -2.8,0.42025 -2.81,0.42005 -2.82,0.41985 -2.83,0.41964 -2.84,0.41942 -2.85,0.41921 -2.86,0.41899 -2.87,0.41876 -2.88,0.41853 -2.89,0.4183 -2.9,0.41806 -2.91,0.41782 -2.92,0.41758 -2.93,0.41734 -2.94,0.41709 -2.95,0.41684 -2.96,0.41658 -2.97,0.41633 -2.98,0.41607 -2.99,0.41581 -3,0.41554 -3.01,0.41528 -3.02,0.41501 -3.03,0.41474 -3.04,0.41447 -3.05,0.4142 -3.06,0.41393 -3.07,0.41366 -3.08,0.41338 -3.09,0.41311 -3.1,0.41283 -3.11,0.41255 -3.12,0.41228 -3.13,0.412 -3.14,0.41172 -3.15,0.41144 -3.16,0.41117 -3.17,0.41089 -3.18,0.41061 -3.19,0.41034 -3.2,0.41006 -3.21,0.40978 -3.22,0.40951 -3.23,0.40924 -3.24,0.40897 -3.25,0.4087 -3.26,0.40843 -3.27,0.40816 -3.28,0.40789 -3.29,0.40763 -3.3,0.40737 -3.31,0.40711 -3.32,0.40685 -3.33,0.4066 -3.34,0.40635 -3.35,0.4061 -3.36,0.40585 -3.37,0.40561 -3.38,0.40537 -3.39,0.40513 -3.4,0.4049 -3.41,0.40467 -3.42,0.40444 -3.43,0.40422 -3.44,0.404 -3.45,0.40378 -3.46,0.40357 -3.47,0.40337 -3.48,0.40317 -3.49,0.40297 -3.5,0.40278 -3.51,0.40259 -3.52,0.40241 -3.53,0.40223 -3.54,0.40206 -3.55,0.40189 -3.56,0.40173 -3.57,0.40158 -3.58,0.40143 -3.59,0.40129 -3.6,0.40115 -3.61,0.40102 -3.62,0.4009 -3.63,0.40078 -3.64,0.40067 -3.65,0.40056 -3.66,0.40047 -3.67,0.40038 -3.68,0.4003 -3.69,0.40022 -3.7,0.40015 -3.71,0.40009 -3.72,0.40004 -3.73,0.4 -3.74,0.39996 -3.75,0.39993 -3.76,0.39991 -3.77,0.3999 -3.78,0.3999 -3.79,0.39991 -3.8,0.39992 -3.81,0.39995 -3.82,0.39998 -3.83,0.40002 -3.84,0.40007 -3.85,0.40014 -3.86,0.40021 -3.87,0.40029 -3.88,0.40038 -3.89,0.40048 -3.9,0.40059 -3.91,0.40072 -3.92,0.40085 -3.93,0.40099 -3.94,0.40115 -3.95,0.40131 -3.96,0.40149 -3.97,0.40167 -3.98,0.40187 -3.99,0.40208 -4,0.40231 -4.01,0.40254 -4.02,0.40279 -4.03,0.40304 -4.04,0.40331 -4.05,0.4036 -4.06,0.40389 -4.07,0.4042 -4.08,0.40452 -4.09,0.40485 -4.1,0.4052 -4.11,0.40556 -4.12,0.40593 -4.13,0.40631 -4.14,0.40671 -4.15,0.40713 -4.16,0.40755 -4.17,0.40799 -4.18,0.40845 -4.19,0.40892 -4.2,0.4094 -4.21,0.4099 -4.22,0.41041 -4.23,0.41094 -4.24,0.41148 -4.25,0.41204 -4.26,0.41261 -4.27,0.4132 -4.28,0.41381 -4.29,0.41443 -4.3,0.41506 -4.31,0.41571 -4.32,0.41638 -4.33,0.41706 -4.34,0.41776 -4.35,0.41848 -4.36,0.41921 -4.37,0.41996 -4.38,0.42073 -4.39,0.42151 -4.4,0.42231 -4.41,0.42313 -4.42,0.42396 -4.43,0.42481 -4.44,0.42568 -4.45,0.42657 -4.46,0.42748 -4.47,0.4284 -4.48,0.42934 -4.49,0.4303 -4.5,0.43128 -4.51,0.43228 -4.52,0.4333 -4.53,0.43433 -4.54,0.43539 -4.55,0.43646 -4.56,0.43755 -4.57,0.43867 -4.58,0.4398 -4.59,0.44095 -4.6,0.44212 -4.61,0.44331 -4.62,0.44453 -4.63,0.44576 -4.64,0.44701 -4.65,0.44828 -4.66,0.44958 -4.67,0.45089 -4.68,0.45223 -4.69,0.45358 -4.7,0.45496 -4.71,0.45636 -4.72,0.45778 -4.73,0.45923 -4.74,0.46069 -4.75,0.46218 -4.76,0.46368 -4.77,0.46522 -4.78,0.46677 -4.79,0.46834 -4.8,0.46994 -4.81,0.47156 -4.82,0.47321 -4.83,0.47487 -4.84,0.47656 -4.85,0.47828 -4.86,0.48001 -4.87,0.48177 -4.88,0.48356 -4.89,0.48536 -4.9,0.4872 -4.91,0.48905 -4.92,0.49093 -4.93,0.49284 -4.94,0.49477 -4.95,0.49672 -4.96,0.4987 -4.97,0.5007 -4.98,0.50273 -4.99,0.50478 -5,0.50686 diff --git a/TeX/Plots/Data/matlab_sin_d_01.csv b/TeX/Plots/Data/matlab_sin_d_01.csv deleted file mode 100755 index 3cecc56..0000000 --- a/TeX/Plots/Data/matlab_sin_d_01.csv +++ /dev/null @@ -1,1002 +0,0 @@ -x,y --5,0.71025 --4.99,0.72077 --4.98,0.73105 --4.97,0.74109 --4.96,0.7509 --4.95,0.76048 --4.94,0.76983 --4.93,0.77895 --4.92,0.78784 --4.91,0.7965 --4.9,0.80493 --4.89,0.81315 --4.88,0.82113 --4.87,0.8289 --4.86,0.83644 --4.85,0.84377 --4.84,0.85087 --4.83,0.85776 --4.82,0.86444 --4.81,0.8709 --4.8,0.87714 --4.79,0.88318 --4.78,0.889 --4.77,0.89462 --4.76,0.90002 --4.75,0.90522 --4.74,0.91021 --4.73,0.915 --4.72,0.91959 --4.71,0.92397 --4.7,0.92816 --4.69,0.93214 --4.68,0.93593 --4.67,0.93952 --4.66,0.94292 --4.65,0.94612 --4.64,0.94913 --4.63,0.95194 --4.62,0.95457 --4.61,0.95701 --4.6,0.95926 --4.59,0.96132 --4.58,0.9632 --4.57,0.9649 --4.56,0.96641 --4.55,0.96774 --4.54,0.96889 --4.53,0.96986 --4.52,0.97066 --4.51,0.97128 --4.5,0.97172 --4.49,0.97199 --4.48,0.97209 --4.47,0.97202 --4.46,0.97177 --4.45,0.97136 --4.44,0.97078 --4.43,0.97004 --4.42,0.96913 --4.41,0.96806 --4.4,0.96682 --4.39,0.96543 --4.38,0.96387 --4.37,0.96216 --4.36,0.96029 --4.35,0.95826 --4.34,0.95608 --4.33,0.95375 --4.32,0.95126 --4.31,0.94863 --4.3,0.94584 --4.29,0.94291 --4.28,0.93983 --4.27,0.9366 --4.26,0.93324 --4.25,0.92972 --4.24,0.92607 --4.23,0.92227 --4.22,0.91834 --4.21,0.91427 --4.2,0.91006 --4.19,0.90572 --4.18,0.90124 --4.17,0.89663 --4.16,0.89189 --4.15,0.88702 --4.14,0.88202 --4.13,0.87689 --4.12,0.87163 --4.11,0.86625 --4.1,0.86075 --4.09,0.85513 --4.08,0.84938 --4.07,0.84351 --4.06,0.83753 --4.05,0.83142 --4.04,0.82521 --4.03,0.81887 --4.02,0.81242 --4.01,0.80586 --4,0.79919 --3.99,0.79241 --3.98,0.78553 --3.97,0.77853 --3.96,0.77143 --3.95,0.76422 --3.94,0.75691 --3.93,0.7495 --3.92,0.74199 --3.91,0.73438 --3.9,0.72667 --3.89,0.71886 --3.88,0.71096 --3.87,0.70296 --3.86,0.69487 --3.85,0.68669 --3.84,0.67842 --3.83,0.67006 --3.82,0.66161 --3.81,0.65307 --3.8,0.64445 --3.79,0.63574 --3.78,0.62695 --3.77,0.61808 --3.76,0.60913 --3.75,0.6001 --3.74,0.591 --3.73,0.58181 --3.72,0.57255 --3.71,0.56322 --3.7,0.55382 --3.69,0.54434 --3.68,0.53479 --3.67,0.52518 --3.66,0.51549 --3.65,0.50574 --3.64,0.49593 --3.63,0.48605 --3.62,0.47611 --3.61,0.46611 --3.6,0.45605 --3.59,0.44593 --3.58,0.43575 --3.57,0.42551 --3.56,0.41523 --3.55,0.40488 --3.54,0.39449 --3.53,0.38405 --3.52,0.37355 --3.51,0.36301 --3.5,0.35242 --3.49,0.34178 --3.48,0.3311 --3.47,0.32038 --3.46,0.30961 --3.45,0.29881 --3.44,0.28796 --3.43,0.27708 --3.42,0.26616 --3.41,0.2552 --3.4,0.24421 --3.39,0.23319 --3.38,0.22213 --3.37,0.21105 --3.36,0.19993 --3.35,0.18879 --3.34,0.17762 --3.33,0.16642 --3.32,0.15521 --3.31,0.14396 --3.3,0.1327 --3.29,0.12142 --3.28,0.11011 --3.27,0.098795 --3.26,0.087458 --3.25,0.076107 --3.24,0.064741 --3.23,0.053363 --3.22,0.041974 --3.21,0.030574 --3.2,0.019166 --3.19,0.0077508 --3.18,-0.003671 --3.17,-0.015098 --3.16,-0.026528 --3.15,-0.037961 --3.14,-0.049394 --3.13,-0.060828 --3.12,-0.07226 --3.11,-0.083689 --3.1,-0.095114 --3.09,-0.10653 --3.08,-0.11795 --3.07,-0.12935 --3.06,-0.14075 --3.05,-0.15214 --3.04,-0.16351 --3.03,-0.17487 --3.02,-0.18622 --3.01,-0.19755 --3,-0.20886 --2.99,-0.22016 --2.98,-0.23144 --2.97,-0.24269 --2.96,-0.25393 --2.95,-0.26514 --2.94,-0.27633 --2.93,-0.28749 --2.92,-0.29862 --2.91,-0.30973 --2.9,-0.3208 --2.89,-0.33185 --2.88,-0.34286 --2.87,-0.35384 --2.86,-0.36479 --2.85,-0.3757 --2.84,-0.38657 --2.83,-0.3974 --2.82,-0.40819 --2.81,-0.41895 --2.8,-0.42966 --2.79,-0.44032 --2.78,-0.45094 --2.77,-0.46152 --2.76,-0.47205 --2.75,-0.48252 --2.74,-0.49295 --2.73,-0.50333 --2.72,-0.51366 --2.71,-0.52393 --2.7,-0.53414 --2.69,-0.54429 --2.68,-0.55439 --2.67,-0.56441 --2.66,-0.57437 --2.65,-0.58426 --2.64,-0.59408 --2.63,-0.60382 --2.62,-0.61349 --2.61,-0.62307 --2.6,-0.63257 --2.59,-0.64199 --2.58,-0.65131 --2.57,-0.66055 --2.56,-0.66969 --2.55,-0.67873 --2.54,-0.68768 --2.53,-0.69653 --2.52,-0.70527 --2.51,-0.7139 --2.5,-0.72242 --2.49,-0.73084 --2.48,-0.73914 --2.47,-0.74732 --2.46,-0.75538 --2.45,-0.76331 --2.44,-0.77113 --2.43,-0.77881 --2.42,-0.78637 --2.41,-0.79379 --2.4,-0.80107 --2.39,-0.80822 --2.38,-0.81523 --2.37,-0.82209 --2.36,-0.82881 --2.35,-0.83538 --2.34,-0.84179 --2.33,-0.84806 --2.32,-0.85416 --2.31,-0.86011 --2.3,-0.86589 --2.29,-0.87152 --2.28,-0.87698 --2.27,-0.88228 --2.26,-0.88742 --2.25,-0.89241 --2.24,-0.89725 --2.23,-0.90194 --2.22,-0.90648 --2.21,-0.91087 --2.2,-0.91512 --2.19,-0.91922 --2.18,-0.92318 --2.17,-0.92701 --2.16,-0.9307 --2.15,-0.93425 --2.14,-0.93767 --2.13,-0.94096 --2.12,-0.94412 --2.11,-0.94715 --2.1,-0.95006 --2.09,-0.95284 --2.08,-0.95551 --2.07,-0.95806 --2.06,-0.96049 --2.05,-0.9628 --2.04,-0.965 --2.03,-0.96709 --2.02,-0.96907 --2.01,-0.97095 --2,-0.97272 --1.99,-0.97439 --1.98,-0.97596 --1.97,-0.97742 --1.96,-0.97879 --1.95,-0.98007 --1.94,-0.98125 --1.93,-0.98235 --1.92,-0.98335 --1.91,-0.98427 --1.9,-0.9851 --1.89,-0.98585 --1.88,-0.98652 --1.87,-0.98711 --1.86,-0.98762 --1.85,-0.98806 --1.84,-0.98841 --1.83,-0.9887 --1.82,-0.98891 --1.81,-0.98904 --1.8,-0.98911 --1.79,-0.98911 --1.78,-0.98903 --1.77,-0.98889 --1.76,-0.98868 --1.75,-0.98841 --1.74,-0.98807 --1.73,-0.98766 --1.72,-0.9872 --1.71,-0.98667 --1.7,-0.98608 --1.69,-0.98543 --1.68,-0.98473 --1.67,-0.98397 --1.66,-0.98315 --1.65,-0.98228 --1.64,-0.98135 --1.63,-0.98037 --1.62,-0.97934 --1.61,-0.97826 --1.6,-0.97713 --1.59,-0.97595 --1.58,-0.97472 --1.57,-0.97345 --1.56,-0.97213 --1.55,-0.97077 --1.54,-0.96937 --1.53,-0.96792 --1.52,-0.96644 --1.51,-0.96491 --1.5,-0.96335 --1.49,-0.96175 --1.48,-0.96011 --1.47,-0.95844 --1.46,-0.95674 --1.45,-0.955 --1.44,-0.95323 --1.43,-0.95142 --1.42,-0.94958 --1.41,-0.9477 --1.4,-0.94578 --1.39,-0.94382 --1.38,-0.94182 --1.37,-0.93979 --1.36,-0.93771 --1.35,-0.9356 --1.34,-0.93344 --1.33,-0.93124 --1.32,-0.92899 --1.31,-0.9267 --1.3,-0.92437 --1.29,-0.92199 --1.28,-0.91956 --1.27,-0.91709 --1.26,-0.91457 --1.25,-0.912 --1.24,-0.90938 --1.23,-0.90671 --1.22,-0.90399 --1.21,-0.90121 --1.2,-0.89839 --1.19,-0.89551 --1.18,-0.89258 --1.17,-0.88959 --1.16,-0.88655 --1.15,-0.88345 --1.14,-0.8803 --1.13,-0.87709 --1.12,-0.87382 --1.11,-0.87049 --1.1,-0.8671 --1.09,-0.86365 --1.08,-0.86014 --1.07,-0.85657 --1.06,-0.85293 --1.05,-0.84923 --1.04,-0.84547 --1.03,-0.84164 --1.02,-0.83775 --1.01,-0.83379 --1,-0.82977 --0.99,-0.82569 --0.98,-0.82154 --0.97,-0.81733 --0.96,-0.81306 --0.95,-0.80873 --0.94,-0.80434 --0.93,-0.79988 --0.92,-0.79536 --0.91,-0.79079 --0.9,-0.78615 --0.89,-0.78145 --0.88,-0.77669 --0.87,-0.77187 --0.86,-0.76699 --0.85,-0.76205 --0.84,-0.75706 --0.83,-0.752 --0.82,-0.74689 --0.81,-0.74171 --0.8,-0.73648 --0.79,-0.73119 --0.78,-0.72585 --0.77,-0.72044 --0.76,-0.71498 --0.75,-0.70947 --0.74,-0.7039 --0.73,-0.69827 --0.72,-0.69258 --0.71,-0.68684 --0.7,-0.68105 --0.69,-0.6752 --0.68,-0.66929 --0.67,-0.66333 --0.66,-0.65732 --0.65,-0.65125 --0.64,-0.64513 --0.63,-0.63896 --0.62,-0.63273 --0.61,-0.62645 --0.6,-0.62012 --0.59,-0.61374 --0.58,-0.6073 --0.57,-0.60081 --0.56,-0.59427 --0.55,-0.58767 --0.54,-0.58103 --0.53,-0.57433 --0.52,-0.56758 --0.51,-0.56078 --0.5,-0.55392 --0.49,-0.54702 --0.48,-0.54006 --0.47,-0.53306 --0.46,-0.526 --0.45,-0.51889 --0.44,-0.51173 --0.43,-0.50452 --0.42,-0.49726 --0.41,-0.48995 --0.4,-0.48259 --0.39,-0.47518 --0.38,-0.46772 --0.37,-0.4602 --0.36,-0.45264 --0.35,-0.44503 --0.34,-0.43737 --0.33,-0.42966 --0.32,-0.4219 --0.31,-0.41409 --0.3,-0.40624 --0.29,-0.39833 --0.28,-0.39037 --0.27,-0.38237 --0.26,-0.37432 --0.25,-0.36621 --0.24,-0.35806 --0.23,-0.34987 --0.22,-0.34162 --0.21,-0.33333 --0.2,-0.32498 --0.19,-0.3166 --0.18,-0.30816 --0.17,-0.29968 --0.16,-0.29115 --0.15,-0.28257 --0.14,-0.27395 --0.13,-0.26528 --0.12,-0.25657 --0.11,-0.24781 --0.1,-0.23901 --0.09,-0.23016 --0.08,-0.22128 --0.07,-0.21234 --0.06,-0.20337 --0.05,-0.19435 --0.04,-0.18529 --0.03,-0.17619 --0.02,-0.16705 --0.01,-0.15786 -0,-0.14864 -0.01,-0.13937 -0.02,-0.13006 -0.03,-0.12072 -0.04,-0.11133 -0.05,-0.10191 -0.06,-0.092447 -0.07,-0.082947 -0.08,-0.073408 -0.09,-0.063831 -0.1,-0.054218 -0.11,-0.044567 -0.12,-0.03488 -0.13,-0.025157 -0.14,-0.015397 -0.15,-0.0056029 -0.16,0.0042268 -0.17,0.014091 -0.18,0.02399 -0.19,0.033923 -0.2,0.04389 -0.21,0.05389 -0.22,0.063922 -0.23,0.073985 -0.24,0.084075 -0.25,0.09419 -0.26,0.10433 -0.27,0.11448 -0.28,0.12465 -0.29,0.13484 -0.3,0.14504 -0.31,0.15524 -0.32,0.16545 -0.33,0.17567 -0.34,0.18588 -0.35,0.19609 -0.36,0.2063 -0.37,0.2165 -0.38,0.22669 -0.39,0.23686 -0.4,0.24702 -0.41,0.25716 -0.42,0.26727 -0.43,0.27737 -0.44,0.28743 -0.45,0.29747 -0.46,0.30747 -0.47,0.31744 -0.48,0.32737 -0.49,0.33726 -0.5,0.34711 -0.51,0.35691 -0.52,0.36666 -0.53,0.37636 -0.54,0.386 -0.55,0.39559 -0.56,0.40512 -0.57,0.41458 -0.58,0.42398 -0.59,0.43331 -0.6,0.44257 -0.61,0.45176 -0.62,0.46087 -0.63,0.46991 -0.64,0.47886 -0.65,0.48773 -0.66,0.49652 -0.67,0.50523 -0.68,0.51386 -0.69,0.52242 -0.7,0.53089 -0.71,0.53929 -0.72,0.5476 -0.73,0.55585 -0.74,0.56401 -0.75,0.5721 -0.76,0.58011 -0.77,0.58805 -0.78,0.59591 -0.79,0.60369 -0.8,0.61141 -0.81,0.61905 -0.82,0.62661 -0.83,0.6341 -0.84,0.64152 -0.85,0.64887 -0.86,0.65615 -0.87,0.66335 -0.88,0.67048 -0.89,0.67755 -0.9,0.68454 -0.91,0.69146 -0.92,0.69832 -0.93,0.7051 -0.94,0.71182 -0.95,0.71847 -0.96,0.72505 -0.97,0.73157 -0.98,0.73802 -0.99,0.7444 -1,0.75072 -1.01,0.75697 -1.02,0.76316 -1.03,0.76928 -1.04,0.77534 -1.05,0.78133 -1.06,0.78726 -1.07,0.79313 -1.08,0.79893 -1.09,0.80466 -1.1,0.81032 -1.11,0.81591 -1.12,0.82142 -1.13,0.82687 -1.14,0.83223 -1.15,0.83752 -1.16,0.84274 -1.17,0.84787 -1.18,0.85292 -1.19,0.85788 -1.2,0.86277 -1.21,0.86756 -1.22,0.87227 -1.23,0.87689 -1.24,0.88142 -1.25,0.88585 -1.26,0.8902 -1.27,0.89444 -1.28,0.89859 -1.29,0.90265 -1.3,0.9066 -1.31,0.91045 -1.32,0.9142 -1.33,0.91785 -1.34,0.92139 -1.35,0.92482 -1.36,0.92815 -1.37,0.93136 -1.38,0.93446 -1.39,0.93745 -1.4,0.94033 -1.41,0.94309 -1.42,0.94573 -1.43,0.94825 -1.44,0.95066 -1.45,0.95294 -1.46,0.95509 -1.47,0.95713 -1.48,0.95903 -1.49,0.96081 -1.5,0.96246 -1.51,0.96399 -1.52,0.96539 -1.53,0.96666 -1.54,0.9678 -1.55,0.96881 -1.56,0.9697 -1.57,0.97045 -1.58,0.97108 -1.59,0.97157 -1.6,0.97194 -1.61,0.97217 -1.62,0.97228 -1.63,0.97225 -1.64,0.97209 -1.65,0.9718 -1.66,0.97137 -1.67,0.97082 -1.68,0.97013 -1.69,0.9693 -1.7,0.96834 -1.71,0.96725 -1.72,0.96602 -1.73,0.96466 -1.74,0.96316 -1.75,0.96153 -1.76,0.95976 -1.77,0.95785 -1.78,0.95581 -1.79,0.95363 -1.8,0.95131 -1.81,0.94885 -1.82,0.94626 -1.83,0.94353 -1.84,0.94065 -1.85,0.93764 -1.86,0.93449 -1.87,0.9312 -1.88,0.92777 -1.89,0.9242 -1.9,0.92048 -1.91,0.91663 -1.92,0.91264 -1.93,0.90852 -1.94,0.90426 -1.95,0.89987 -1.96,0.89536 -1.97,0.89071 -1.98,0.88593 -1.99,0.88104 -2,0.87601 -2.01,0.87087 -2.02,0.8656 -2.03,0.86022 -2.04,0.85472 -2.05,0.84911 -2.06,0.84338 -2.07,0.83754 -2.08,0.83159 -2.09,0.82553 -2.1,0.81937 -2.11,0.8131 -2.12,0.80673 -2.13,0.80025 -2.14,0.79368 -2.15,0.787 -2.16,0.78023 -2.17,0.77337 -2.18,0.76641 -2.19,0.75936 -2.2,0.75222 -2.21,0.745 -2.22,0.73768 -2.23,0.73028 -2.24,0.7228 -2.25,0.71524 -2.26,0.70759 -2.27,0.69987 -2.28,0.69207 -2.29,0.6842 -2.3,0.67626 -2.31,0.66824 -2.32,0.66015 -2.33,0.652 -2.34,0.64378 -2.35,0.6355 -2.36,0.62716 -2.37,0.61877 -2.38,0.61032 -2.39,0.60182 -2.4,0.59327 -2.41,0.58467 -2.42,0.57603 -2.43,0.56735 -2.44,0.55863 -2.45,0.54987 -2.46,0.54108 -2.47,0.53226 -2.48,0.5234 -2.49,0.51453 -2.5,0.50563 -2.51,0.4967 -2.52,0.48776 -2.53,0.47881 -2.54,0.46983 -2.55,0.46085 -2.56,0.45186 -2.57,0.44287 -2.58,0.43387 -2.59,0.42487 -2.6,0.41587 -2.61,0.40687 -2.62,0.39788 -2.63,0.3889 -2.64,0.37994 -2.65,0.37098 -2.66,0.36205 -2.67,0.35313 -2.68,0.34424 -2.69,0.33536 -2.7,0.32652 -2.71,0.31771 -2.72,0.30892 -2.73,0.30017 -2.74,0.29146 -2.75,0.28278 -2.76,0.27413 -2.77,0.26552 -2.78,0.25694 -2.79,0.24838 -2.8,0.23986 -2.81,0.23136 -2.82,0.22289 -2.83,0.21445 -2.84,0.20604 -2.85,0.19765 -2.86,0.18929 -2.87,0.18095 -2.88,0.17263 -2.89,0.16433 -2.9,0.15606 -2.91,0.1478 -2.92,0.13957 -2.93,0.13135 -2.94,0.12315 -2.95,0.11497 -2.96,0.1068 -2.97,0.098654 -2.98,0.090518 -2.99,0.082396 -3,0.074286 -3.01,0.066188 -3.02,0.058102 -3.03,0.050025 -3.04,0.041958 -3.05,0.033899 -3.06,0.025848 -3.07,0.017804 -3.08,0.0097657 -3.09,0.0017328 -3.1,-0.0062958 -3.11,-0.014321 -3.12,-0.022343 -3.13,-0.030364 -3.14,-0.038384 -3.15,-0.046403 -3.16,-0.054424 -3.17,-0.062445 -3.18,-0.07047 -3.19,-0.078497 -3.2,-0.086529 -3.21,-0.094565 -3.22,-0.10261 -3.23,-0.11066 -3.24,-0.11871 -3.25,-0.12678 -3.26,-0.13485 -3.27,-0.14293 -3.28,-0.15103 -3.29,-0.15913 -3.3,-0.16725 -3.31,-0.17538 -3.32,-0.18353 -3.33,-0.19169 -3.34,-0.19987 -3.35,-0.20806 -3.36,-0.21627 -3.37,-0.2245 -3.38,-0.23275 -3.39,-0.24102 -3.4,-0.24931 -3.41,-0.25762 -3.42,-0.26595 -3.43,-0.27431 -3.44,-0.28269 -3.45,-0.29109 -3.46,-0.29953 -3.47,-0.30798 -3.48,-0.31647 -3.49,-0.32499 -3.5,-0.33353 -3.51,-0.3421 -3.52,-0.35071 -3.53,-0.35935 -3.54,-0.36801 -3.55,-0.37672 -3.56,-0.38545 -3.57,-0.39423 -3.58,-0.40304 -3.59,-0.41188 -3.6,-0.42076 -3.61,-0.42968 -3.62,-0.43865 -3.63,-0.44765 -3.64,-0.45669 -3.65,-0.46577 -3.66,-0.4749 -3.67,-0.48407 -3.68,-0.49328 -3.69,-0.50254 -3.7,-0.51185 -3.71,-0.5212 -3.72,-0.5306 -3.73,-0.54005 -3.74,-0.54955 -3.75,-0.5591 -3.76,-0.5687 -3.77,-0.57835 -3.78,-0.58805 -3.79,-0.59781 -3.8,-0.60762 -3.81,-0.61749 -3.82,-0.62741 -3.83,-0.63739 -3.84,-0.64743 -3.85,-0.65753 -3.86,-0.66769 -3.87,-0.6779 -3.88,-0.68818 -3.89,-0.69852 -3.9,-0.70893 -3.91,-0.71939 -3.92,-0.72992 -3.93,-0.74052 -3.94,-0.75118 -3.95,-0.76191 -3.96,-0.77271 -3.97,-0.78358 -3.98,-0.79452 -3.99,-0.80552 -4,-0.8166 -4.01,-0.82775 -4.02,-0.83897 -4.03,-0.85027 -4.04,-0.86164 -4.05,-0.87309 -4.06,-0.88461 -4.07,-0.89621 -4.08,-0.90789 -4.09,-0.91965 -4.1,-0.93148 -4.11,-0.9434 -4.12,-0.9554 -4.13,-0.96748 -4.14,-0.97964 -4.15,-0.99189 -4.16,-1.0042 -4.17,-1.0166 -4.18,-1.0291 -4.19,-1.0417 -4.2,-1.0544 -4.21,-1.0672 -4.22,-1.08 -4.23,-1.093 -4.24,-1.106 -4.25,-1.1192 -4.26,-1.1324 -4.27,-1.1457 -4.28,-1.1591 -4.29,-1.1726 -4.3,-1.1862 -4.31,-1.1999 -4.32,-1.2137 -4.33,-1.2276 -4.34,-1.2416 -4.35,-1.2557 -4.36,-1.2699 -4.37,-1.2843 -4.38,-1.2987 -4.39,-1.3132 -4.4,-1.3278 -4.41,-1.3425 -4.42,-1.3573 -4.43,-1.3723 -4.44,-1.3873 -4.45,-1.4025 -4.46,-1.4177 -4.47,-1.4331 -4.48,-1.4486 -4.49,-1.4642 -4.5,-1.4799 -4.51,-1.4957 -4.52,-1.5117 -4.53,-1.5277 -4.54,-1.5439 -4.55,-1.5602 -4.56,-1.5766 -4.57,-1.5931 -4.58,-1.6098 -4.59,-1.6265 -4.6,-1.6434 -4.61,-1.6605 -4.62,-1.6776 -4.63,-1.6948 -4.64,-1.7122 -4.65,-1.7297 -4.66,-1.7474 -4.67,-1.7651 -4.68,-1.783 -4.69,-1.8011 -4.7,-1.8192 -4.71,-1.8375 -4.72,-1.8559 -4.73,-1.8745 -4.74,-1.8931 -4.75,-1.912 -4.76,-1.9309 -4.77,-1.95 -4.78,-1.9692 -4.79,-1.9886 -4.8,-2.0081 -4.81,-2.0277 -4.82,-2.0475 -4.83,-2.0674 -4.84,-2.0875 -4.85,-2.1077 -4.86,-2.128 -4.87,-2.1485 -4.88,-2.1692 -4.89,-2.19 -4.9,-2.2109 -4.91,-2.232 -4.92,-2.2532 -4.93,-2.2746 -4.94,-2.2961 -4.95,-2.3178 -4.96,-2.3396 -4.97,-2.3616 -4.98,-2.3837 -4.99,-2.406 -5,-2.4284 diff --git a/TeX/Plots/Data/matlab_sin_d_1.csv b/TeX/Plots/Data/matlab_sin_d_1.csv deleted file mode 100755 index 2758ef5..0000000 --- a/TeX/Plots/Data/matlab_sin_d_1.csv +++ /dev/null @@ -1,1002 +0,0 @@ -x,y --5,-0.051532 --4.99,-0.047965 --4.98,-0.044485 --4.97,-0.041092 --4.96,-0.037786 --4.95,-0.034566 --4.94,-0.031431 --4.93,-0.028382 --4.92,-0.025417 --4.91,-0.022537 --4.9,-0.01974 --4.89,-0.017026 --4.88,-0.014395 --4.87,-0.011847 --4.86,-0.0093801 --4.85,-0.0069947 --4.84,-0.0046901 --4.83,-0.002466 --4.82,-0.00032174 --4.81,0.0017431 --4.8,0.0037289 --4.79,0.0056362 --4.78,0.0074655 --4.77,0.0092173 --4.76,0.010892 --4.75,0.01249 --4.74,0.014012 --4.73,0.015458 --4.72,0.016829 --4.71,0.018126 --4.7,0.019348 --4.69,0.020496 --4.68,0.021571 --4.67,0.022574 --4.66,0.023503 --4.65,0.024361 --4.64,0.025148 --4.63,0.025864 --4.62,0.026509 --4.61,0.027084 --4.6,0.02759 --4.59,0.028027 --4.58,0.028395 --4.57,0.028695 --4.56,0.028928 --4.55,0.029093 --4.54,0.029192 --4.53,0.029224 --4.52,0.029191 --4.51,0.029093 --4.5,0.028929 --4.49,0.028702 --4.48,0.02841 --4.47,0.028056 --4.46,0.027638 --4.45,0.027158 --4.44,0.026616 --4.43,0.026013 --4.42,0.025348 --4.41,0.024624 --4.4,0.023839 --4.39,0.022994 --4.38,0.022091 --4.37,0.021128 --4.36,0.020108 --4.35,0.01903 --4.34,0.017895 --4.33,0.016703 --4.32,0.015455 --4.31,0.014151 --4.3,0.012792 --4.29,0.011377 --4.28,0.0099089 --4.27,0.0083866 --4.26,0.0068108 --4.25,0.0051821 --4.24,0.003501 --4.23,0.0017678 --4.22,-1.686e-05 --4.21,-0.0018526 --4.2,-0.0037389 --4.19,-0.0056753 --4.18,-0.0076613 --4.17,-0.0096964 --4.16,-0.01178 --4.15,-0.013912 --4.14,-0.016092 --4.13,-0.018319 --4.12,-0.020593 --4.11,-0.022913 --4.1,-0.025279 --4.09,-0.02769 --4.08,-0.030147 --4.07,-0.032647 --4.06,-0.035192 --4.05,-0.03778 --4.04,-0.040411 --4.03,-0.043085 --4.02,-0.0458 --4.01,-0.048557 --4,-0.051356 --3.99,-0.054195 --3.98,-0.057074 --3.97,-0.059993 --3.96,-0.062951 --3.95,-0.065947 --3.94,-0.068982 --3.93,-0.072055 --3.92,-0.075165 --3.91,-0.078312 --3.9,-0.081496 --3.89,-0.084715 --3.88,-0.08797 --3.87,-0.091259 --3.86,-0.094583 --3.85,-0.097941 --3.84,-0.10133 --3.83,-0.10476 --3.82,-0.10822 --3.81,-0.1117 --3.8,-0.11523 --3.79,-0.11878 --3.78,-0.12236 --3.77,-0.12597 --3.76,-0.12962 --3.75,-0.13329 --3.74,-0.13699 --3.73,-0.14072 --3.72,-0.14448 --3.71,-0.14826 --3.7,-0.15207 --3.69,-0.15591 --3.68,-0.15977 --3.67,-0.16366 --3.66,-0.16758 --3.65,-0.17152 --3.64,-0.17548 --3.63,-0.17946 --3.62,-0.18347 --3.61,-0.18751 --3.6,-0.19156 --3.59,-0.19564 --3.58,-0.19973 --3.57,-0.20385 --3.56,-0.20799 --3.55,-0.21215 --3.54,-0.21633 --3.53,-0.22052 --3.52,-0.22474 --3.51,-0.22897 --3.5,-0.23322 --3.49,-0.23749 --3.48,-0.24177 --3.47,-0.24607 --3.46,-0.25039 --3.45,-0.25472 --3.44,-0.25906 --3.43,-0.26342 --3.42,-0.26779 --3.41,-0.27218 --3.4,-0.27658 --3.39,-0.28099 --3.38,-0.28541 --3.37,-0.28984 --3.36,-0.29429 --3.35,-0.29874 --3.34,-0.30321 --3.33,-0.30768 --3.32,-0.31216 --3.31,-0.31666 --3.3,-0.32115 --3.29,-0.32566 --3.28,-0.33018 --3.27,-0.3347 --3.26,-0.33922 --3.25,-0.34375 --3.24,-0.34829 --3.23,-0.35283 --3.22,-0.35738 --3.21,-0.36193 --3.2,-0.36648 --3.19,-0.37104 --3.18,-0.3756 --3.17,-0.38016 --3.16,-0.38472 --3.15,-0.38928 --3.14,-0.39384 --3.13,-0.39841 --3.12,-0.40297 --3.11,-0.40753 --3.1,-0.41209 --3.09,-0.41665 --3.08,-0.4212 --3.07,-0.42575 --3.06,-0.4303 --3.05,-0.43485 --3.04,-0.43939 --3.03,-0.44392 --3.02,-0.44845 --3.01,-0.45298 --3,-0.4575 --2.99,-0.46201 --2.98,-0.46651 --2.97,-0.47101 --2.96,-0.4755 --2.95,-0.47998 --2.94,-0.48445 --2.93,-0.48891 --2.92,-0.49336 --2.91,-0.4978 --2.9,-0.50223 --2.89,-0.50665 --2.88,-0.51106 --2.87,-0.51545 --2.86,-0.51984 --2.85,-0.5242 --2.84,-0.52856 --2.83,-0.5329 --2.82,-0.53722 --2.81,-0.54153 --2.8,-0.54583 --2.79,-0.55011 --2.78,-0.55437 --2.77,-0.55861 --2.76,-0.56284 --2.75,-0.56705 --2.74,-0.57124 --2.73,-0.57541 --2.72,-0.57956 --2.71,-0.58369 --2.7,-0.58781 --2.69,-0.5919 --2.68,-0.59596 --2.67,-0.60001 --2.66,-0.60403 --2.65,-0.60803 --2.64,-0.612 --2.63,-0.61595 --2.62,-0.61987 --2.61,-0.62376 --2.6,-0.62763 --2.59,-0.63147 --2.58,-0.63528 --2.57,-0.63906 --2.56,-0.64281 --2.55,-0.64653 --2.54,-0.65022 --2.53,-0.65388 --2.52,-0.6575 --2.51,-0.66109 --2.5,-0.66464 --2.49,-0.66817 --2.48,-0.67165 --2.47,-0.6751 --2.46,-0.67851 --2.45,-0.68189 --2.44,-0.68522 --2.43,-0.68852 --2.42,-0.69178 --2.41,-0.69499 --2.4,-0.69817 --2.39,-0.7013 --2.38,-0.7044 --2.37,-0.70745 --2.36,-0.71045 --2.35,-0.71341 --2.34,-0.71633 --2.33,-0.7192 --2.32,-0.72203 --2.31,-0.7248 --2.3,-0.72753 --2.29,-0.73021 --2.28,-0.73285 --2.27,-0.73543 --2.26,-0.73797 --2.25,-0.74046 --2.24,-0.7429 --2.23,-0.74529 --2.22,-0.74763 --2.21,-0.74992 --2.2,-0.75217 --2.19,-0.75436 --2.18,-0.75651 --2.17,-0.75861 --2.16,-0.76065 --2.15,-0.76265 --2.14,-0.7646 --2.13,-0.7665 --2.12,-0.76835 --2.11,-0.77016 --2.1,-0.77191 --2.09,-0.77361 --2.08,-0.77526 --2.07,-0.77686 --2.06,-0.77842 --2.05,-0.77992 --2.04,-0.78137 --2.03,-0.78277 --2.02,-0.78413 --2.01,-0.78543 --2,-0.78668 --1.99,-0.78788 --1.98,-0.78903 --1.97,-0.79013 --1.96,-0.79118 --1.95,-0.79218 --1.94,-0.79313 --1.93,-0.79402 --1.92,-0.79487 --1.91,-0.79567 --1.9,-0.79641 --1.89,-0.7971 --1.88,-0.79774 --1.87,-0.79833 --1.86,-0.79887 --1.85,-0.79936 --1.84,-0.7998 --1.83,-0.80018 --1.82,-0.80051 --1.81,-0.8008 --1.8,-0.80103 --1.79,-0.80121 --1.78,-0.80134 --1.77,-0.80142 --1.76,-0.80144 --1.75,-0.80142 --1.74,-0.80134 --1.73,-0.80122 --1.72,-0.80104 --1.71,-0.80081 --1.7,-0.80054 --1.69,-0.80021 --1.68,-0.79983 --1.67,-0.79939 --1.66,-0.79891 --1.65,-0.79838 --1.64,-0.7978 --1.63,-0.79716 --1.62,-0.79648 --1.61,-0.79574 --1.6,-0.79496 --1.59,-0.79412 --1.58,-0.79323 --1.57,-0.79229 --1.56,-0.7913 --1.55,-0.79026 --1.54,-0.78918 --1.53,-0.78803 --1.52,-0.78684 --1.51,-0.7856 --1.5,-0.78431 --1.49,-0.78297 --1.48,-0.78158 --1.47,-0.78013 --1.46,-0.77864 --1.45,-0.7771 --1.44,-0.7755 --1.43,-0.77386 --1.42,-0.77217 --1.41,-0.77042 --1.4,-0.76863 --1.39,-0.76678 --1.38,-0.76489 --1.37,-0.76294 --1.36,-0.76095 --1.35,-0.7589 --1.34,-0.7568 --1.33,-0.75466 --1.32,-0.75246 --1.31,-0.75022 --1.3,-0.74792 --1.29,-0.74558 --1.28,-0.74318 --1.27,-0.74073 --1.26,-0.73824 --1.25,-0.73569 --1.24,-0.73309 --1.23,-0.73045 --1.22,-0.72775 --1.21,-0.72501 --1.2,-0.72221 --1.19,-0.71937 --1.18,-0.71647 --1.17,-0.71353 --1.16,-0.71053 --1.15,-0.70749 --1.14,-0.70439 --1.13,-0.70125 --1.12,-0.69805 --1.11,-0.69481 --1.1,-0.69151 --1.09,-0.68817 --1.08,-0.68478 --1.07,-0.68133 --1.06,-0.67784 --1.05,-0.6743 --1.04,-0.67071 --1.03,-0.66707 --1.02,-0.66338 --1.01,-0.65964 --1,-0.65585 --0.99,-0.65201 --0.98,-0.64813 --0.97,-0.6442 --0.96,-0.64022 --0.95,-0.6362 --0.94,-0.63212 --0.93,-0.628 --0.92,-0.62384 --0.91,-0.61963 --0.9,-0.61537 --0.89,-0.61107 --0.88,-0.60672 --0.87,-0.60233 --0.86,-0.59789 --0.85,-0.59341 --0.84,-0.58889 --0.83,-0.58432 --0.82,-0.57971 --0.81,-0.57506 --0.8,-0.57036 --0.79,-0.56562 --0.78,-0.56084 --0.77,-0.55602 --0.76,-0.55115 --0.75,-0.54625 --0.74,-0.5413 --0.73,-0.53631 --0.72,-0.53129 --0.71,-0.52622 --0.7,-0.52111 --0.69,-0.51597 --0.68,-0.51078 --0.67,-0.50556 --0.66,-0.50029 --0.65,-0.49499 --0.64,-0.48965 --0.63,-0.48428 --0.62,-0.47886 --0.61,-0.47341 --0.6,-0.46792 --0.59,-0.4624 --0.58,-0.45684 --0.57,-0.45125 --0.56,-0.44562 --0.55,-0.43995 --0.54,-0.43425 --0.53,-0.42852 --0.52,-0.42276 --0.51,-0.41696 --0.5,-0.41113 --0.49,-0.40527 --0.48,-0.39938 --0.47,-0.39346 --0.46,-0.3875 --0.45,-0.38152 --0.44,-0.3755 --0.43,-0.36946 --0.42,-0.36339 --0.41,-0.35729 --0.4,-0.35116 --0.39,-0.34501 --0.38,-0.33883 --0.37,-0.33262 --0.36,-0.32638 --0.35,-0.32012 --0.34,-0.31384 --0.33,-0.30753 --0.32,-0.30119 --0.31,-0.29483 --0.3,-0.28845 --0.29,-0.28204 --0.28,-0.27562 --0.27,-0.26917 --0.26,-0.26269 --0.25,-0.2562 --0.24,-0.24968 --0.23,-0.24315 --0.22,-0.23659 --0.21,-0.23002 --0.2,-0.22342 --0.19,-0.21681 --0.18,-0.21018 --0.17,-0.20353 --0.16,-0.19687 --0.15,-0.19018 --0.14,-0.18349 --0.13,-0.17677 --0.12,-0.17004 --0.11,-0.1633 --0.1,-0.15655 --0.09,-0.14978 --0.08,-0.143 --0.07,-0.1362 --0.06,-0.1294 --0.05,-0.12258 --0.04,-0.11576 --0.03,-0.10892 --0.02,-0.10207 --0.01,-0.095221 -0,-0.088359 -0.01,-0.08149 -0.02,-0.074614 -0.03,-0.067732 -0.04,-0.060844 -0.05,-0.05395 -0.06,-0.047052 -0.07,-0.04015 -0.08,-0.033244 -0.09,-0.026335 -0.1,-0.019423 -0.11,-0.01251 -0.12,-0.0055955 -0.13,0.0013199 -0.14,0.0082355 -0.15,0.015151 -0.16,0.022065 -0.17,0.028978 -0.18,0.035889 -0.19,0.042797 -0.2,0.049703 -0.21,0.056604 -0.22,0.063501 -0.23,0.070394 -0.24,0.07728 -0.25,0.08416 -0.26,0.091032 -0.27,0.097896 -0.28,0.10475 -0.29,0.1116 -0.3,0.11843 -0.31,0.12525 -0.32,0.13206 -0.33,0.13886 -0.34,0.14564 -0.35,0.15241 -0.36,0.15917 -0.37,0.1659 -0.38,0.17263 -0.39,0.17933 -0.4,0.18601 -0.41,0.19268 -0.42,0.19932 -0.43,0.20594 -0.44,0.21254 -0.45,0.21912 -0.46,0.22568 -0.47,0.23221 -0.48,0.23872 -0.49,0.2452 -0.5,0.25165 -0.51,0.25807 -0.52,0.26447 -0.53,0.27084 -0.54,0.27718 -0.55,0.28349 -0.56,0.28976 -0.57,0.29601 -0.58,0.30222 -0.59,0.3084 -0.6,0.31454 -0.61,0.32065 -0.62,0.32672 -0.63,0.33275 -0.64,0.33875 -0.65,0.34471 -0.66,0.35063 -0.67,0.35651 -0.68,0.36235 -0.69,0.36816 -0.7,0.37392 -0.71,0.37964 -0.72,0.38532 -0.73,0.39097 -0.74,0.39657 -0.75,0.40212 -0.76,0.40764 -0.77,0.41311 -0.78,0.41855 -0.79,0.42393 -0.8,0.42928 -0.81,0.43458 -0.82,0.43984 -0.83,0.44505 -0.84,0.45022 -0.85,0.45535 -0.86,0.46042 -0.87,0.46546 -0.88,0.47044 -0.89,0.47538 -0.9,0.48028 -0.91,0.48512 -0.92,0.48992 -0.93,0.49467 -0.94,0.49937 -0.95,0.50403 -0.96,0.50863 -0.97,0.51319 -0.98,0.5177 -0.99,0.52215 -1,0.52656 -1.01,0.53091 -1.02,0.53522 -1.03,0.53947 -1.04,0.54367 -1.05,0.54782 -1.06,0.55192 -1.07,0.55597 -1.08,0.55996 -1.09,0.5639 -1.1,0.56778 -1.11,0.57161 -1.12,0.57539 -1.13,0.57911 -1.14,0.58278 -1.15,0.58639 -1.16,0.58995 -1.17,0.59345 -1.18,0.5969 -1.19,0.60029 -1.2,0.60362 -1.21,0.6069 -1.22,0.61011 -1.23,0.61328 -1.24,0.61638 -1.25,0.61942 -1.26,0.62241 -1.27,0.62534 -1.28,0.62821 -1.29,0.63102 -1.3,0.63377 -1.31,0.63646 -1.32,0.63908 -1.33,0.64165 -1.34,0.64416 -1.35,0.64661 -1.36,0.64899 -1.37,0.65132 -1.38,0.65358 -1.39,0.65578 -1.4,0.65791 -1.41,0.65999 -1.42,0.662 -1.43,0.66394 -1.44,0.66582 -1.45,0.66764 -1.46,0.66939 -1.47,0.67108 -1.48,0.67271 -1.49,0.67426 -1.5,0.67576 -1.51,0.67719 -1.52,0.67855 -1.53,0.67985 -1.54,0.68108 -1.55,0.68226 -1.56,0.68336 -1.57,0.6844 -1.58,0.68538 -1.59,0.6863 -1.6,0.68715 -1.61,0.68793 -1.62,0.68865 -1.63,0.68931 -1.64,0.68991 -1.65,0.69044 -1.66,0.69091 -1.67,0.69131 -1.68,0.69166 -1.69,0.69193 -1.7,0.69215 -1.71,0.6923 -1.72,0.69239 -1.73,0.69242 -1.74,0.69239 -1.75,0.69229 -1.76,0.69213 -1.77,0.6919 -1.78,0.69162 -1.79,0.69127 -1.8,0.69086 -1.81,0.69039 -1.82,0.68986 -1.83,0.68927 -1.84,0.68861 -1.85,0.68789 -1.86,0.68711 -1.87,0.68627 -1.88,0.68537 -1.89,0.6844 -1.9,0.68338 -1.91,0.6823 -1.92,0.68115 -1.93,0.67995 -1.94,0.67868 -1.95,0.67736 -1.96,0.67599 -1.97,0.67455 -1.98,0.67306 -1.99,0.67151 -2,0.6699 -2.01,0.66825 -2.02,0.66653 -2.03,0.66476 -2.04,0.66294 -2.05,0.66107 -2.06,0.65914 -2.07,0.65717 -2.08,0.65514 -2.09,0.65306 -2.1,0.65093 -2.11,0.64875 -2.12,0.64652 -2.13,0.64424 -2.14,0.64192 -2.15,0.63955 -2.16,0.63713 -2.17,0.63466 -2.18,0.63215 -2.19,0.62959 -2.2,0.62699 -2.21,0.62434 -2.22,0.62165 -2.23,0.61892 -2.24,0.61615 -2.25,0.61333 -2.26,0.61047 -2.27,0.60757 -2.28,0.60463 -2.29,0.60165 -2.3,0.59863 -2.31,0.59557 -2.32,0.59247 -2.33,0.58933 -2.34,0.58616 -2.35,0.58296 -2.36,0.57971 -2.37,0.57643 -2.38,0.57312 -2.39,0.56978 -2.4,0.5664 -2.41,0.56299 -2.42,0.55955 -2.43,0.55608 -2.44,0.55257 -2.45,0.54904 -2.46,0.54548 -2.47,0.5419 -2.48,0.53828 -2.49,0.53464 -2.5,0.53098 -2.51,0.52729 -2.52,0.52357 -2.53,0.51983 -2.54,0.51607 -2.55,0.51229 -2.56,0.50848 -2.57,0.50465 -2.58,0.50081 -2.59,0.49694 -2.6,0.49306 -2.61,0.48916 -2.62,0.48524 -2.63,0.4813 -2.64,0.47735 -2.65,0.47338 -2.66,0.4694 -2.67,0.46541 -2.68,0.4614 -2.69,0.45738 -2.7,0.45334 -2.71,0.4493 -2.72,0.44525 -2.73,0.44118 -2.74,0.43711 -2.75,0.43303 -2.76,0.42894 -2.77,0.42484 -2.78,0.42073 -2.79,0.41662 -2.8,0.4125 -2.81,0.40836 -2.82,0.40423 -2.83,0.40008 -2.84,0.39593 -2.85,0.39177 -2.86,0.3876 -2.87,0.38343 -2.88,0.37925 -2.89,0.37507 -2.9,0.37088 -2.91,0.36668 -2.92,0.36248 -2.93,0.35828 -2.94,0.35407 -2.95,0.34985 -2.96,0.34564 -2.97,0.34141 -2.98,0.33719 -2.99,0.33296 -3,0.32872 -3.01,0.32449 -3.02,0.32025 -3.03,0.316 -3.04,0.31176 -3.05,0.30751 -3.06,0.30326 -3.07,0.29901 -3.08,0.29476 -3.09,0.2905 -3.1,0.28625 -3.11,0.28199 -3.12,0.27773 -3.13,0.27348 -3.14,0.26922 -3.15,0.26496 -3.16,0.2607 -3.17,0.25645 -3.18,0.25219 -3.19,0.24793 -3.2,0.24368 -3.21,0.23943 -3.22,0.23517 -3.23,0.23092 -3.24,0.22668 -3.25,0.22243 -3.26,0.21819 -3.27,0.21395 -3.28,0.20971 -3.29,0.20547 -3.3,0.20124 -3.31,0.19701 -3.32,0.19279 -3.33,0.18857 -3.34,0.18435 -3.35,0.18014 -3.36,0.17594 -3.37,0.17173 -3.38,0.16754 -3.39,0.16335 -3.4,0.15916 -3.41,0.15498 -3.42,0.15081 -3.43,0.14664 -3.44,0.14248 -3.45,0.13832 -3.46,0.13417 -3.47,0.13003 -3.48,0.1259 -3.49,0.12177 -3.5,0.11766 -3.51,0.11355 -3.52,0.10945 -3.53,0.10535 -3.54,0.10127 -3.55,0.097193 -3.56,0.093127 -3.57,0.08907 -3.58,0.085023 -3.59,0.080985 -3.6,0.076958 -3.61,0.072941 -3.62,0.068934 -3.63,0.064939 -3.64,0.060954 -3.65,0.05698 -3.66,0.053018 -3.67,0.049067 -3.68,0.045128 -3.69,0.041201 -3.7,0.037287 -3.71,0.033385 -3.72,0.029496 -3.73,0.025619 -3.74,0.021756 -3.75,0.017907 -3.76,0.014071 -3.77,0.010248 -3.78,0.0064404 -3.79,0.0026467 -3.8,-0.0011325 -3.81,-0.004897 -3.82,-0.0086464 -3.83,-0.012381 -3.84,-0.016099 -3.85,-0.019803 -3.86,-0.02349 -3.87,-0.027161 -3.88,-0.030816 -3.89,-0.034454 -3.9,-0.038076 -3.91,-0.04168 -3.92,-0.045267 -3.93,-0.048837 -3.94,-0.052389 -3.95,-0.055923 -3.96,-0.059439 -3.97,-0.062937 -3.98,-0.066416 -3.99,-0.069877 -4,-0.073318 -4.01,-0.07674 -4.02,-0.080143 -4.03,-0.083526 -4.04,-0.086889 -4.05,-0.090232 -4.06,-0.093554 -4.07,-0.096856 -4.08,-0.10014 -4.09,-0.1034 -4.1,-0.10664 -4.11,-0.10985 -4.12,-0.11305 -4.13,-0.11622 -4.14,-0.11937 -4.15,-0.1225 -4.16,-0.12561 -4.17,-0.12869 -4.18,-0.13175 -4.19,-0.13479 -4.2,-0.13781 -4.21,-0.1408 -4.22,-0.14376 -4.23,-0.1467 -4.24,-0.14962 -4.25,-0.15251 -4.26,-0.15538 -4.27,-0.15822 -4.28,-0.16104 -4.29,-0.16383 -4.3,-0.1666 -4.31,-0.16934 -4.32,-0.17206 -4.33,-0.17474 -4.34,-0.1774 -4.35,-0.18004 -4.36,-0.18265 -4.37,-0.18523 -4.38,-0.18778 -4.39,-0.1903 -4.4,-0.1928 -4.41,-0.19527 -4.42,-0.19771 -4.43,-0.20012 -4.44,-0.2025 -4.45,-0.20485 -4.46,-0.20718 -4.47,-0.20947 -4.48,-0.21174 -4.49,-0.21397 -4.5,-0.21618 -4.51,-0.21835 -4.52,-0.22049 -4.53,-0.22261 -4.54,-0.22469 -4.55,-0.22674 -4.56,-0.22876 -4.57,-0.23074 -4.58,-0.2327 -4.59,-0.23462 -4.6,-0.23651 -4.61,-0.23837 -4.62,-0.24019 -4.63,-0.24198 -4.64,-0.24374 -4.65,-0.24546 -4.66,-0.24715 -4.67,-0.24881 -4.68,-0.25043 -4.69,-0.25202 -4.7,-0.25357 -4.71,-0.25509 -4.72,-0.25657 -4.73,-0.25802 -4.74,-0.25943 -4.75,-0.2608 -4.76,-0.26214 -4.77,-0.26345 -4.78,-0.26471 -4.79,-0.26594 -4.8,-0.26714 -4.81,-0.26829 -4.82,-0.26941 -4.83,-0.27049 -4.84,-0.27154 -4.85,-0.27254 -4.86,-0.27351 -4.87,-0.27443 -4.88,-0.27532 -4.89,-0.27617 -4.9,-0.27699 -4.91,-0.27776 -4.92,-0.27849 -4.93,-0.27918 -4.94,-0.27983 -4.95,-0.28045 -4.96,-0.28102 -4.97,-0.28155 -4.98,-0.28204 -4.99,-0.28249 -5,-0.28289 diff --git a/TeX/Plots/Data/matlab_sin_d_3.csv b/TeX/Plots/Data/matlab_sin_d_3.csv deleted file mode 100755 index 9952e15..0000000 --- a/TeX/Plots/Data/matlab_sin_d_3.csv +++ /dev/null @@ -1,1002 +0,0 @@ -x,y --5,-0.62401 --4.99,-0.6213 --4.98,-0.61863 --4.97,-0.616 --4.96,-0.61341 --4.95,-0.61086 --4.94,-0.60835 --4.93,-0.60589 --4.92,-0.60346 --4.91,-0.60108 --4.9,-0.59874 --4.89,-0.59643 --4.88,-0.59417 --4.87,-0.59194 --4.86,-0.58976 --4.85,-0.58761 --4.84,-0.58551 --4.83,-0.58344 --4.82,-0.58141 --4.81,-0.57942 --4.8,-0.57746 --4.79,-0.57555 --4.78,-0.57367 --4.77,-0.57183 --4.76,-0.57002 --4.75,-0.56826 --4.74,-0.56653 --4.73,-0.56483 --4.72,-0.56317 --4.71,-0.56155 --4.7,-0.55996 --4.69,-0.55841 --4.68,-0.5569 --4.67,-0.55542 --4.66,-0.55397 --4.65,-0.55256 --4.64,-0.55118 --4.63,-0.54984 --4.62,-0.54853 --4.61,-0.54726 --4.6,-0.54601 --4.59,-0.54481 --4.58,-0.54363 --4.57,-0.54249 --4.56,-0.54138 --4.55,-0.5403 --4.54,-0.53925 --4.53,-0.53824 --4.52,-0.53725 --4.51,-0.5363 --4.5,-0.53538 --4.49,-0.53449 --4.48,-0.53364 --4.47,-0.53281 --4.46,-0.53201 --4.45,-0.53124 --4.44,-0.5305 --4.43,-0.5298 --4.42,-0.52912 --4.41,-0.52847 --4.4,-0.52784 --4.39,-0.52725 --4.38,-0.52669 --4.37,-0.52615 --4.36,-0.52564 --4.35,-0.52516 --4.34,-0.52471 --4.33,-0.52429 --4.32,-0.52389 --4.31,-0.52352 --4.3,-0.52317 --4.29,-0.52285 --4.28,-0.52256 --4.27,-0.52229 --4.26,-0.52205 --4.25,-0.52184 --4.24,-0.52165 --4.23,-0.52148 --4.22,-0.52134 --4.21,-0.52123 --4.2,-0.52113 --4.19,-0.52107 --4.18,-0.52102 --4.17,-0.521 --4.16,-0.52101 --4.15,-0.52103 --4.14,-0.52108 --4.13,-0.52116 --4.12,-0.52125 --4.11,-0.52137 --4.1,-0.52151 --4.09,-0.52167 --4.08,-0.52185 --4.07,-0.52205 --4.06,-0.52228 --4.05,-0.52253 --4.04,-0.52279 --4.03,-0.52308 --4.02,-0.52339 --4.01,-0.52371 --4,-0.52406 --3.99,-0.52443 --3.98,-0.52481 --3.97,-0.52522 --3.96,-0.52564 --3.95,-0.52609 --3.94,-0.52655 --3.93,-0.52703 --3.92,-0.52752 --3.91,-0.52804 --3.9,-0.52857 --3.89,-0.52912 --3.88,-0.52969 --3.87,-0.53027 --3.86,-0.53087 --3.85,-0.53148 --3.84,-0.53212 --3.83,-0.53277 --3.82,-0.53343 --3.81,-0.53411 --3.8,-0.5348 --3.79,-0.53551 --3.78,-0.53624 --3.77,-0.53698 --3.76,-0.53773 --3.75,-0.5385 --3.74,-0.53928 --3.73,-0.54007 --3.72,-0.54088 --3.71,-0.5417 --3.7,-0.54254 --3.69,-0.54338 --3.68,-0.54424 --3.67,-0.54512 --3.66,-0.546 --3.65,-0.5469 --3.64,-0.5478 --3.63,-0.54872 --3.62,-0.54965 --3.61,-0.55059 --3.6,-0.55154 --3.59,-0.5525 --3.58,-0.55348 --3.57,-0.55446 --3.56,-0.55545 --3.55,-0.55645 --3.54,-0.55746 --3.53,-0.55848 --3.52,-0.55951 --3.51,-0.56054 --3.5,-0.56159 --3.49,-0.56264 --3.48,-0.5637 --3.47,-0.56477 --3.46,-0.56585 --3.45,-0.56693 --3.44,-0.56803 --3.43,-0.56912 --3.42,-0.57023 --3.41,-0.57134 --3.4,-0.57245 --3.39,-0.57358 --3.38,-0.5747 --3.37,-0.57584 --3.36,-0.57698 --3.35,-0.57812 --3.34,-0.57927 --3.33,-0.58042 --3.32,-0.58158 --3.31,-0.58274 --3.3,-0.58391 --3.29,-0.58508 --3.28,-0.58625 --3.27,-0.58742 --3.26,-0.5886 --3.25,-0.58978 --3.24,-0.59097 --3.23,-0.59215 --3.22,-0.59334 --3.21,-0.59453 --3.2,-0.59572 --3.19,-0.59691 --3.18,-0.59811 --3.17,-0.5993 --3.16,-0.60049 --3.15,-0.60169 --3.14,-0.60289 --3.13,-0.60408 --3.12,-0.60528 --3.11,-0.60647 --3.1,-0.60767 --3.09,-0.60886 --3.08,-0.61005 --3.07,-0.61124 --3.06,-0.61243 --3.05,-0.61362 --3.04,-0.6148 --3.03,-0.61598 --3.02,-0.61716 --3.01,-0.61834 --3,-0.61952 --2.99,-0.62069 --2.98,-0.62185 --2.97,-0.62302 --2.96,-0.62418 --2.95,-0.62534 --2.94,-0.62649 --2.93,-0.62763 --2.92,-0.62878 --2.91,-0.62991 --2.9,-0.63104 --2.89,-0.63217 --2.88,-0.63329 --2.87,-0.63441 --2.86,-0.63552 --2.85,-0.63662 --2.84,-0.63771 --2.83,-0.6388 --2.82,-0.63988 --2.81,-0.64096 --2.8,-0.64202 --2.79,-0.64308 --2.78,-0.64413 --2.77,-0.64518 --2.76,-0.64621 --2.75,-0.64724 --2.74,-0.64825 --2.73,-0.64926 --2.72,-0.65026 --2.71,-0.65125 --2.7,-0.65222 --2.69,-0.65319 --2.68,-0.65415 --2.67,-0.6551 --2.66,-0.65603 --2.65,-0.65696 --2.64,-0.65787 --2.63,-0.65877 --2.62,-0.65966 --2.61,-0.66053 --2.6,-0.66139 --2.59,-0.66224 --2.58,-0.66308 --2.57,-0.6639 --2.56,-0.6647 --2.55,-0.66549 --2.54,-0.66627 --2.53,-0.66703 --2.52,-0.66777 --2.51,-0.6685 --2.5,-0.66922 --2.49,-0.66991 --2.48,-0.67059 --2.47,-0.67125 --2.46,-0.6719 --2.45,-0.67252 --2.44,-0.67313 --2.43,-0.67372 --2.42,-0.67429 --2.41,-0.67484 --2.4,-0.67538 --2.39,-0.67589 --2.38,-0.67638 --2.37,-0.67685 --2.36,-0.6773 --2.35,-0.67773 --2.34,-0.67814 --2.33,-0.67853 --2.32,-0.67889 --2.31,-0.67923 --2.3,-0.67955 --2.29,-0.67985 --2.28,-0.68012 --2.27,-0.68037 --2.26,-0.6806 --2.25,-0.6808 --2.24,-0.68098 --2.23,-0.68114 --2.22,-0.68127 --2.21,-0.68138 --2.2,-0.68147 --2.19,-0.68153 --2.18,-0.68156 --2.17,-0.68158 --2.16,-0.68157 --2.15,-0.68153 --2.14,-0.68147 --2.13,-0.68139 --2.12,-0.68128 --2.11,-0.68114 --2.1,-0.68098 --2.09,-0.6808 --2.08,-0.68059 --2.07,-0.68036 --2.06,-0.6801 --2.05,-0.67981 --2.04,-0.6795 --2.03,-0.67916 --2.02,-0.6788 --2.01,-0.67841 --2,-0.678 --1.99,-0.67756 --1.98,-0.67709 --1.97,-0.6766 --1.96,-0.67608 --1.95,-0.67554 --1.94,-0.67497 --1.93,-0.67437 --1.92,-0.67374 --1.91,-0.67309 --1.9,-0.67241 --1.89,-0.67171 --1.88,-0.67097 --1.87,-0.67021 --1.86,-0.66943 --1.85,-0.66861 --1.84,-0.66777 --1.83,-0.6669 --1.82,-0.666 --1.81,-0.66508 --1.8,-0.66413 --1.79,-0.66315 --1.78,-0.66214 --1.77,-0.66111 --1.76,-0.66005 --1.75,-0.65896 --1.74,-0.65784 --1.73,-0.6567 --1.72,-0.65552 --1.71,-0.65432 --1.7,-0.6531 --1.69,-0.65184 --1.68,-0.65056 --1.67,-0.64925 --1.66,-0.64791 --1.65,-0.64654 --1.64,-0.64515 --1.63,-0.64372 --1.62,-0.64227 --1.61,-0.6408 --1.6,-0.63929 --1.59,-0.63776 --1.58,-0.63619 --1.57,-0.6346 --1.56,-0.63298 --1.55,-0.63134 --1.54,-0.62966 --1.53,-0.62796 --1.52,-0.62623 --1.51,-0.62447 --1.5,-0.62268 --1.49,-0.62086 --1.48,-0.61902 --1.47,-0.61715 --1.46,-0.61525 --1.45,-0.61332 --1.44,-0.61136 --1.43,-0.60937 --1.42,-0.60736 --1.41,-0.60531 --1.4,-0.60324 --1.39,-0.60114 --1.38,-0.59902 --1.37,-0.59686 --1.36,-0.59468 --1.35,-0.59246 --1.34,-0.59022 --1.33,-0.58796 --1.32,-0.58566 --1.31,-0.58333 --1.3,-0.58098 --1.29,-0.5786 --1.28,-0.57619 --1.27,-0.57376 --1.26,-0.57129 --1.25,-0.5688 --1.24,-0.56628 --1.23,-0.56373 --1.22,-0.56116 --1.21,-0.55855 --1.2,-0.55592 --1.19,-0.55326 --1.18,-0.55057 --1.17,-0.54786 --1.16,-0.54512 --1.15,-0.54235 --1.14,-0.53955 --1.13,-0.53672 --1.12,-0.53387 --1.11,-0.53099 --1.1,-0.52808 --1.09,-0.52515 --1.08,-0.52218 --1.07,-0.51919 --1.06,-0.51618 --1.05,-0.51313 --1.04,-0.51006 --1.03,-0.50696 --1.02,-0.50383 --1.01,-0.50068 --1,-0.4975 --0.99,-0.49429 --0.98,-0.49105 --0.97,-0.48779 --0.96,-0.48451 --0.95,-0.4812 --0.94,-0.47786 --0.93,-0.47449 --0.92,-0.47111 --0.91,-0.46769 --0.9,-0.46425 --0.89,-0.46079 --0.88,-0.4573 --0.87,-0.45379 --0.86,-0.45025 --0.85,-0.44669 --0.84,-0.4431 --0.83,-0.43949 --0.82,-0.43586 --0.81,-0.4322 --0.8,-0.42852 --0.79,-0.42482 --0.78,-0.42109 --0.77,-0.41734 --0.76,-0.41357 --0.75,-0.40977 --0.74,-0.40595 --0.73,-0.40212 --0.72,-0.39825 --0.71,-0.39437 --0.7,-0.39047 --0.69,-0.38654 --0.68,-0.38259 --0.67,-0.37862 --0.66,-0.37463 --0.65,-0.37062 --0.64,-0.36659 --0.63,-0.36254 --0.62,-0.35847 --0.61,-0.35438 --0.6,-0.35026 --0.59,-0.34613 --0.58,-0.34198 --0.57,-0.33781 --0.56,-0.33362 --0.55,-0.32942 --0.54,-0.32519 --0.53,-0.32095 --0.52,-0.31669 --0.51,-0.31241 --0.5,-0.30811 --0.49,-0.3038 --0.48,-0.29947 --0.47,-0.29512 --0.46,-0.29076 --0.45,-0.28638 --0.44,-0.28199 --0.43,-0.27758 --0.42,-0.27315 --0.41,-0.26871 --0.4,-0.26426 --0.39,-0.25979 --0.38,-0.25531 --0.37,-0.25081 --0.36,-0.2463 --0.35,-0.24178 --0.34,-0.23724 --0.33,-0.23269 --0.32,-0.22813 --0.31,-0.22355 --0.3,-0.21897 --0.29,-0.21437 --0.28,-0.20976 --0.27,-0.20514 --0.26,-0.2005 --0.25,-0.19586 --0.24,-0.19121 --0.23,-0.18654 --0.22,-0.18187 --0.21,-0.17718 --0.2,-0.17249 --0.19,-0.16779 --0.18,-0.16307 --0.17,-0.15835 --0.16,-0.15363 --0.15,-0.14889 --0.14,-0.14414 --0.13,-0.13939 --0.12,-0.13463 --0.11,-0.12987 --0.1,-0.1251 --0.09,-0.12032 --0.08,-0.11554 --0.07,-0.11075 --0.06,-0.10595 --0.05,-0.10115 --0.04,-0.09635 --0.03,-0.091542 --0.02,-0.086731 --0.01,-0.081916 -0,-0.077098 -0.01,-0.072277 -0.02,-0.067453 -0.03,-0.062627 -0.04,-0.057799 -0.05,-0.05297 -0.06,-0.048139 -0.07,-0.043307 -0.08,-0.038475 -0.09,-0.033642 -0.1,-0.028809 -0.11,-0.023977 -0.12,-0.019145 -0.13,-0.014314 -0.14,-0.0094837 -0.15,-0.0046553 -0.16,0.00017117 -0.17,0.0049955 -0.18,0.0098173 -0.19,0.014636 -0.2,0.019452 -0.21,0.024265 -0.22,0.029073 -0.23,0.033878 -0.24,0.038678 -0.25,0.043473 -0.26,0.048263 -0.27,0.053047 -0.28,0.057825 -0.29,0.062597 -0.3,0.067362 -0.31,0.072119 -0.32,0.076869 -0.33,0.081611 -0.34,0.086345 -0.35,0.091069 -0.36,0.095785 -0.37,0.10049 -0.38,0.10519 -0.39,0.10987 -0.4,0.11455 -0.41,0.11921 -0.42,0.12386 -0.43,0.12851 -0.44,0.13313 -0.45,0.13775 -0.46,0.14235 -0.47,0.14694 -0.48,0.15152 -0.49,0.15608 -0.5,0.16063 -0.51,0.16516 -0.52,0.16967 -0.53,0.17418 -0.54,0.17866 -0.55,0.18313 -0.56,0.18758 -0.57,0.19201 -0.58,0.19643 -0.59,0.20083 -0.6,0.20521 -0.61,0.20957 -0.62,0.21391 -0.63,0.21824 -0.64,0.22254 -0.65,0.22682 -0.66,0.23108 -0.67,0.23532 -0.68,0.23955 -0.69,0.24375 -0.7,0.24792 -0.71,0.25208 -0.72,0.25622 -0.73,0.26033 -0.74,0.26443 -0.75,0.2685 -0.76,0.27254 -0.77,0.27657 -0.78,0.28057 -0.79,0.28455 -0.8,0.28851 -0.81,0.29244 -0.82,0.29635 -0.83,0.30024 -0.84,0.3041 -0.85,0.30794 -0.86,0.31176 -0.87,0.31555 -0.88,0.31931 -0.89,0.32305 -0.9,0.32677 -0.91,0.33046 -0.92,0.33412 -0.93,0.33776 -0.94,0.34137 -0.95,0.34496 -0.96,0.34852 -0.97,0.35206 -0.98,0.35556 -0.99,0.35904 -1,0.3625 -1.01,0.36592 -1.02,0.36932 -1.03,0.3727 -1.04,0.37604 -1.05,0.37936 -1.06,0.38264 -1.07,0.3859 -1.08,0.38913 -1.09,0.39234 -1.1,0.39551 -1.11,0.39865 -1.12,0.40177 -1.13,0.40486 -1.14,0.40792 -1.15,0.41094 -1.16,0.41394 -1.17,0.41691 -1.18,0.41985 -1.19,0.42276 -1.2,0.42564 -1.21,0.42849 -1.22,0.43131 -1.23,0.4341 -1.24,0.43686 -1.25,0.43959 -1.26,0.44228 -1.27,0.44495 -1.28,0.44758 -1.29,0.45019 -1.3,0.45276 -1.31,0.4553 -1.32,0.45781 -1.33,0.46029 -1.34,0.46274 -1.35,0.46515 -1.36,0.46754 -1.37,0.46989 -1.38,0.47221 -1.39,0.47449 -1.4,0.47675 -1.41,0.47897 -1.42,0.48115 -1.43,0.48331 -1.44,0.48543 -1.45,0.48752 -1.46,0.48958 -1.47,0.4916 -1.48,0.49359 -1.49,0.49554 -1.5,0.49747 -1.51,0.49936 -1.52,0.50121 -1.53,0.50303 -1.54,0.50482 -1.55,0.50658 -1.56,0.5083 -1.57,0.50999 -1.58,0.51165 -1.59,0.51328 -1.6,0.51487 -1.61,0.51643 -1.62,0.51796 -1.63,0.51945 -1.64,0.52091 -1.65,0.52234 -1.66,0.52374 -1.67,0.52511 -1.68,0.52644 -1.69,0.52774 -1.7,0.52901 -1.71,0.53025 -1.72,0.53146 -1.73,0.53263 -1.74,0.53377 -1.75,0.53488 -1.76,0.53596 -1.77,0.53701 -1.78,0.53802 -1.79,0.53901 -1.8,0.53996 -1.81,0.54088 -1.82,0.54177 -1.83,0.54263 -1.84,0.54346 -1.85,0.54426 -1.86,0.54502 -1.87,0.54576 -1.88,0.54646 -1.89,0.54713 -1.9,0.54778 -1.91,0.54839 -1.92,0.54897 -1.93,0.54953 -1.94,0.55005 -1.95,0.55054 -1.96,0.55101 -1.97,0.55144 -1.98,0.55185 -1.99,0.55223 -2,0.55258 -2.01,0.5529 -2.02,0.5532 -2.03,0.55347 -2.04,0.55371 -2.05,0.55393 -2.06,0.55411 -2.07,0.55428 -2.08,0.55441 -2.09,0.55452 -2.1,0.55461 -2.11,0.55467 -2.12,0.5547 -2.13,0.55471 -2.14,0.5547 -2.15,0.55466 -2.16,0.5546 -2.17,0.55452 -2.18,0.55441 -2.19,0.55428 -2.2,0.55412 -2.21,0.55394 -2.22,0.55374 -2.23,0.55352 -2.24,0.55328 -2.25,0.55302 -2.26,0.55273 -2.27,0.55242 -2.28,0.55209 -2.29,0.55175 -2.3,0.55138 -2.31,0.55099 -2.32,0.55058 -2.33,0.55015 -2.34,0.54971 -2.35,0.54924 -2.36,0.54876 -2.37,0.54826 -2.38,0.54774 -2.39,0.5472 -2.4,0.54665 -2.41,0.54608 -2.42,0.54549 -2.43,0.54489 -2.44,0.54427 -2.45,0.54364 -2.46,0.54299 -2.47,0.54233 -2.48,0.54165 -2.49,0.54096 -2.5,0.54025 -2.51,0.53953 -2.52,0.5388 -2.53,0.53806 -2.54,0.5373 -2.55,0.53653 -2.56,0.53575 -2.57,0.53496 -2.58,0.53416 -2.59,0.53334 -2.6,0.53252 -2.61,0.53168 -2.62,0.53084 -2.63,0.52998 -2.64,0.52912 -2.65,0.52825 -2.66,0.52737 -2.67,0.52648 -2.68,0.52558 -2.69,0.52468 -2.7,0.52377 -2.71,0.52285 -2.72,0.52193 -2.73,0.521 -2.74,0.52006 -2.75,0.51912 -2.76,0.51817 -2.77,0.51722 -2.78,0.51626 -2.79,0.51529 -2.8,0.51432 -2.81,0.51335 -2.82,0.51237 -2.83,0.51139 -2.84,0.5104 -2.85,0.50941 -2.86,0.50841 -2.87,0.50741 -2.88,0.50641 -2.89,0.5054 -2.9,0.50438 -2.91,0.50337 -2.92,0.50235 -2.93,0.50133 -2.94,0.5003 -2.95,0.49927 -2.96,0.49824 -2.97,0.49721 -2.98,0.49617 -2.99,0.49514 -3,0.4941 -3.01,0.49305 -3.02,0.49201 -3.03,0.49096 -3.04,0.48991 -3.05,0.48886 -3.06,0.48781 -3.07,0.48676 -3.08,0.48571 -3.09,0.48465 -3.1,0.4836 -3.11,0.48254 -3.12,0.48149 -3.13,0.48043 -3.14,0.47938 -3.15,0.47832 -3.16,0.47726 -3.17,0.47621 -3.18,0.47515 -3.19,0.4741 -3.2,0.47304 -3.21,0.47199 -3.22,0.47094 -3.23,0.46989 -3.24,0.46884 -3.25,0.46779 -3.26,0.46674 -3.27,0.4657 -3.28,0.46465 -3.29,0.46361 -3.3,0.46257 -3.31,0.46154 -3.32,0.4605 -3.33,0.45947 -3.34,0.45844 -3.35,0.45742 -3.36,0.45639 -3.37,0.45537 -3.38,0.45436 -3.39,0.45334 -3.4,0.45233 -3.41,0.45133 -3.42,0.45033 -3.43,0.44933 -3.44,0.44833 -3.45,0.44734 -3.46,0.44636 -3.47,0.44538 -3.48,0.4444 -3.49,0.44343 -3.5,0.44247 -3.51,0.44151 -3.52,0.44055 -3.53,0.4396 -3.54,0.43866 -3.55,0.43772 -3.56,0.43679 -3.57,0.43586 -3.58,0.43494 -3.59,0.43403 -3.6,0.43312 -3.61,0.43222 -3.62,0.43133 -3.63,0.43044 -3.64,0.42956 -3.65,0.42869 -3.66,0.42782 -3.67,0.42696 -3.68,0.42611 -3.69,0.42527 -3.7,0.42444 -3.71,0.42361 -3.72,0.42279 -3.73,0.42198 -3.74,0.42118 -3.75,0.42039 -3.76,0.41961 -3.77,0.41883 -3.78,0.41807 -3.79,0.41731 -3.8,0.41656 -3.81,0.41583 -3.82,0.4151 -3.83,0.41438 -3.84,0.41367 -3.85,0.41298 -3.86,0.41229 -3.87,0.41161 -3.88,0.41095 -3.89,0.41029 -3.9,0.40965 -3.91,0.40901 -3.92,0.40839 -3.93,0.40778 -3.94,0.40718 -3.95,0.40659 -3.96,0.40601 -3.97,0.40545 -3.98,0.4049 -3.99,0.40436 -4,0.40383 -4.01,0.40331 -4.02,0.40281 -4.03,0.40232 -4.04,0.40184 -4.05,0.40137 -4.06,0.40092 -4.07,0.40049 -4.08,0.40006 -4.09,0.39965 -4.1,0.39925 -4.11,0.39887 -4.12,0.3985 -4.13,0.39814 -4.14,0.3978 -4.15,0.39748 -4.16,0.39716 -4.17,0.39687 -4.18,0.39659 -4.19,0.39632 -4.2,0.39607 -4.21,0.39583 -4.22,0.39561 -4.23,0.3954 -4.24,0.39521 -4.25,0.39504 -4.26,0.39488 -4.27,0.39474 -4.28,0.39462 -4.29,0.39451 -4.3,0.39442 -4.31,0.39434 -4.32,0.39428 -4.33,0.39424 -4.34,0.39422 -4.35,0.39421 -4.36,0.39422 -4.37,0.39425 -4.38,0.3943 -4.39,0.39436 -4.4,0.39444 -4.41,0.39454 -4.42,0.39466 -4.43,0.3948 -4.44,0.39496 -4.45,0.39513 -4.46,0.39533 -4.47,0.39554 -4.48,0.39577 -4.49,0.39602 -4.5,0.3963 -4.51,0.39659 -4.52,0.3969 -4.53,0.39723 -4.54,0.39758 -4.55,0.39795 -4.56,0.39834 -4.57,0.39876 -4.58,0.39919 -4.59,0.39964 -4.6,0.40012 -4.61,0.40061 -4.62,0.40113 -4.63,0.40167 -4.64,0.40223 -4.65,0.40281 -4.66,0.40342 -4.67,0.40404 -4.68,0.40469 -4.69,0.40536 -4.7,0.40605 -4.71,0.40677 -4.72,0.40751 -4.73,0.40827 -4.74,0.40905 -4.75,0.40986 -4.76,0.41069 -4.77,0.41154 -4.78,0.41242 -4.79,0.41332 -4.8,0.41425 -4.81,0.4152 -4.82,0.41617 -4.83,0.41717 -4.84,0.41819 -4.85,0.41924 -4.86,0.42031 -4.87,0.42141 -4.88,0.42253 -4.89,0.42367 -4.9,0.42485 -4.91,0.42604 -4.92,0.42727 -4.93,0.42852 -4.94,0.42979 -4.95,0.43109 -4.96,0.43242 -4.97,0.43377 -4.98,0.43515 -4.99,0.43656 -5,0.43799 diff --git a/TeX/Plots/Data/min_max.txt b/TeX/Plots/Data/min_max.txt deleted file mode 100755 index b067b48..0000000 --- a/TeX/Plots/Data/min_max.txt +++ /dev/null @@ -1,58 +0,0 @@ -datagen_dropout_02_1 -test -0.6604& 0.5175& 0.60136& 0.002348447 - -datagen_dropout_00_1 -test -0.6704& 0.4878& 0.58621& 0.003600539 - -dropout_02_1 -test -0.5312& 0.4224& 0.47137& 0.001175149 - -default_1 -test -0.5633& 0.3230& 0.45702& 0.004021449 - -datagen_dropout_02_10 -test -0.9441& 0.9061& 0.92322& 0.00015 -train -1& 0.97& 0.989& 1e-04 - -datagen_dropout_00_10 -test -0.931& 0.9018& 0.9185& 6e-05 -train -1& 0.97& 0.99& 0.00013 - -dropout_02_10 -test -0.9423& 0.9081& 0.92696& 0.00013 -train -1& 0.99& 0.992& 2e-05 - -default_10 -test -0.8585& 0.8148& 0.83771& 0.00027 -train -1& 1& 1& 0 - -datagen_dropout_02_100 -test -0.9805& 0.9727& 0.97826& 0 -train - -datagen_dropout_00_100 -test -0.981& 0.9702& 0.9769& 1e-05 -train - -dropout_02_100 -test -0.9796& 0.9719& 0.97703& 1e-05 -train - -default_100 -test -0.9637& 0.9506& 0.95823& 2e-05 \ No newline at end of file diff --git a/TeX/Plots/Data/overfit.csv b/TeX/Plots/Data/overfit.csv deleted file mode 100644 index 69c7579..0000000 --- a/TeX/Plots/Data/overfit.csv +++ /dev/null @@ -1,1202 +0,0 @@ -"",x,y,x_n,y_n,s_n -"1",0,0.300748410464688,-0.1,0,0.587785252292473 -"2",0.0159154943091895,-0.245009267940694,-0.099,0,0.582690479668576 -"3",0.0318309886183791,-0.489424845949232,-0.098,0,0.577572703422267 -"4",0.0477464829275686,-0.454603711505162,-0.097,0,0.572432125594591 -"5",0.0636619772367581,-1.14383092423676,-0.096,0,0.567268949126756 -"6",0.0795774715459477,-0.268438353095194,-0.095,0,0.562083377852131 -"7",0.0954929658551372,-0.863200029000433,-0.094,0,0.556875616488188 -"8",0.111408460164327,-0.133850486977185,-0.093,0,0.55164587062843 -"9",0.127323954473516,0.013053144826199,-0.092,0,0.546394346734269 -"10",0.143239448782706,-1.65305408026189,-0.091,0,0.541121252126876 -"11",0.159154943091895,-0.692647494483372,-0.09,0,0.535826794978996 -"12",0.175070437401085,-0.970280869716453,-0.089,0,0.530511184306734 -"13",0.190985931710274,-1.29958462578389,-0.088,0,0.525174629961296 -"14",0.206901426019464,-1.11246317973262,-0.087,0,0.51981734262071 -"15",0.222816920328653,-0.981067019751566,-0.086,0,0.514439533781506 -"16",0.238732414637843,-0.587046956825003,-0.085,0,0.509041415750371 -"17",0.254647908947033,-1.56205394210675,-0.084,0,0.503623201635761 -"18",0.270563403256222,-1.29698279212195,-0.083,0,0.498185105339491 -"19",0.286478897565412,-0.990358936490416,-0.082,0,0.492727341548291 -"20",0.302394391874601,-1.52499598536358,-0.081,0,0.487250125725332 -"21",0.318309886183791,-0.5341744258034,-0.08,0,0.481753674101715 -"22",0.33422538049298,-1.1832943759879,-0.079,0,0.476238203667939 -"23",0.35014087480217,-0.281560880846134,-0.078,0,0.470703932165333 -"24",0.366056369111359,-0.606632526741593,-0.077,0,0.465151078077458 -"25",0.381971863420549,-0.743601709690359,-0.076,0,0.459579860621488 -"26",0.397887357729738,-1.01683126768115,-0.075,0,0.453990499739547 -"27",0.413802852038928,-1.14975368447276,-0.074,0,0.448383216090032 -"28",0.429718346348117,-0.607522402804607,-0.073,0,0.442758231038901 -"29",0.445633840657307,-0.271339475152741,-0.072,0,0.437115766650933 -"30",0.461549334966497,-0.437197064911255,-0.071,0,0.431456045680959 -"31",0.477464829275686,-0.547023389217064,-0.07,0,0.425779291565073 -"32",0.493380323584876,0.260974103055521,-0.069,0,0.420085728411806 -"33",0.509295817894065,0.659463613742447,-0.068,0,0.414375580993284 -"34",0.525211312203255,-0.248024136688147,-0.067,0,0.408649074736349 -"35",0.541126806512444,0.415140478056865,-0.066,0,0.402906435713663 -"36",0.557042300821634,0.412858807943808,-0.065,0,0.39714789063478 -"37",0.572957795130823,0.241390791267404,-0.064,0,0.391373666837202 -"38",0.588873289440013,-0.0698245963124352,-0.063,0,0.385583992277397 -"39",0.604788783749202,0.233332652503595,-0.062,0,0.379779095521801 -"40",0.620704278058392,0.367600406756737,-0.061,0,0.3739592057378 -"41",0.636619772367581,1.03502856645952,-0.06,0,0.368124552684678 -"42",0.652535266676771,0.69105436800266,-0.059,0,0.362275366704546 -"43",0.66845076098596,0.599344179926799,-0.058,0,0.356411878713251 -"44",0.68436625529515,0.880025991663828,-0.057,0,0.350534320191259 -"45",0.70028174960434,0.607990733574782,-0.056,0,0.344642923174517 -"46",0.716197243913529,1.00466748990519,-0.055,0,0.338737920245291 -"47",0.732112738222719,0.304714589608625,-0.054,0,0.332819544522987 -"48",0.748028232531908,1.35907391337559,-0.053,0,0.326888029654943 -"49",0.763943726841098,0.943334601591182,-0.052,0,0.320943609807209 -"50",0.779859221150287,0.939977782750524,-0.051,0,0.314986519655305 -"51",0.795774715459477,0.44329608863974,-0.05,0,0.309016994374947 -"52",0.811690209768666,1.13087648659454,-0.049,0,0.303035269632774 -"53",0.827605704077856,0.709047990072121,-0.048,0,0.297041581577035 -"54",0.843521198387045,1.03328603739799,-0.047,0,0.291036166828272 -"55",0.859436692696235,0.720504803210088,-0.046,0,0.285019262469976 -"56",0.875352187005424,-0.153404672608947,-0.045,0,0.278991106039229 -"57",0.891267681314614,0.647480878481554,-0.044,0,0.272951935517325 -"58",0.907183175623803,0.505120891477449,-0.043,0,0.266901989320376 -"59",0.923098669932993,0.463882813829634,-0.042,0,0.260841506289897 -"60",0.939014164242183,0.78010467042593,-0.041,0,0.254770725683382 -"61",0.954929658551372,0.50914924064767,-0.04,0,0.248689887164855 -"62",0.970845152860562,0.0304677994141883,-0.039,0,0.242599230795407 -"63",0.986760647169751,-0.218122411711338,-0.038,0,0.236498997023725 -"64",,,-0.037,0,0.230389426676591 -"65",,,-0.036,0,0.224270760949381 -"66",,,-0.035,0,0.218143241396543 -"67",,,-0.034,0,0.212007109922055 -"68",,,-0.033,0,0.205862608769881 -"69",,,-0.032,0,0.199709980514407 -"70",,,-0.031,0,0.19354946805086 -"71",,,-0.03,0,0.187381314585724 -"72",,,-0.029,0,0.181205763627137 -"73",,,-0.028,0,0.175023058975276 -"74",,,-0.027,0,0.168833444712734 -"75",,,-0.026,0,0.162637165194884 -"76",,,-0.025,0,0.156434465040231 -"77",,,-0.024,0,0.150225589120757 -"78",,,-0.023,0,0.144010782552252 -"79",,,-0.022,0,0.137790290684638 -"80",,,-0.021,0,0.131564359092283 -"81",,,-0.02,0,0.125333233564304 -"82",,,-0.019,0,0.11909716009487 -"83",,,-0.018,0,0.112856384873482 -"84",,,-0.017,0,0.10661115427526 -"85",,,-0.016,0,0.100361714851215 -"86",,,-0.015,0,0.0941083133185141 -"87",,,-0.014,0,0.0878511965507429 -"88",,,-0.013,0,0.0815906115681572 -"89",,,-0.012,0,0.0753268055279328 -"90",,,-0.011,0,0.0690600257144058 -"91",,,-0.01,0,0.0627905195293133 -"92",,,-0.00900000000000001,0.0300748410464686,0.0565185344820244 -"93",,,-0.00800000000000001,0.0601496820929375,0.0502443181797694 -"94",,,-0.00700000000000001,0.0902245231394063,0.0439681183178647 -"95",,,-0.00600000000000001,0.120299364185875,0.0376901826699343 -"96",,,-0.005,0.150374205232344,0.031410759078128 -"97",,,-0.004,0.180449046278813,0.0251300954433376 -"98",,,-0.003,0.210523887325282,0.0188484397154082 -"99",,,-0.002,0.240598728371751,0.0125660398833526 -"100",,,-0.001,0.27067356941822,0.00628314396555888 -"101",,,0,0.300748410464688,-1.22464679914735e-16 -"102",,,0.001,0.266457444202317,-0.00628314396555913 -"103",,,0.002,0.232166477939946,-0.0125660398833528 -"104",,,0.003,0.197875511677574,-0.0188484397154085 -"105",,,0.004,0.163584545415203,-0.0251300954433378 -"106",,,0.00499999999999999,0.129293579152832,-0.0314107590781282 -"107",,,0.00599999999999999,0.0950026128904606,-0.0376901826699345 -"108",,,0.00699999999999999,0.0607116466280893,-0.043968118317865 -"109",,,0.00799999999999999,0.0264206803657179,-0.0502443181797697 -"110",,,0.00899999999999999,-0.00787028589665351,-0.0565185344820247 -"111",,,0.01,-0.042161252159025,-0.0627905195293136 -"112",,,0.011,-0.0764522184213964,-0.0690600257144061 -"113",,,0.012,-0.110743184683768,-0.0753268055279326 -"114",,,0.013,-0.145034150946139,-0.0815906115681575 -"115",,,0.014,-0.17932511720851,-0.0878511965507432 -"116",,,0.015,-0.213616083470882,-0.0941083133185144 -"117",,,0.016,-0.246307028906404,-0.100361714851215 -"118",,,0.017,-0.261664112592294,-0.10661115427526 -"119",,,0.018,-0.277021196278185,-0.112856384873482 -"120",,,0.019,-0.292378279964075,-0.11909716009487 -"121",,,0.02,-0.307735363649966,-0.125333233564304 -"122",,,0.021,-0.323092447335856,-0.131564359092282 -"123",,,0.022,-0.338449531021747,-0.137790290684638 -"124",,,0.023,-0.353806614707637,-0.144010782552252 -"125",,,0.024,-0.369163698393528,-0.150225589120757 -"126",,,0.025,-0.384520782079418,-0.156434465040231 -"127",,,0.026,-0.399877865765309,-0.162637165194884 -"128",,,0.027,-0.415234949451199,-0.168833444712734 -"129",,,0.028,-0.43059203313709,-0.175023058975276 -"130",,,0.029,-0.445949116822981,-0.181205763627138 -"131",,,0.03,-0.461306200508871,-0.187381314585725 -"132",,,0.031,-0.476663284194762,-0.19354946805086 -"133",,,0.032,-0.489055069935514,-0.199709980514407 -"134",,,0.033,-0.486867193532331,-0.205862608769881 -"135",,,0.034,-0.484679317129148,-0.212007109922055 -"136",,,0.035,-0.482491440725965,-0.218143241396543 -"137",,,0.036,-0.480303564322782,-0.224270760949381 -"138",,,0.037,-0.478115687919599,-0.230389426676591 -"139",,,0.038,-0.475927811516416,-0.236498997023725 -"140",,,0.039,-0.473739935113233,-0.242599230795407 -"141",,,0.04,-0.47155205871005,-0.248689887164855 -"142",,,0.041,-0.469364182306867,-0.254770725683382 -"143",,,0.042,-0.467176305903684,-0.260841506289897 -"144",,,0.043,-0.4649884295005,-0.266901989320376 -"145",,,0.044,-0.462800553097317,-0.272951935517325 -"146",,,0.045,-0.460612676694134,-0.278991106039229 -"147",,,0.046,-0.458424800290951,-0.285019262469976 -"148",,,0.047,-0.456236923887768,-0.291036166828272 -"149",,,0.048,-0.465582375555256,-0.297041581577035 -"150",,,0.049,-0.508887798518691,-0.303035269632774 -"151",,,0.05,-0.552193221482126,-0.309016994374948 -"152",,,0.051,-0.595498644445561,-0.314986519655305 -"153",,,0.052,-0.638804067408996,-0.32094360980721 -"154",,,0.053,-0.682109490372432,-0.326888029654942 -"155",,,0.054,-0.725414913335867,-0.332819544522987 -"156",,,0.055,-0.768720336299302,-0.338737920245291 -"157",,,0.056,-0.812025759262737,-0.344642923174517 -"158",,,0.057,-0.855331182226172,-0.350534320191259 -"159",,,0.058,-0.898636605189607,-0.356411878713251 -"160",,,0.059,-0.941942028153043,-0.362275366704546 -"161",,,0.06,-0.985247451116478,-0.368124552684678 -"162",,,0.061,-1.02855287407991,-0.373959205737801 -"163",,,0.062,-1.07185829704335,-0.379779095521801 -"164",,,0.063,-1.11516372000678,-0.385583992277397 -"165",,,0.064,-1.12523881455608,-0.391373666837202 -"166",,,0.065,-1.07023627714597,-0.397147890634781 -"167",,,0.066,-1.01523373973586,-0.402906435713663 -"168",,,0.067,-0.960231202325755,-0.408649074736349 -"169",,,0.068,-0.905228664915646,-0.414375580993284 -"170",,,0.069,-0.850226127505538,-0.420085728411806 -"171",,,0.07,-0.795223590095429,-0.425779291565073 -"172",,,0.071,-0.740221052685321,-0.431456045680959 -"173",,,0.072,-0.685218515275212,-0.437115766650933 -"174",,,0.073,-0.630215977865105,-0.442758231038902 -"175",,,0.074,-0.575213440454996,-0.448383216090032 -"176",,,0.075,-0.520210903044888,-0.453990499739547 -"177",,,0.076,-0.465208365634781,-0.459579860621488 -"178",,,0.077,-0.410205828224672,-0.465151078077459 -"179",,,0.078,-0.355203290814564,-0.470703932165332 -"180",,,0.079,-0.300200753404455,-0.476238203667939 -"181",,,0.08,-0.284228232226043,-0.481753674101715 -"182",,,0.081,-0.321598210459255,-0.487250125725332 -"183",,,0.082,-0.358968188692469,-0.492727341548292 -"184",,,0.083,-0.396338166925681,-0.498185105339491 -"185",,,0.084,-0.433708145158895,-0.503623201635761 -"186",,,0.085,-0.471078123392107,-0.509041415750371 -"187",,,0.086,-0.508448101625321,-0.514439533781507 -"188",,,0.087,-0.545818079858534,-0.519817342620709 -"189",,,0.088,-0.583188058091747,-0.525174629961296 -"190",,,0.089,-0.620558036324959,-0.530511184306734 -"191",,,0.09,-0.657928014558173,-0.535826794978997 -"192",,,0.091,-0.695297992791385,-0.541121252126876 -"193",,,0.092,-0.732667971024599,-0.546394346734269 -"194",,,0.093,-0.770037949257812,-0.55164587062843 -"195",,,0.094,-0.807407927491024,-0.556875616488188 -"196",,,0.095,-0.844777905724237,-0.562083377852131 -"197",,,0.096,-0.839964487950835,-0.567268949126756 -"198",,,0.097,-0.794138104688448,-0.572432125594591 -"199",,,0.098,-0.748311721426062,-0.577572703422268 -"200",,,0.099,-0.702485338163676,-0.582690479668576 -"201",,,0.1,-0.65665895490129,-0.587785252292473 -"202",,,0.101,-0.610832571638904,-0.592856820161059 -"203",,,0.102,-0.565006188376517,-0.597904983057519 -"204",,,0.103,-0.51917980511413,-0.602929541689025 -"205",,,0.104,-0.473353421851744,-0.607930297694606 -"206",,,0.105,-0.427527038589358,-0.612907053652976 -"207",,,0.106,-0.381700655326971,-0.617859613090335 -"208",,,0.107,-0.335874272064585,-0.622787780488113 -"209",,,0.108,-0.290047888802199,-0.627691361290701 -"210",,,0.109,-0.244221505539814,-0.632570161913125 -"211",,,0.11,-0.198395122277428,-0.63742398974869 -"212",,,0.111,-0.152568739015042,-0.642252653176585 -"213",,,0.112,-0.12839043977233,-0.647055961569444 -"214",,,0.113,-0.119160212363147,-0.651833725300879 -"215",,,0.114,-0.109929984953963,-0.656585755752956 -"216",,,0.115,-0.100699757544781,-0.661311865323652 -"217",,,0.116,-0.0914695301355949,-0.666011867434252 -"218",,,0.117,-0.082239302726412,-0.67068557653672 -"219",,,0.118,-0.0730090753172284,-0.675332808121025 -"220",,,0.119,-0.0637788479080452,-0.679953378722419 -"221",,,0.12,-0.054548620498862,-0.684547105928689 -"222",,,0.121,-0.0453183930896786,-0.689113808387348 -"223",,,0.122,-0.0360881656804949,-0.693653305812805 -"224",,,0.123,-0.0268579382713118,-0.698165418993473 -"225",,,0.124,-0.0176277108621274,-0.702649969798849 -"226",,,0.125,-0.00839748345294405,-0.707106781186548 -"227",,,0.126,0.000832743956239335,-0.711535677209285 -"228",,,0.127,0.010062971365423,-0.715936483021831 -"229",,,0.128,-0.0577184136489081,-0.720309024887907 -"230",,,0.129,-0.162403018017501,-0.724653130187047 -"231",,,0.13,-0.267087622386095,-0.728968627421411 -"232",,,0.131,-0.371772226754687,-0.73325534622256 -"233",,,0.132,-0.476456831123278,-0.737513117358174 -"234",,,0.133,-0.581141435491872,-0.741741772738739 -"235",,,0.134,-0.685826039860464,-0.745941145424182 -"236",,,0.135,-0.790510644229057,-0.75011106963046 -"237",,,0.136,-0.895195248597648,-0.754251380736104 -"238",,,0.137,-0.999879852966241,-0.758361915288722 -"239",,,0.138,-1.10456445733483,-0.762442511011448 -"240",,,0.139,-1.20924906170343,-0.76649300680935 -"241",,,0.14,-1.31393366607202,-0.770513242775789 -"242",,,0.141,-1.41861827044061,-0.774503060198734 -"243",,,0.142,-1.5233028748092,-0.778462301567023 -"244",,,0.143,-1.62798747917779,-0.782390810576588 -"245",,,0.144,-1.60715928216633,-0.786288432136619 -"246",,,0.145,-1.54681515667951,-0.790155012375691 -"247",,,0.146,-1.48647103119269,-0.793990398647835 -"248",,,0.147,-1.42612690570587,-0.797794439538571 -"249",,,0.148,-1.36578278021905,-0.801566984870877 -"250",,,0.149,-1.30543865473223,-0.805307885711122 -"251",,,0.15,-1.24509452924541,-0.809016994374947 -"252",,,0.151,-1.18475040375859,-0.812694164433094 -"253",,,0.152,-1.12440627827177,-0.816339250717184 -"254",,,0.153,-1.06406215278495,-0.819952109325452 -"255",,,0.154,-1.00371802729813,-0.823532597628428 -"256",,,0.155,-0.943373901811306,-0.827080574274562 -"257",,,0.156,-0.883029776324487,-0.830595899195813 -"258",,,0.157,-0.822685650837664,-0.834078433613171 -"259",,,0.158,-0.762341525350844,-0.837528040042142 -"260",,,0.159,-0.701997399864024,-0.840944582298169 -"261",,,0.16,-0.707388852628038,-0.844327925502015 -"262",,,0.161,-0.724833072068509,-0.847677936085083 -"263",,,0.162,-0.742277291508981,-0.850994481794692 -"264",,,0.163,-0.759721510949454,-0.854277431699295 -"265",,,0.164,-0.777165730389926,-0.857526656193652 -"266",,,0.165,-0.794609949830397,-0.860742027003944 -"267",,,0.166,-0.812054169270867,-0.863923417192835 -"268",,,0.167,-0.82949838871134,-0.86707070116449 -"269",,,0.168,-0.846942608151811,-0.870183754669526 -"270",,,0.169,-0.86438682759228,-0.87326245480992 -"271",,,0.17,-0.881831047032753,-0.876306680043864 -"272",,,0.171,-0.899275266473225,-0.879316310190556 -"273",,,0.172,-0.916719485913698,-0.882291226434954 -"274",,,0.173,-0.934163705354168,-0.885231311332455 -"275",,,0.174,-0.95160792479464,-0.888136448813545 -"276",,,0.175,-0.969052144235112,-0.891006524188368 -"277",,,0.176,-0.989514231205316,-0.893841424151264 -"278",,,0.177,-1.01020499642254,-0.896641036785236 -"279",,,0.178,-1.03089576163975,-0.899405251566371 -"280",,,0.179,-1.05158652685697,-0.902133959368203 -"281",,,0.18,-1.07227729207419,-0.904827052466019 -"282",,,0.181,-1.09296805729142,-0.907484424541117 -"283",,,0.182,-1.11365882250863,-0.910105970684996 -"284",,,0.183,-1.13434958772586,-0.912691587403503 -"285",,,0.184,-1.15504035294307,-0.915241172620918 -"286",,,0.185,-1.17573111816029,-0.917754625683981 -"287",,,0.186,-1.19642188337751,-0.92023184736587 -"288",,,0.187,-1.21711264859473,-0.922672739870115 -"289",,,0.188,-1.23780341381195,-0.925077206834458 -"290",,,0.189,-1.25849417902917,-0.927445153334661 -"291",,,0.19,-1.27918494424639,-0.929776485888251 -"292",,,0.191,-1.29941922226794,-0.932071112458211 -"293",,,0.192,-1.28766203506306,-0.934328942456612 -"294",,,0.193,-1.27590484785819,-0.936549886748192 -"295",,,0.194,-1.26414766065331,-0.938733857653874 -"296",,,0.195,-1.25239047344844,-0.940880768954225 -"297",,,0.196,-1.24063328624356,-0.942990535892864 -"298",,,0.197,-1.22887609903869,-0.945063075179805 -"299",,,0.198,-1.21711891183381,-0.947098304994744 -"300",,,0.199,-1.20536172462893,-0.949096144990295 -"301",,,0.2,-1.19360453742406,-0.951056516295154 -"302",,,0.201,-1.18184735021918,-0.952979341517219 -"303",,,0.202,-1.17009016301431,-0.954864544746643 -"304",,,0.203,-1.15833297580943,-0.95671205155883 -"305",,,0.204,-1.14657578860456,-0.958521789017376 -"306",,,0.205,-1.13481860139968,-0.960293685676943 -"307",,,0.206,-1.12306141419481,-0.962027671586086 -"308",,,0.207,-1.11164936633388,-0.96372367829001 -"309",,,0.208,-1.10339350211575,-0.965381638833274 -"310",,,0.209,-1.09513763789762,-0.967001487762435 -"311",,,0.21,-1.0868817736795,-0.968583161128631 -"312",,,0.211,-1.07862590946136,-0.970126596490106 -"313",,,0.212,-1.07037004524324,-0.971631732914674 -"314",,,0.213,-1.06211418102511,-0.973098510982127 -"315",,,0.214,-1.05385831680698,-0.974526872786577 -"316",,,0.215,-1.04560245258885,-0.975916761938747 -"317",,,0.216,-1.03734658837072,-0.977268123568193 -"318",,,0.217,-1.0290907241526,-0.978580904325472 -"319",,,0.218,-1.02083485993447,-0.979855052384247 -"320",,,0.219,-1.01257899571634,-0.981090517443334 -"321",,,0.22,-1.00432313149821,-0.982287250728689 -"322",,,0.221,-0.996067267280085,-0.98344520499533 -"323",,,0.222,-0.987811403061958,-0.984564334529205 -"324",,,0.223,-0.976534514368877,-0.985644595148998 -"325",,,0.224,-0.951777503667737,-0.986685944207868 -"326",,,0.225,-0.927020492966597,-0.987688340595138 -"327",,,0.226,-0.902263482265455,-0.988651744737914 -"328",,,0.227,-0.877506471564313,-0.989576118602651 -"329",,,0.228,-0.852749460863168,-0.990461425696651 -"330",,,0.229,-0.827992450162029,-0.991307631069507 -"331",,,0.23,-0.80323543946089,-0.992114701314478 -"332",,,0.231,-0.778478428759753,-0.992882604569814 -"333",,,0.232,-0.753721418058602,-0.993611310520008 -"334",,,0.233,-0.728964407357464,-0.994300790396999 -"335",,,0.234,-0.704207396656321,-0.9949510169813 -"336",,,0.235,-0.679450385955183,-0.99556196460308 -"337",,,0.236,-0.654693375254039,-0.996133609143173 -"338",,,0.237,-0.629936364552898,-0.99666592803403 -"339",,,0.238,-0.605179353851758,-0.997158900260614 -"340",,,0.239,-0.60343963632297,-0.997612506361225 -"341",,,0.24,-0.66470113196617,-0.998026728428272 -"342",,,0.241,-0.725962627609368,-0.998401550108975 -"343",,,0.242,-0.787224123252569,-0.998736956606017 -"344",,,0.243,-0.848485618895762,-0.999032934678125 -"345",,,0.244,-0.909747114538956,-0.999289472640589 -"346",,,0.245,-0.971008610182158,-0.999506560365732 -"347",,,0.246,-1.03227010582535,-0.9996841892833 -"348",,,0.247,-1.09353160146855,-0.999822352380809 -"349",,,0.248,-1.15479309711175,-0.999921044203816 -"350",,,0.249,-1.21605459275495,-0.999980260856137 -"351",,,0.25,-1.27731608839814,-1 -"352",,,0.251,-1.33857758404134,-0.999980260856137 -"353",,,0.252,-1.39983907968454,-0.999921044203816 -"354",,,0.253,-1.46110057532773,-0.999822352380809 -"355",,,0.254,-1.52236207097094,-0.9996841892833 -"356",,,0.255,-1.55618989676224,-0.999506560365732 -"357",,,0.256,-1.53953498521282,-0.999289472640589 -"358",,,0.257,-1.5228800736634,-0.999032934678125 -"359",,,0.258,-1.50622516211398,-0.998736956606017 -"360",,,0.259,-1.48957025056457,-0.998401550108975 -"361",,,0.26,-1.47291533901515,-0.998026728428272 -"362",,,0.261,-1.45626042746574,-0.997612506361225 -"363",,,0.262,-1.43960551591632,-0.997158900260614 -"364",,,0.263,-1.4229506043669,-0.99666592803403 -"365",,,0.264,-1.40629569281749,-0.996133609143173 -"366",,,0.265,-1.38964078126807,-0.99556196460308 -"367",,,0.266,-1.37298586971865,-0.9949510169813 -"368",,,0.267,-1.35633095816923,-0.994300790396999 -"369",,,0.268,-1.33967604661981,-0.993611310520008 -"370",,,0.269,-1.3230211350704,-0.992882604569814 -"371",,,0.27,-1.30636622352098,-0.992114701314478 -"372",,,0.271,-1.28857143056869,-0.991307631069507 -"373",,,0.272,-1.26930568552334,-0.990461425696651 -"374",,,0.273,-1.250039940478,-0.989576118602651 -"375",,,0.274,-1.23077419543265,-0.988651744737914 -"376",,,0.275,-1.2115084503873,-0.987688340595138 -"377",,,0.276,-1.19224270534196,-0.986685944207868 -"378",,,0.277,-1.17297696029661,-0.985644595148998 -"379",,,0.278,-1.15371121525126,-0.984564334529205 -"380",,,0.279,-1.13444547020591,-0.98344520499533 -"381",,,0.28,-1.11517972516056,-0.982287250728689 -"382",,,0.281,-1.09591398011522,-0.981090517443334 -"383",,,0.282,-1.07664823506986,-0.979855052384247 -"384",,,0.283,-1.05738249002452,-0.978580904325472 -"385",,,0.284,-1.03811674497917,-0.977268123568193 -"386",,,0.285,-1.01885099993382,-0.975916761938747 -"387",,,0.286,-0.999585254888476,-0.974526872786577 -"388",,,0.287,-1.00786393271464,-0.973098510982127 -"389",,,0.288,-1.04145616921618,-0.971631732914674 -"390",,,0.289,-1.07504840571771,-0.970126596490106 -"391",,,0.29,-1.10864064221925,-0.968583161128631 -"392",,,0.291,-1.14223287872079,-0.967001487762435 -"393",,,0.292,-1.17582511522232,-0.965381638833274 -"394",,,0.293,-1.20941735172386,-0.96372367829001 -"395",,,0.294,-1.24300958822539,-0.962027671586086 -"396",,,0.295,-1.27660182472693,-0.960293685676943 -"397",,,0.296,-1.31019406122847,-0.958521789017376 -"398",,,0.297,-1.34378629773,-0.95671205155883 -"399",,,0.298,-1.37737853423154,-0.954864544746643 -"400",,,0.299,-1.41097077073308,-0.952979341517219 -"401",,,0.3,-1.44456300723462,-0.951056516295154 -"402",,,0.301,-1.47815524373615,-0.949096144990294 -"403",,,0.302,-1.51174748023769,-0.947098304994744 -"404",,,0.303,-1.48729375785918,-0.945063075179805 -"405",,,0.304,-1.42503860320852,-0.942990535892864 -"406",,,0.305,-1.36278344855787,-0.940880768954225 -"407",,,0.306,-1.30052829390722,-0.938733857653874 -"408",,,0.307,-1.23827313925656,-0.936549886748192 -"409",,,0.308,-1.17601798460591,-0.934328942456612 -"410",,,0.309,-1.11376282995526,-0.932071112458211 -"411",,,0.31,-1.05150767530461,-0.929776485888251 -"412",,,0.311,-0.98925252065396,-0.927445153334661 -"413",,,0.312,-0.926997366003309,-0.925077206834458 -"414",,,0.313,-0.864742211352655,-0.922672739870115 -"415",,,0.314,-0.802487056701997,-0.92023184736587 -"416",,,0.315,-0.740231902051351,-0.917754625683981 -"417",,,0.316,-0.677976747400703,-0.915241172620917 -"418",,,0.317,-0.615721592750048,-0.912691587403503 -"419",,,0.318,-0.553466438099406,-0.910105970684996 -"420",,,0.319,-0.562321000285906,-0.907484424541117 -"421",,,0.32,-0.603106409621872,-0.90482705246602 -"422",,,0.321,-0.643891818957834,-0.902133959368203 -"423",,,0.322,-0.684677228293794,-0.899405251566371 -"424",,,0.323,-0.725462637629766,-0.896641036785236 -"425",,,0.324,-0.766248046965723,-0.893841424151264 -"426",,,0.325,-0.807033456301687,-0.891006524188368 -"427",,,0.326,-0.847818865637655,-0.888136448813545 -"428",,,0.327,-0.888604274973614,-0.885231311332455 -"429",,,0.328,-0.929389684309583,-0.882291226434953 -"430",,,0.329,-0.970175093645542,-0.879316310190556 -"431",,,0.33,-1.0109605029815,-0.876306680043864 -"432",,,0.331,-1.05174591231748,-0.87326245480992 -"433",,,0.332,-1.09253132165343,-0.870183754669526 -"434",,,0.333,-1.1333167309894,-0.86707070116449 -"435",,,0.334,-1.17410214032536,-0.863923417192835 -"436",,,0.335,-1.13940630428241,-0.860742027003944 -"437",,,0.336,-1.08274871780576,-0.857526656193652 -"438",,,0.337,-1.02609113132909,-0.854277431699295 -"439",,,0.338,-0.969433544852427,-0.850994481794692 -"440",,,0.339,-0.912775958375765,-0.847677936085083 -"441",,,0.34,-0.856118371899097,-0.844327925502015 -"442",,,0.341,-0.799460785422435,-0.840944582298169 -"443",,,0.342,-0.742803198945772,-0.837528040042142 -"444",,,0.343,-0.686145612469105,-0.834078433613171 -"445",,,0.344,-0.629488025992437,-0.830595899195813 -"446",,,0.345,-0.572830439515776,-0.827080574274562 -"447",,,0.346,-0.516172853039106,-0.823532597628428 -"448",,,0.347,-0.459515266562446,-0.819952109325452 -"449",,,0.348,-0.402857680085784,-0.816339250717184 -"450",,,0.349,-0.346200093609119,-0.812694164433094 -"451",,,0.35,-0.289542507132453,-0.809016994374947 -"452",,,0.351,-0.299108387487358,-0.805307885711122 -"453",,,0.352,-0.319533241380075,-0.801566984870877 -"454",,,0.353,-0.339958095272783,-0.797794439538571 -"455",,,0.354,-0.360382949165495,-0.793990398647835 -"456",,,0.355,-0.380807803058206,-0.79015501237569 -"457",,,0.356,-0.401232656950913,-0.786288432136619 -"458",,,0.357,-0.421657510843629,-0.782390810576588 -"459",,,0.358,-0.44208236473634,-0.778462301567023 -"460",,,0.359,-0.462507218629046,-0.774503060198734 -"461",,,0.36,-0.482932072521759,-0.770513242775789 -"462",,,0.361,-0.503356926414458,-0.76649300680935 -"463",,,0.362,-0.523781780307174,-0.762442511011448 -"464",,,0.363,-0.54420663419989,-0.758361915288722 -"465",,,0.364,-0.564631488092598,-0.754251380736104 -"466",,,0.365,-0.58505634198531,-0.75011106963046 -"467",,,0.366,-0.605481195878016,-0.745941145424182 -"468",,,0.367,-0.614753440193062,-0.741741772738739 -"469",,,0.368,-0.623359467771467,-0.737513117358174 -"470",,,0.369,-0.631965495349863,-0.73325534622256 -"471",,,0.37,-0.64057152292827,-0.728968627421411 -"472",,,0.371,-0.649177550506659,-0.724653130187047 -"473",,,0.372,-0.657783578085065,-0.720309024887907 -"474",,,0.373,-0.666389605663476,-0.715936483021831 -"475",,,0.374,-0.674995633241873,-0.711535677209285 -"476",,,0.375,-0.683601660820269,-0.707106781186547 -"477",,,0.376,-0.692207688398663,-0.702649969798849 -"478",,,0.377,-0.700813715977064,-0.698165418993473 -"479",,,0.378,-0.709419743555474,-0.693653305812805 -"480",,,0.379,-0.718025771133872,-0.689113808387348 -"481",,,0.38,-0.726631798712269,-0.684547105928689 -"482",,,0.381,-0.735237826290669,-0.679953378722419 -"483",,,0.382,-0.744084744965122,-0.675332808121024 -"484",,,0.383,-0.761252264407682,-0.67068557653672 -"485",,,0.384,-0.778419783850228,-0.666011867434252 -"486",,,0.385,-0.795587303292774,-0.661311865323652 -"487",,,0.386,-0.812754822735321,-0.656585755752956 -"488",,,0.387,-0.829922342177867,-0.651833725300879 -"489",,,0.388,-0.847089861620426,-0.647055961569444 -"490",,,0.389,-0.864257381062977,-0.642252653176584 -"491",,,0.39,-0.881424900505526,-0.63742398974869 -"492",,,0.391,-0.898592419948074,-0.632570161913124 -"493",,,0.392,-0.915759939390614,-0.6276913612907 -"494",,,0.393,-0.932927458833173,-0.622787780488112 -"495",,,0.394,-0.95009497827572,-0.617859613090334 -"496",,,0.395,-0.967262497718263,-0.612907053652976 -"497",,,0.396,-0.984430017160818,-0.607930297694605 -"498",,,0.397,-1.00159753660336,-0.602929541689024 -"499",,,0.398,-1.01777202908668,-0.597904983057519 -"500",,,0.399,-1.02612379084848,-0.592856820161059 -"501",,,0.4,-1.03447555261028,-0.587785252292473 -"502",,,0.401,-1.04282731437208,-0.582690479668576 -"503",,,0.402,-1.05117907613387,-0.577572703422268 -"504",,,0.403,-1.05953083789567,-0.572432125594591 -"505",,,0.404,-1.06788259965748,-0.567268949126756 -"506",,,0.405,-1.07623436141928,-0.56208337785213 -"507",,,0.406,-1.08458612318106,-0.556875616488188 -"508",,,0.407,-1.09293788494287,-0.55164587062843 -"509",,,0.408,-1.10128964670466,-0.546394346734269 -"510",,,0.409,-1.10964140846647,-0.541121252126876 -"511",,,0.41,-1.11799317022826,-0.535826794978997 -"512",,,0.411,-1.12634493199005,-0.530511184306734 -"513",,,0.412,-1.13469669375186,-0.525174629961295 -"514",,,0.413,-1.14304845551365,-0.519817342620709 -"515",,,0.414,-1.14303697247289,-0.514439533781506 -"516",,,0.415,-1.10896757625219,-0.509041415750371 -"517",,,0.416,-1.07489818003148,-0.50362320163576 -"518",,,0.417,-1.04082878381077,-0.498185105339491 -"519",,,0.418,-1.00675938759007,-0.492727341548292 -"520",,,0.419,-0.972689991369371,-0.487250125725332 -"521",,,0.42,-0.938620595148659,-0.481753674101715 -"522",,,0.421,-0.904551198927952,-0.476238203667939 -"523",,,0.422,-0.87048180270725,-0.470703932165332 -"524",,,0.423,-0.836412406486547,-0.465151078077458 -"525",,,0.424,-0.802343010265846,-0.459579860621487 -"526",,,0.425,-0.768273614045145,-0.453990499739546 -"527",,,0.426,-0.73420421782444,-0.448383216090032 -"528",,,0.427,-0.700134821603733,-0.442758231038901 -"529",,,0.428,-0.666065425383029,-0.437115766650933 -"530",,,0.429,-0.631996029162333,-0.431456045680959 -"531",,,0.43,-0.601573033753655,-0.425779291565072 -"532",,,0.431,-0.580450037438194,-0.420085728411806 -"533",,,0.432,-0.559327041122723,-0.414375580993284 -"534",,,0.433,-0.538204044807252,-0.408649074736349 -"535",,,0.434,-0.517081048491792,-0.402906435713662 -"536",,,0.435,-0.495958052176323,-0.39714789063478 -"537",,,0.436,-0.474835055860854,-0.391373666837202 -"538",,,0.437,-0.453712059545387,-0.385583992277396 -"539",,,0.438,-0.432589063229915,-0.379779095521801 -"540",,,0.439,-0.41146606691445,-0.3739592057378 -"541",,,0.44,-0.390343070598976,-0.368124552684678 -"542",,,0.441,-0.369220074283512,-0.362275366704545 -"543",,,0.442,-0.348097077968039,-0.35641187871325 -"544",,,0.443,-0.326974081652568,-0.350534320191259 -"545",,,0.444,-0.305851085337105,-0.344642923174517 -"546",,,0.445,-0.284728089021641,-0.338737920245291 -"547",,,0.446,-0.27515527281928,-0.332819544522986 -"548",,,0.447,-0.285576412529817,-0.326888029654942 -"549",,,0.448,-0.295997552240375,-0.320943609807209 -"550",,,0.449,-0.306418691950917,-0.314986519655304 -"551",,,0.45,-0.316839831661465,-0.309016994374947 -"552",,,0.451,-0.327260971372019,-0.303035269632773 -"553",,,0.452,-0.337682111082563,-0.297041581577034 -"554",,,0.453,-0.348103250793103,-0.291036166828271 -"555",,,0.454,-0.358524390503657,-0.285019262469975 -"556",,,0.455,-0.368945530214215,-0.278991106039229 -"557",,,0.456,-0.379366669924753,-0.272951935517325 -"558",,,0.457,-0.389787809635307,-0.266901989320375 -"559",,,0.458,-0.400208949345861,-0.260841506289896 -"560",,,0.459,-0.410630089056406,-0.254770725683382 -"561",,,0.46,-0.421051228766957,-0.248689887164854 -"562",,,0.461,-0.431472368477492,-0.242599230795407 -"563",,,0.462,-0.440306920198264,-0.236498997023724 -"564",,,0.463,-0.447207511670459,-0.23038942667659 -"565",,,0.464,-0.454108103142648,-0.224270760949381 -"566",,,0.465,-0.461008694614859,-0.218143241396542 -"567",,,0.466,-0.467909286087054,-0.212007109922054 -"568",,,0.467,-0.47480987755925,-0.205862608769881 -"569",,,0.468,-0.481710469031458,-0.199709980514406 -"570",,,0.469,-0.488611060503647,-0.19354946805086 -"571",,,0.47,-0.49551165197585,-0.187381314585724 -"572",,,0.471,-0.502412243448042,-0.181205763627137 -"573",,,0.472,-0.509312834920241,-0.175023058975275 -"574",,,0.473,-0.516213426392448,-0.168833444712734 -"575",,,0.474,-0.523114017864629,-0.162637165194883 -"576",,,0.475,-0.530014609336843,-0.15643446504023 -"577",,,0.476,-0.536915200809041,-0.150225589120757 -"578",,,0.477,-0.543815792281236,-0.144010782552252 -"579",,,0.478,-0.51985385274004,-0.137790290684638 -"580",,,0.479,-0.469085873023185,-0.131564359092283 -"581",,,0.48,-0.418317893306342,-0.125333233564304 -"582",,,0.481,-0.367549913589481,-0.11909716009487 -"583",,,0.482,-0.316781933872641,-0.112856384873482 -"584",,,0.483,-0.266013954155789,-0.10661115427526 -"585",,,0.484,-0.215245974438935,-0.100361714851215 -"586",,,0.485,-0.164477994722076,-0.0941083133185142 -"587",,,0.486,-0.113710015005225,-0.087851196550743 -"588",,,0.487,-0.0629420352883821,-0.0815906115681578 -"589",,,0.488,-0.0121740555715372,-0.0753268055279329 -"590",,,0.489,0.0385939241453106,-0.0690600257144059 -"591",,,0.49,0.0893619038621697,-0.0627905195293135 -"592",,,0.491,0.140129883579007,-0.0565185344820246 -"593",,,0.492,0.190897863295868,-0.0502443181797695 -"594",,,0.493,0.24166584301272,-0.0439681183178648 -"595",,,0.494,0.276489458510398,-0.0376901826699344 -"596",,,0.495,0.301527292896542,-0.0314107590781281 -"597",,,0.496,0.326565127282672,-0.0251300954433377 -"598",,,0.497,0.351602961668801,-0.0188484397154083 -"599",,,0.498,0.376640796054924,-0.0125660398833527 -"600",,,0.499,0.401678630441059,-0.006283143965559 -"601",,,0.5,0.426716464827194,0 -"602",,,0.501,0.451754299213332,0.006283143965559 -"603",,,0.502,0.47679213359947,0.0125660398833527 -"604",,,0.503,0.501829967985588,0.0188484397154083 -"605",,,0.504,0.526867802371735,0.0251300954433377 -"606",,,0.505,0.551905636757861,0.0314107590781281 -"607",,,0.506,0.576943471144008,0.0376901826699344 -"608",,,0.507,0.601981305530128,0.0439681183178648 -"609",,,0.508,0.627019139916254,0.0502443181797695 -"610",,,0.509,0.65205697430239,0.0565185344820246 -"611",,,0.51,0.619311757771535,0.0627905195293135 -"612",,,0.511,0.56229262077204,0.0690600257144059 -"613",,,0.512,0.505273483772532,0.0753268055279329 -"614",,,0.513,0.448254346773006,0.0815906115681578 -"615",,,0.514,0.391235209773496,0.087851196550743 -"616",,,0.515,0.334216072773999,0.0941083133185142 -"617",,,0.516,0.277196935774483,0.100361714851215 -"618",,,0.517,0.220177798774976,0.10661115427526 -"619",,,0.518,0.163158661775471,0.112856384873482 -"620",,,0.519,0.106139524775945,0.11909716009487 -"621",,,0.52,0.0491203877764394,0.125333233564304 -"622",,,0.521,-0.00789874922306968,0.131564359092283 -"623",,,0.522,-0.0649178862225724,0.137790290684638 -"624",,,0.523,-0.12193702322209,0.144010782552252 -"625",,,0.524,-0.178956160221604,0.150225589120757 -"626",,,0.525,-0.235975297221111,0.156434465040231 -"627",,,0.526,-0.215161202699299,0.162637165194884 -"628",,,0.527,-0.173493341063233,0.168833444712734 -"629",,,0.528,-0.131825479427166,0.175023058975276 -"630",,,0.529,-0.0901576177910873,0.181205763627138 -"631",,,0.53,-0.0484897561550265,0.187381314585725 -"632",,,0.531,-0.00682189451894985,0.193549468050861 -"633",,,0.532,0.034845967117121,0.199709980514407 -"634",,,0.533,0.0765138287532107,0.205862608769881 -"635",,,0.534,0.118181690389271,0.212007109922055 -"636",,,0.535,0.15984955202536,0.218143241396543 -"637",,,0.536,0.201517413661433,0.224270760949381 -"638",,,0.537,0.243185275297494,0.230389426676591 -"639",,,0.538,0.284853136933574,0.236498997023725 -"640",,,0.539,0.326520998569643,0.242599230795408 -"641",,,0.54,0.368188860205719,0.248689887164855 -"642",,,0.541,0.409856721841783,0.254770725683383 -"643",,,0.542,0.41501529567517,0.260841506289897 -"644",,,0.543,0.41487193411389,0.266901989320376 -"645",,,0.544,0.414728572552562,0.272951935517325 -"646",,,0.545,0.41458521099128,0.278991106039229 -"647",,,0.546,0.414441849429961,0.285019262469976 -"648",,,0.547,0.414298487868656,0.291036166828272 -"649",,,0.548,0.41415512630736,0.297041581577035 -"650",,,0.549,0.41401176474605,0.303035269632774 -"651",,,0.55,0.41386840318475,0.309016994374948 -"652",,,0.551,0.413725041623445,0.314986519655305 -"653",,,0.552,0.413581680062142,0.32094360980721 -"654",,,0.553,0.413438318500842,0.326888029654943 -"655",,,0.554,0.413294956939542,0.332819544522987 -"656",,,0.555,0.413151595378245,0.338737920245292 -"657",,,0.556,0.413008233816939,0.344642923174517 -"658",,,0.557,0.412864872255613,0.350534320191259 -"659",,,0.558,0.402540889097121,0.356411878713251 -"660",,,0.559,0.391767235866792,0.362275366704546 -"661",,,0.56,0.380993582636467,0.368124552684678 -"662",,,0.561,0.370219929406141,0.373959205737801 -"663",,,0.562,0.359446276175815,0.379779095521801 -"664",,,0.563,0.348672622945493,0.385583992277397 -"665",,,0.564,0.337898969715158,0.391373666837203 -"666",,,0.565,0.327125316484859,0.397147890634781 -"667",,,0.566,0.316351663254525,0.402906435713663 -"668",,,0.567,0.305578010024196,0.408649074736349 -"669",,,0.568,0.29480435679388,0.414375580993285 -"670",,,0.569,0.284030703563544,0.420085728411807 -"671",,,0.57,0.27325705033325,0.425779291565073 -"672",,,0.571,0.262483397102897,0.431456045680959 -"673",,,0.572,0.251709743872577,0.437115766650933 -"674",,,0.573,0.240565507147186,0.442758231038902 -"675",,,0.574,0.221011267641075,0.448383216090033 -"676",,,0.575,0.201457028135011,0.453990499739547 -"677",,,0.576,0.181902788628916,0.459579860621488 -"678",,,0.577,0.162348549122793,0.465151078077459 -"679",,,0.578,0.142794309616705,0.470703932165333 -"680",,,0.579,0.123240070110608,0.47623820366794 -"681",,,0.58,0.103685830604516,0.481753674101715 -"682",,,0.581,0.084131591098416,0.487250125725333 -"683",,,0.582,0.0645773515922932,0.492727341548292 -"684",,,0.583,0.0450231120862077,0.498185105339491 -"685",,,0.584,0.025468872580119,0.503623201635761 -"686",,,0.585,0.00591463307401197,0.509041415750372 -"687",,,0.586,-0.0136396064320771,0.514439533781507 -"688",,,0.587,-0.0331938459381849,0.51981734262071 -"689",,,0.588,-0.0527480854442714,0.525174629961296 -"690",,,0.589,-0.0674110222181982,0.530511184306734 -"691",,,0.59,-0.0483630905029219,0.535826794978997 -"692",,,0.591,-0.0293151587876729,0.541121252126876 -"693",,,0.592,-0.0102672270724193,0.546394346734269 -"694",,,0.593,0.00878070464284056,0.551645870628431 -"695",,,0.594,0.027828636358098,0.556875616488189 -"696",,,0.595,0.0468765680733631,0.562083377852131 -"697",,,0.596,0.0659244997886107,0.567268949126757 -"698",,,0.597,0.0849724315039037,0.572432125594591 -"699",,,0.598,0.104020363219134,0.577572703422268 -"700",,,0.599,0.123068294934388,0.582690479668576 -"701",,,0.6,0.142116226649659,0.587785252292473 -"702",,,0.601,0.161164158364915,0.59285682016106 -"703",,,0.602,0.180212090080176,0.597904983057519 -"704",,,0.603,0.199260021795424,0.602929541689025 -"705",,,0.604,0.218307953510684,0.607930297694605 -"706",,,0.605,0.235114534429804,0.612907053652976 -"707",,,0.606,0.243550826237328,0.617859613090334 -"708",,,0.607,0.251987118044832,0.622787780488112 -"709",,,0.608,0.260423409852358,0.6276913612907 -"710",,,0.609,0.268859701659871,0.632570161913124 -"711",,,0.61,0.277295993467371,0.63742398974869 -"712",,,0.611,0.285732285274892,0.642252653176584 -"713",,,0.612,0.294168577082403,0.647055961569444 -"714",,,0.613,0.302604868889928,0.651833725300879 -"715",,,0.614,0.311041160697419,0.656585755752956 -"716",,,0.615,0.319477452504941,0.661311865323652 -"717",,,0.616,0.327913744312463,0.666011867434252 -"718",,,0.617,0.336350036119964,0.67068557653672 -"719",,,0.618,0.344786327927484,0.675332808121024 -"720",,,0.619,0.353222619735006,0.679953378722419 -"721",,,0.62,0.361658911542499,0.684547105928689 -"722",,,0.621,0.380001727597733,0.689113808387348 -"723",,,0.622,0.42193747566415,0.693653305812805 -"724",,,0.623,0.463873223730569,0.698165418993473 -"725",,,0.624,0.505808971796987,0.702649969798849 -"726",,,0.625,0.547744719863415,0.707106781186547 -"727",,,0.626,0.589680467929847,0.711535677209285 -"728",,,0.627,0.631616215996271,0.715936483021831 -"729",,,0.628,0.673551964062696,0.720309024887907 -"730",,,0.629,0.715487712129125,0.724653130187047 -"731",,,0.63,0.757423460195543,0.728968627421411 -"732",,,0.631,0.799359208262,0.73325534622256 -"733",,,0.632,0.841294956328387,0.737513117358174 -"734",,,0.633,0.883230704394837,0.741741772738739 -"735",,,0.634,0.925166452461246,0.745941145424182 -"736",,,0.635,0.967102200527697,0.75011106963046 -"737",,,0.636,1.0090379485941,0.754251380736104 -"738",,,0.637,1.02681088295241,0.758361915288722 -"739",,,0.638,1.00519834665447,0.762442511011448 -"740",,,0.639,0.983585810356548,0.76649300680935 -"741",,,0.64,0.961973274058609,0.770513242775789 -"742",,,0.641,0.94036073776069,0.774503060198734 -"743",,,0.642,0.918748201462742,0.778462301567024 -"744",,,0.643,0.897135665164845,0.782390810576588 -"745",,,0.644,0.87552312886688,0.786288432136619 -"746",,,0.645,0.853910592568974,0.79015501237569 -"747",,,0.646,0.832298056271029,0.793990398647835 -"748",,,0.647,0.810685519973107,0.797794439538571 -"749",,,0.648,0.789072983675168,0.801566984870877 -"750",,,0.649,0.767460447377251,0.805307885711122 -"751",,,0.65,0.7458479110793,0.809016994374947 -"752",,,0.651,0.724235374781394,0.812694164433094 -"753",,,0.652,0.702622838483441,0.816339250717184 -"754",,,0.653,0.688376425385863,0.819952109325452 -"755",,,0.654,0.682614104323459,0.823532597628428 -"756",,,0.655,0.676851783261115,0.827080574274562 -"757",,,0.656,0.671089462198716,0.830595899195813 -"758",,,0.657,0.665327141136358,0.834078433613171 -"759",,,0.658,0.659564820073982,0.837528040042142 -"760",,,0.659,0.653802499011618,0.840944582298169 -"761",,,0.66,0.648040177949254,0.844327925502015 -"762",,,0.661,0.642277856886879,0.847677936085083 -"763",,,0.662,0.636515535824493,0.850994481794692 -"764",,,0.663,0.630753214762158,0.854277431699295 -"765",,,0.664,0.624990893699751,0.857526656193652 -"766",,,0.665,0.619228572637416,0.860742027003944 -"767",,,0.666,0.613466251575016,0.863923417192835 -"768",,,0.667,0.607703930512659,0.86707070116449 -"769",,,0.668,0.601941609450281,0.870183754669526 -"770",,,0.669,0.609030426457534,0.87326245480992 -"771",,,0.67,0.626666184812515,0.876306680043864 -"772",,,0.671,0.64430194316753,0.879316310190557 -"773",,,0.672,0.661937701522475,0.882291226434953 -"774",,,0.673,0.679573459877485,0.885231311332455 -"775",,,0.674,0.697209218232449,0.888136448813545 -"776",,,0.675,0.714844976587458,0.891006524188368 -"777",,,0.676,0.732480734942435,0.893841424151264 -"778",,,0.677,0.750116493297416,0.896641036785236 -"779",,,0.678,0.767752251652395,0.899405251566371 -"780",,,0.679,0.785388010007401,0.902133959368203 -"781",,,0.68,0.803023768362387,0.90482705246602 -"782",,,0.681,0.820659526717386,0.907484424541117 -"783",,,0.682,0.838295285072336,0.910105970684996 -"784",,,0.683,0.855931043427353,0.912691587403503 -"785",,,0.684,0.873566801782312,0.915241172620918 -"786",,,0.685,0.86919372337251,0.917754625683981 -"787",,,0.686,0.852101244005881,0.92023184736587 -"788",,,0.687,0.835008764639294,0.922672739870115 -"789",,,0.688,0.817916285272676,0.925077206834458 -"790",,,0.689,0.800823805906094,0.927445153334662 -"791",,,0.69,0.783731326539504,0.929776485888252 -"792",,,0.691,0.76663884717291,0.932071112458211 -"793",,,0.692,0.749546367806299,0.934328942456612 -"794",,,0.693,0.73245388843972,0.936549886748192 -"795",,,0.694,0.715361409073091,0.938733857653874 -"796",,,0.695,0.698268929706526,0.940880768954226 -"797",,,0.696,0.681176450339915,0.942990535892865 -"798",,,0.697,0.664083970973322,0.945063075179805 -"799",,,0.698,0.646991491606704,0.947098304994745 -"800",,,0.699,0.629899012240126,0.949096144990295 -"801",,,0.7,0.612806532873523,0.951056516295154 -"802",,,0.701,0.625892360231745,0.952979341517219 -"803",,,0.702,0.65081629590247,0.954864544746643 -"804",,,0.703,0.675740231573242,0.956712051558831 -"805",,,0.704,0.70066416724397,0.958521789017376 -"806",,,0.705,0.725588102914742,0.960293685676943 -"807",,,0.706,0.750512038585475,0.962027671586086 -"808",,,0.707,0.775435974256231,0.96372367829001 -"809",,,0.708,0.800359909926969,0.965381638833274 -"810",,,0.709,0.825283845597721,0.967001487762435 -"811",,,0.71,0.850207781268477,0.968583161128631 -"812",,,0.711,0.875131716939232,0.970126596490106 -"813",,,0.712,0.90005565260997,0.971631732914674 -"814",,,0.713,0.924979588280738,0.973098510982127 -"815",,,0.714,0.949903523951446,0.974526872786577 -"816",,,0.715,0.974827459622242,0.975916761938747 -"817",,,0.716,0.999751395292958,0.977268123568194 -"818",,,0.717,0.969362808816458,0.978580904325472 -"819",,,0.718,0.925383471027803,0.979855052384247 -"820",,,0.719,0.881404133239199,0.981090517443334 -"821",,,0.72,0.837424795450588,0.982287250728689 -"822",,,0.721,0.793445457661988,0.98344520499533 -"823",,,0.722,0.749466119873365,0.984564334529205 -"824",,,0.723,0.705486782084743,0.985644595148998 -"825",,,0.724,0.661507444296094,0.986685944207868 -"826",,,0.725,0.617528106507521,0.987688340595138 -"827",,,0.726,0.573548768718921,0.988651744737914 -"828",,,0.727,0.529569430930321,0.989576118602651 -"829",,,0.728,0.48559009314169,0.990461425696651 -"830",,,0.729,0.441610755353066,0.991307631069507 -"831",,,0.73,0.397631417564463,0.992114701314478 -"832",,,0.731,0.353652079775851,0.992882604569814 -"833",,,0.732,0.309672741987223,0.993611310520009 -"834",,,0.733,0.363493331212544,0.994300790396999 -"835",,,0.734,0.429740681328352,0.9949510169813 -"836",,,0.735,0.495988031444123,0.99556196460308 -"837",,,0.736,0.562235381559953,0.996133609143173 -"838",,,0.737,0.628482731675744,0.99666592803403 -"839",,,0.738,0.694730081791582,0.997158900260614 -"840",,,0.739,0.760977431907358,0.997612506361225 -"841",,,0.74,0.827224782023165,0.998026728428272 -"842",,,0.741,0.893472132138975,0.998401550108975 -"843",,,0.742,0.959719482254775,0.998736956606017 -"844",,,0.743,1.02596683237057,0.999032934678125 -"845",,,0.744,1.0922141824864,0.999289472640589 -"846",,,0.745,1.15846153260218,0.999506560365732 -"847",,,0.746,1.22470888271802,0.9996841892833 -"848",,,0.747,1.29095623283377,0.999822352380809 -"849",,,0.748,1.35720358294963,0.999921044203816 -"850",,,0.749,1.33368972294137,0.999980260856137 -"851",,,0.75,1.30756805158718,1 -"852",,,0.751,1.28144638023297,0.999980260856137 -"853",,,0.752,1.25532470887876,0.999921044203816 -"854",,,0.753,1.22920303752455,0.999822352380809 -"855",,,0.754,1.20308136617036,0.9996841892833 -"856",,,0.755,1.17695969481613,0.999506560365732 -"857",,,0.756,1.15083802346193,0.999289472640589 -"858",,,0.757,1.12471635210772,0.999032934678125 -"859",,,0.758,1.09859468075353,0.998736956606017 -"860",,,0.759,1.07247300939929,0.998401550108975 -"861",,,0.76,1.04635133804511,0.998026728428272 -"862",,,0.761,1.02022966669087,0.997612506361225 -"863",,,0.762,0.994107995336694,0.997158900260614 -"864",,,0.763,0.96798632398246,0.99666592803403 -"865",,,0.764,0.943322732729526,0.996133609143173 -"866",,,0.765,0.943111817581331,0.99556196460308 -"867",,,0.766,0.942900902433154,0.9949510169813 -"868",,,0.767,0.942689987284962,0.994300790396999 -"869",,,0.768,0.94247907213681,0.993611310520008 -"870",,,0.769,0.942268156988598,0.992882604569814 -"871",,,0.77,0.942057241840433,0.992114701314478 -"872",,,0.771,0.941846326692243,0.991307631069507 -"873",,,0.772,0.941635411544062,0.990461425696651 -"874",,,0.773,0.941424496395879,0.989576118602651 -"875",,,0.774,0.941213581247681,0.988651744737914 -"876",,,0.775,0.941002666099481,0.987688340595138 -"877",,,0.776,0.940791750951329,0.986685944207868 -"878",,,0.777,0.940580835803118,0.985644595148998 -"879",,,0.778,0.940369920654949,0.984564334529205 -"880",,,0.779,0.940159005506737,0.98344520499533 -"881",,,0.78,0.935584436479765,0.982287250728689 -"882",,,0.781,0.904377005251946,0.981090517443334 -"883",,,0.782,0.87316957402413,0.979855052384247 -"884",,,0.783,0.841962142796308,0.978580904325472 -"885",,,0.784,0.810754711568489,0.977268123568193 -"886",,,0.785,0.779547280340658,0.975916761938747 -"887",,,0.786,0.748339849112862,0.974526872786577 -"888",,,0.787,0.717132417885019,0.973098510982126 -"889",,,0.788,0.685924986657218,0.971631732914674 -"890",,,0.789,0.654717555429414,0.970126596490106 -"891",,,0.79,0.623510124201596,0.968583161128631 -"892",,,0.791,0.592302692973773,0.967001487762435 -"893",,,0.792,0.561095261745937,0.965381638833274 -"894",,,0.793,0.529887830518117,0.96372367829001 -"895",,,0.794,0.498680399290304,0.962027671586086 -"896",,,0.795,0.467472968062489,0.960293685676943 -"897",,,0.796,0.45302882021672,0.958521789017376 -"898",,,0.797,0.496230770756048,0.95671205155883 -"899",,,0.798,0.539432721295377,0.954864544746643 -"900",,,0.799,0.582634671834712,0.952979341517219 -"901",,,0.8,0.625836622374073,0.951056516295154 -"902",,,0.801,0.669038572913424,0.949096144990294 -"903",,,0.802,0.712240523452755,0.947098304994744 -"904",,,0.803,0.755442473992098,0.945063075179805 -"905",,,0.804,0.798644424531434,0.942990535892864 -"906",,,0.805,0.84184637507078,0.940880768954225 -"907",,,0.806,0.885048325610123,0.938733857653874 -"908",,,0.807,0.928250276149458,0.936549886748192 -"909",,,0.808,0.971452226688793,0.934328942456612 -"910",,,0.809,1.01465417722816,0.932071112458211 -"911",,,0.81,1.05785612776749,0.929776485888251 -"912",,,0.811,1.10105807830684,0.927445153334661 -"913",,,0.812,1.12266572386344,0.925077206834458 -"914",,,0.813,1.09616145774845,0.922672739870115 -"915",,,0.814,1.06965719163345,0.92023184736587 -"916",,,0.815,1.04315292551846,0.917754625683981 -"917",,,0.816,1.01664865940347,0.915241172620918 -"918",,,0.817,0.990144393288468,0.912691587403503 -"919",,,0.818,0.963640127173462,0.910105970684996 -"920",,,0.819,0.937135861058459,0.907484424541117 -"921",,,0.82,0.910631594943501,0.904827052466019 -"922",,,0.821,0.884127328828497,0.902133959368203 -"923",,,0.822,0.857623062713511,0.899405251566371 -"924",,,0.823,0.831118796598518,0.896641036785236 -"925",,,0.824,0.804614530483511,0.893841424151264 -"926",,,0.825,0.778110264368508,0.891006524188368 -"927",,,0.826,0.751605998253513,0.888136448813544 -"928",,,0.827,0.725101732138508,0.885231311332455 -"929",,,0.828,0.717080774815144,0.882291226434953 -"930",,,0.829,0.737453252164982,0.879316310190556 -"931",,,0.83,0.757825729514865,0.876306680043863 -"932",,,0.831,0.778198206864741,0.87326245480992 -"933",,,0.832,0.798570684214611,0.870183754669525 -"934",,,0.833,0.818943161564468,0.86707070116449 -"935",,,0.834,0.839315638914332,0.863923417192835 -"936",,,0.835,0.859688116264189,0.860742027003943 -"937",,,0.836,0.880060593614058,0.857526656193652 -"938",,,0.837,0.900433070963912,0.854277431699295 -"939",,,0.838,0.920805548313802,0.850994481794692 -"940",,,0.839,0.941178025663657,0.847677936085083 -"941",,,0.84,0.961550503013537,0.844327925502015 -"942",,,0.841,0.981922980363376,0.840944582298169 -"943",,,0.842,1.00229545771324,0.837528040042142 -"944",,,0.843,1.0226679350631,0.834078433613171 -"945",,,0.844,1.0238763290646,0.830595899195812 -"946",,,0.845,1.00422370451448,0.827080574274562 -"947",,,0.846,0.984571079964361,0.823532597628427 -"948",,,0.847,0.964918455414249,0.819952109325452 -"949",,,0.848,0.945265830864163,0.816339250717183 -"950",,,0.849,0.925613206314034,0.812694164433094 -"951",,,0.85,0.905960581763948,0.809016994374947 -"952",,,0.851,0.886307957213857,0.805307885711122 -"953",,,0.852,0.866655332663724,0.801566984870876 -"954",,,0.853,0.847002708113616,0.797794439538571 -"955",,,0.854,0.827350083563515,0.793990398647835 -"956",,,0.855,0.807697459013422,0.79015501237569 -"957",,,0.856,0.78804483446331,0.786288432136619 -"958",,,0.857,0.768392209913195,0.782390810576588 -"959",,,0.858,0.748739585363074,0.778462301567023 -"960",,,0.859,0.729086960812949,0.774503060198733 -"961",,,0.86,0.689573964305873,0.770513242775789 -"962",,,0.861,0.634664612523177,0.76649300680935 -"963",,,0.862,0.579755260740452,0.762442511011448 -"964",,,0.863,0.524845908957739,0.758361915288722 -"965",,,0.864,0.469936557175011,0.754251380736104 -"966",,,0.865,0.415027205392306,0.750111069630459 -"967",,,0.866,0.360117853609589,0.745941145424182 -"968",,,0.867,0.305208501826895,0.74174177273874 -"969",,,0.868,0.250299150044191,0.737513117358174 -"970",,,0.869,0.195389798261463,0.73325534622256 -"971",,,0.87,0.140480446478717,0.728968627421411 -"972",,,0.871,0.0855710946960418,0.724653130187047 -"973",,,0.872,0.0306617429133133,0.720309024887907 -"974",,,0.873,-0.0242476088693916,0.715936483021831 -"975",,,0.874,-0.0791569606520856,0.711535677209285 -"976",,,0.875,-0.134066312434816,0.707106781186548 -"977",,,0.876,-0.120805995050785,0.70264996979885 -"978",,,0.877,-0.0704848717773553,0.698165418993473 -"979",,,0.878,-0.0201637485038893,0.693653305812805 -"980",,,0.879,0.0301573747695647,0.689113808387348 -"981",,,0.88,0.0804784980429836,0.684547105928689 -"982",,,0.881,0.130799621316433,0.679953378722419 -"983",,,0.882,0.181120744589863,0.675332808121025 -"984",,,0.883,0.231441867863321,0.67068557653672 -"985",,,0.884,0.281762991136738,0.666011867434252 -"986",,,0.885,0.33208411441021,0.661311865323652 -"987",,,0.886,0.382405237683635,0.656585755752956 -"988",,,0.887,0.432726360957084,0.651833725300879 -"989",,,0.888,0.483047484230525,0.647055961569444 -"990",,,0.889,0.533368607503988,0.642252653176585 -"991",,,0.89,0.583689730777414,0.63742398974869 -"992",,,0.891,0.634010854050858,0.632570161913125 -"993",,,0.892,0.640930476935156,0.6276913612907 -"994",,,0.893,0.631985735148426,0.622787780488113 -"995",,,0.894,0.623040993361679,0.617859613090335 -"996",,,0.895,0.614096251574965,0.612907053652976 -"997",,,0.896,0.605151509788219,0.607930297694606 -"998",,,0.897,0.596206768001441,0.602929541689025 -"999",,,0.898,0.587262026214695,0.597904983057519 -"1000",,,0.899,0.578317284427964,0.592856820161059 -"1001",,,0.9,0.56937254264122,0.587785252292473 -"1002",,,0.901,0.56042780085448,0.582690479668576 -"1003",,,0.902,0.551483059067727,0.577572703422268 -"1004",,,0.903,0.542538317280984,0.57243212559459 -"1005",,,0.904,0.533593575494231,0.567268949126756 -"1006",,,0.905,0.524648833707516,0.56208337785213 -"1007",,,0.906,0.515704091920771,0.556875616488188 -"1008",,,0.907,0.506759350133997,0.55164587062843 -"1009",,,0.908,0.503004446559342,0.546394346734269 -"1010",,,0.909,0.500413381723592,0.541121252126875 -"1011",,,0.91,0.497822316887881,0.535826794978996 -"1012",,,0.911,0.49523125205215,0.530511184306733 -"1013",,,0.912,0.492640187216398,0.525174629961295 -"1014",,,0.913,0.490049122380664,0.519817342620709 -"1015",,,0.914,0.487458057544932,0.514439533781507 -"1016",,,0.915,0.484866992709207,0.50904141575037 -"1017",,,0.916,0.482275927873494,0.503623201635761 -"1018",,,0.917,0.479684863037736,0.49818510533949 -"1019",,,0.918,0.477093798202025,0.492727341548292 -"1020",,,0.919,0.474502733366273,0.487250125725332 -"1021",,,0.92,0.471911668530536,0.481753674101715 -"1022",,,0.921,0.469320603694815,0.476238203667939 -"1023",,,0.922,0.466729538859083,0.470703932165332 -"1024",,,0.923,0.464138474023358,0.465151078077458 -"1025",,,0.924,0.481791165380514,0.459579860621488 -"1026",,,0.925,0.501659970612249,0.453990499739547 -"1027",,,0.926,0.521528775843995,0.448383216090032 -"1028",,,0.927,0.541397581075761,0.442758231038902 -"1029",,,0.928,0.561266386307497,0.437115766650932 -"1030",,,0.929,0.581135191539243,0.43145604568096 -"1031",,,0.93,0.601003996770993,0.425779291565072 -"1032",,,0.931,0.620872802002747,0.420085728411807 -"1033",,,0.932,0.640741607234492,0.414375580993284 -"1034",,,0.933,0.660610412466263,0.40864907473635 -"1035",,,0.934,0.680479217698028,0.402906435713663 -"1036",,,0.935,0.700348022929734,0.397147890634781 -"1037",,,0.936,0.720216828161493,0.391373666837202 -"1038",,,0.937,0.740085633393261,0.385583992277397 -"1039",,,0.938,0.759954438624975,0.379779095521801 -"1040",,,0.939,0.779823243856743,0.373959205737801 -"1041",,,0.94,0.763321179680305,0.368124552684678 -"1042",,,0.941,0.746296547927475,0.362275366704546 -"1043",,,0.942,0.72927191617465,0.35641187871325 -"1044",,,0.943,0.712247284421797,0.350534320191259 -"1045",,,0.944,0.695222652668971,0.344642923174517 -"1046",,,0.945,0.67819802091612,0.338737920245292 -"1047",,,0.946,0.661173389163296,0.332819544522986 -"1048",,,0.947,0.644148757410485,0.326888029654943 -"1049",,,0.948,0.627124125657601,0.320943609807209 -"1050",,,0.949,0.610099493904788,0.314986519655305 -"1051",,,0.95,0.593074862151987,0.309016994374948 -"1052",,,0.951,0.576050230399103,0.303035269632774 -"1053",,,0.952,0.559025598646272,0.297041581577035 -"1054",,,0.953,0.54200096689347,0.291036166828272 -"1055",,,0.954,0.524976335140648,0.285019262469976 -"1056",,,0.955,0.507033620148927,0.27899110603923 -"1057",,,0.956,0.476957178165172,0.272951935517325 -"1058",,,0.957,0.446880736181397,0.266901989320376 -"1059",,,0.958,0.416804294197595,0.260841506289897 -"1060",,,0.959,0.38672785221383,0.254770725683382 -"1061",,,0.96,0.356651410230059,0.248689887164854 -"1062",,,0.961,0.326574968246256,0.242599230795407 -"1063",,,0.962,0.296498526262494,0.236498997023724 -"1064",,,0.963,0.266422084278726,0.230389426676591 -"1065",,,0.964,0.236345642294926,0.224270760949381 -"1066",,,0.965,0.206269200311142,0.218143241396543 -"1067",,,0.966,0.176192758327368,0.212007109922054 -"1068",,,0.967,0.146116316343622,0.205862608769882 -"1069",,,0.968,0.11603987435982,0.199709980514406 -"1070",,,0.969,0.0859634323760642,0.193549468050861 -"1071",,,0.97,0.0558869903922755,0.187381314585725 -"1072",,,0.971,0.028049182540724,0.181205763627138 -"1073",,,0.972,0.0124297989202057,0.175023058975276 -"1074",,,0.973,-0.00318958470030663,0.168833444712734 -"1075",,,0.974,-0.0188089683208115,0.162637165194883 -"1076",,,0.975,-0.0344283519413494,0.156434465040231 -"1077",,,0.976,-0.0500477355618579,0.150225589120757 -"1078",,,0.977,-0.0656671191823809,0.144010782552252 -"1079",,,0.978,-0.0812865028029398,0.137790290684638 -"1080",,,0.979,-0.0969058864234522,0.131564359092282 -"1081",,,0.98,-0.112525270043977,0.125333233564304 -"1082",,,0.981,-0.128144653664507,0.11909716009487 -"1083",,,0.982,-0.143764037285034,0.112856384873481 -"1084",,,0.983,-0.159383420905568,0.10661115427526 -"1085",,,0.984,-0.175002804526084,0.100361714851214 -"1086",,,0.985,-0.190622188146604,0.0941083133185148 -"1087",,,0.986,-0.20624157176713,0.0878511965507423 -"1088",,,0.987,-0.22186095538764,0.0815906115681579 -"1089",,,0.988,-0.237480339008189,0.0753268055279326 -"1090",,,0.989,-0.253099722628713,0.0690600257144061 -"1091",,,0.99,-0.268719106249225,0.0627905195293131 -"1092",,,0.991,-0.284338489869769,0.0565185344820247 -"1093",,,0.992,-0.299957873490268,0.0502443181797692 -"1094",,,0.993,-0.315577257110821,0.043968118317865 -"1095",,,0.994,-0.331196640731309,0.0376901826699341 -"1096",,,0.995,-0.346816024351848,0.0314107590781282 -"1097",,,0.996,-0.362435407972342,0.0251300954433369 -"1098",,,0.997,-0.378054791592887,0.018848439715408 -"1099",,,0.998,-0.393674175213458,0.0125660398833519 -"1100",,,0.999,-0.409293558833934,0.00628314396555868 -"1101",,,1,-0.424912942454464,1.22464679914735e-16 -"1102",,,1.001,-0.440532326074995,-0.00628314396555844 -"1103",,,1.002,-0.456151709695483,-0.0125660398833526 -"1104",,,1.003,-0.471771093316044,-0.0188484397154078 -"1105",,,1.004,-0.487390476936574,-0.0251300954433376 -"1106",,,1.005,-0.503009860557075,-0.0314107590781271 -"1107",,,1.006,-0.518629244177621,-0.0376901826699347 -"1108",,,1.007,-0.534248627798135,-0.0439681183178638 -"1109",,,1.008,-0.549868011418636,-0.0502443181797699 -"1110",,,1.009,-0.565487395039175,-0.0565185344820235 -"1111",,,1.01,-0.581106778659752,-0.0627905195293129 -"1112",,,1.011,-0.596726162280232,-0.0690600257144049 -"1113",,,1.012,-0.612345545900743,-0.0753268055279323 -"1114",,,1.013,-0.627964929521277,-0.0815906115681568 -"1115",,,1.014,-0.643584313141805,-0.0878511965507429 -"1116",,,1.015,-0.659203696762311,-0.0941083133185137 -"1117",,,1.016,-0.674823080382863,-0.100361714851215 -"1118",,,1.017,-0.690442464003388,-0.106611154275259 -"1119",,,1.018,-0.70606184762391,-0.112856384873482 -"1120",,,1.019,-0.721681231244425,-0.119097160094869 -"1121",,,1.02,-0.737300614864949,-0.125333233564304 -"1122",,,1.021,-0.752919998485486,-0.131564359092282 -"1123",,,1.022,-0.768539382105971,-0.137790290684638 -"1124",,,1.023,-0.784158765726522,-0.144010782552251 -"1125",,,1.024,-0.799778149347023,-0.150225589120757 -"1126",,,1.025,-0.815397532967537,-0.15643446504023 -"1127",,,1.026,-0.831016916588096,-0.162637165194884 -"1128",,,1.027,-0.846636300208623,-0.168833444712733 -"1129",,,1.028,-0.862255683829155,-0.175023058975276 -"1130",,,1.029,-0.877875067449716,-0.181205763627137 -"1131",,,1.03,-0.893494451070222,-0.187381314585724 -"1132",,,1.031,-0.909113834690738,-0.19354946805086 -"1133",,,1.032,-0.924733218311238,-0.199709980514407 -"1134",,,1.033,-0.940352601931798,-0.205862608769881 -"1135",,,1.034,-0.955971985552284,-0.212007109922055 -"1136",,,1.035,-0.971591369172825,-0.218143241396542 -"1137",,,1.036,-0.987210752793383,-0.224270760949381 -"1138",,,1.037,-1.0028301364139,-0.23038942667659 -"1139",,,1.038,-1.01844952003443,-0.236498997023725 -"1140",,,1.039,-1.03406890365496,-0.242599230795407 -"1141",,,1.04,-1.04968828727548,-0.248689887164855 -"1142",,,1.041,-1.06530767089598,-0.254770725683382 -"1143",,,1.042,-1.08092705451649,-0.260841506289897 -"1144",,,1.043,-1.09654643813704,-0.266901989320375 -"1145",,,1.044,-1.11216582175755,-0.272951935517326 -"1146",,,1.045,-1.12778520537807,-0.278991106039228 -"1147",,,1.046,-1.14340458899861,-0.285019262469977 -"1148",,,1.047,-1.15902397261912,-0.291036166828271 -"1149",,,1.048,-1.17464335623966,-0.297041581577035 -"1150",,,1.049,-1.1902627398602,-0.303035269632773 -"1151",,,1.05,-1.20588212348072,-0.309016994374947 -"1152",,,1.051,-1.2215015071012,-0.314986519655304 -"1153",,,1.052,-1.23712089072172,-0.320943609807209 -"1154",,,1.053,-1.25274027434227,-0.326888029654942 -"1155",,,1.054,-1.26835965796278,-0.332819544522986 -"1156",,,1.055,-1.2839790415833,-0.338737920245291 -"1157",,,1.056,-1.29959842520383,-0.344642923174516 -"1158",,,1.057,-1.31521780882436,-0.350534320191259 -"1159",,,1.058,-1.33083719244488,-0.356411878713249 -"1160",,,1.059,-1.3464565760654,-0.362275366704546 -"1161",,,1.06,-1.36207595968594,-0.368124552684677 -"1162",,,1.061,-1.37769534330647,-0.3739592057378 -"1163",,,1.062,-1.39331472692701,-0.3797790955218 -"1164",,,1.063,-1.40893411054752,-0.385583992277396 -"1165",,,1.064,-1.42455349416804,-0.391373666837201 -"1166",,,1.065,-1.44017287778855,-0.39714789063478 -"1167",,,1.066,-1.45579226140909,-0.402906435713662 -"1168",,,1.067,-1.47141164502964,-0.408649074736349 -"1169",,,1.068,-1.48703102865013,-0.414375580993283 -"1170",,,1.069,-1.50265041227068,-0.420085728411806 -"1171",,,1.07,-1.51826979589119,-0.425779291565072 -"1172",,,1.071,-1.53388917951172,-0.431456045680959 -"1173",,,1.072,-1.54950856313228,-0.437115766650932 -"1174",,,1.073,-1.56512794675277,-0.442758231038901 -"1175",,,1.074,-1.58074733037329,-0.448383216090031 -"1176",,,1.075,-1.59636671399381,-0.453990499739547 -"1177",,,1.076,-1.61198609761434,-0.459579860621487 -"1178",,,1.077,-1.62760548123487,-0.465151078077458 -"1179",,,1.078,-1.64322486485537,-0.470703932165331 -"1180",,,1.079,-1.65884424847593,-0.476238203667938 -"1181",,,1.08,-1.67446363209648,-0.481753674101714 -"1182",,,1.081,-1.69008301571698,-0.487250125725332 -"1183",,,1.082,-1.7057023993375,-0.492727341548291 -"1184",,,1.083,-1.72132178295802,-0.49818510533949 -"1185",,,1.084,-1.73694116657854,-0.50362320163576 -"1186",,,1.085,-1.75256055019907,-0.509041415750371 -"1187",,,1.086,-1.76817993381959,-0.514439533781506 -"1188",,,1.087,-1.78379931744011,-0.519817342620709 -"1189",,,1.088,-1.7994187010606,-0.525174629961295 -"1190",,,1.089,-1.81503808468116,-0.530511184306734 -"1191",,,1.09,-1.83065746830169,-0.535826794978996 -"1192",,,1.091,-1.8462768519222,-0.541121252126876 -"1193",,,1.092,-1.86189623554273,-0.546394346734268 -"1194",,,1.093,-1.87751561916325,-0.55164587062843 -"1195",,,1.094,-1.89313500278377,-0.556875616488187 -"1196",,,1.095,-1.90875438640432,-0.562083377852131 -"1197",,,1.096,-1.92437377002484,-0.567268949126756 -"1198",,,1.097,-1.9399931536454,-0.572432125594591 -"1199",,,1.098,-1.95561253726587,-0.577572703422267 -"1200",,,1.099,-1.97123192088639,-0.582690479668576 -"1201",,,1.1,-1.98685130450695,-0.587785252292472 diff --git a/TeX/Plots/Data/overfit_spline.csv b/TeX/Plots/Data/overfit_spline.csv deleted file mode 100644 index 280607d..0000000 --- a/TeX/Plots/Data/overfit_spline.csv +++ /dev/null @@ -1,1202 +0,0 @@ -"",x,y -"1",-0.1,0.303237326230256 -"2",-0.099,0.298227894259559 -"3",-0.098,0.293218462288862 -"4",-0.097,0.288209030318165 -"5",-0.096,0.283199598347468 -"6",-0.095,0.278190166376772 -"7",-0.094,0.273180734406075 -"8",-0.093,0.268171302435378 -"9",-0.092,0.263161870464681 -"10",-0.091,0.258152438493984 -"11",-0.09,0.253143006523287 -"12",-0.089,0.24813357455259 -"13",-0.088,0.243124142581893 -"14",-0.087,0.238114710611196 -"15",-0.086,0.233105278640499 -"16",-0.085,0.228095846669802 -"17",-0.084,0.223086414699105 -"18",-0.083,0.218076982728408 -"19",-0.082,0.213067550757712 -"20",-0.081,0.208058118787015 -"21",-0.08,0.203048686816318 -"22",-0.079,0.198039254845621 -"23",-0.078,0.193029822874924 -"24",-0.077,0.188020390904227 -"25",-0.076,0.18301095893353 -"26",-0.075,0.178001526962833 -"27",-0.074,0.172992094992136 -"28",-0.073,0.167982663021439 -"29",-0.072,0.162973231050742 -"30",-0.071,0.157963799080046 -"31",-0.07,0.152954367109349 -"32",-0.069,0.147944935138652 -"33",-0.068,0.142935503167955 -"34",-0.067,0.137926071197258 -"35",-0.066,0.132916639226561 -"36",-0.065,0.127907207255864 -"37",-0.064,0.122897775285167 -"38",-0.063,0.11788834331447 -"39",-0.062,0.112878911343773 -"40",-0.061,0.107869479373076 -"41",-0.06,0.102860047402379 -"42",-0.059,0.0978506154316824 -"43",-0.058,0.0928411834609855 -"44",-0.057,0.0878317514902886 -"45",-0.056,0.0828223195195917 -"46",-0.055,0.0778128875488948 -"47",-0.054,0.0728034555781978 -"48",-0.053,0.067794023607501 -"49",-0.052,0.062784591636804 -"50",-0.051,0.0577751596661071 -"51",-0.05,0.0527657276954102 -"52",-0.049,0.0477562957247133 -"53",-0.048,0.0427468637540163 -"54",-0.047,0.0377374317833194 -"55",-0.046,0.0327279998126225 -"56",-0.045,0.0277185678419256 -"57",-0.044,0.0227091358712287 -"58",-0.043,0.0176997039005317 -"59",-0.042,0.0126902719298348 -"60",-0.041,0.00768083995913788 -"61",-0.04,0.00267140798844101 -"62",-0.039,-0.00233802398225591 -"63",-0.038,-0.00734745595295286 -"64",-0.037,-0.0123568879236498 -"65",-0.036,-0.0173663198943467 -"66",-0.035,-0.0223757518650436 -"67",-0.034,-0.0273851838357405 -"68",-0.033,-0.0323946158064375 -"69",-0.032,-0.0374040477771344 -"70",-0.031,-0.0424134797478313 -"71",-0.03,-0.0474229117185282 -"72",-0.029,-0.0524323436892252 -"73",-0.028,-0.0574417756599221 -"74",-0.027,-0.0624512076306189 -"75",-0.026,-0.0674606396013159 -"76",-0.025,-0.0724700715720128 -"77",-0.024,-0.0774795035427097 -"78",-0.023,-0.0824889355134066 -"79",-0.022,-0.0874983674841036 -"80",-0.021,-0.0925077994548005 -"81",-0.02,-0.0975172314254974 -"82",-0.019,-0.102526663396194 -"83",-0.018,-0.107536095366891 -"84",-0.017,-0.112545527337588 -"85",-0.016,-0.117554959308285 -"86",-0.015,-0.122564391278982 -"87",-0.014,-0.127573823249679 -"88",-0.013,-0.132583255220376 -"89",-0.012,-0.137592687191073 -"90",-0.011,-0.14260211916177 -"91",-0.01,-0.147611551132467 -"92",-0.00900000000000001,-0.152620983103163 -"93",-0.00800000000000001,-0.15763041507386 -"94",-0.00700000000000001,-0.162639847044557 -"95",-0.00600000000000001,-0.167649279015254 -"96",-0.005,-0.172658710985951 -"97",-0.004,-0.177668142956648 -"98",-0.003,-0.182677574927345 -"99",-0.002,-0.187687006898042 -"100",-0.001,-0.192696438868739 -"101",0,-0.197705870839436 -"102",0.001,-0.202715266172601 -"103",0.002,-0.207724431634405 -"104",0.003,-0.212733132330402 -"105",0.004,-0.217741133366145 -"106",0.00499999999999999,-0.222748199847187 -"107",0.00599999999999999,-0.227754096879082 -"108",0.00699999999999999,-0.232758589567383 -"109",0.00799999999999999,-0.237761443017645 -"110",0.00899999999999999,-0.242762422335419 -"111",0.01,-0.247761292626261 -"112",0.011,-0.252757818995723 -"113",0.012,-0.257751766549359 -"114",0.013,-0.262742900392723 -"115",0.014,-0.267730985631367 -"116",0.015,-0.272715787370845 -"117",0.016,-0.277697070715286 -"118",0.017,-0.282674597760437 -"119",0.018,-0.28764812124711 -"120",0.019,-0.292617392102991 -"121",0.02,-0.297582161255772 -"122",0.021,-0.30254217963314 -"123",0.022,-0.307497198162786 -"124",0.023,-0.312446967772399 -"125",0.024,-0.317391239389667 -"126",0.025,-0.322329763942281 -"127",0.026,-0.327262292357929 -"128",0.027,-0.3321885755643 -"129",0.028,-0.337108364489085 -"130",0.029,-0.342021410059971 -"131",0.03,-0.346927463204649 -"132",0.031,-0.351826274850807 -"133",0.032,-0.356717595974837 -"134",0.033,-0.361601193474308 -"135",0.034,-0.366476873015524 -"136",0.035,-0.371344446053557 -"137",0.036,-0.376203724043477 -"138",0.037,-0.381054518440357 -"139",0.038,-0.385896640699265 -"140",0.039,-0.390729902275273 -"141",0.04,-0.395554114623452 -"142",0.041,-0.400369089198872 -"143",0.042,-0.405174637456604 -"144",0.043,-0.409970570851719 -"145",0.044,-0.414756700839287 -"146",0.045,-0.419532838874379 -"147",0.046,-0.424298796412067 -"148",0.047,-0.42905438490742 -"149",0.048,-0.433799415866218 -"150",0.049,-0.438533706721285 -"151",0.05,-0.443257086306061 -"152",0.051,-0.447969384748544 -"153",0.052,-0.452670432176729 -"154",0.053,-0.457360058718614 -"155",0.054,-0.462038094502196 -"156",0.055,-0.466704369655471 -"157",0.056,-0.471358714306436 -"158",0.057,-0.476000958583088 -"159",0.058,-0.480630932613423 -"160",0.059,-0.485248466525439 -"161",0.06,-0.489853390447132 -"162",0.061,-0.494445534506499 -"163",0.062,-0.499024728831536 -"164",0.063,-0.503590803550241 -"165",0.064,-0.508143590516217 -"166",0.065,-0.512683021707939 -"167",0.066,-0.517209182366943 -"168",0.067,-0.521722170695605 -"169",0.068,-0.526222084896304 -"170",0.069,-0.530709023171417 -"171",0.07,-0.535183083723322 -"172",0.071,-0.539644364754395 -"173",0.072,-0.544092964467015 -"174",0.073,-0.54852898106356 -"175",0.074,-0.552952512746406 -"176",0.075,-0.557363657717931 -"177",0.076,-0.561762514180513 -"178",0.077,-0.56614918033653 -"179",0.078,-0.570523754388358 -"180",0.079,-0.574886334538375 -"181",0.08,-0.579237018120935 -"182",0.081,-0.583575872818143 -"183",0.082,-0.58790293000594 -"184",0.083,-0.592218218844337 -"185",0.084,-0.596521768493343 -"186",0.085,-0.600813608112967 -"187",0.086,-0.60509376686322 -"188",0.087,-0.609362273904112 -"189",0.088,-0.613619158395651 -"190",0.089,-0.617864449497849 -"191",0.09,-0.622098176370715 -"192",0.091,-0.626320368174259 -"193",0.092,-0.63053105406849 -"194",0.093,-0.634730263213418 -"195",0.094,-0.638918024769053 -"196",0.095,-0.643094367895406 -"197",0.096,-0.647259321752485 -"198",0.097,-0.651412915500301 -"199",0.098,-0.655555178298863 -"200",0.099,-0.659686139308182 -"201",0.1,-0.663805827688266 -"202",0.101,-0.667914272599127 -"203",0.102,-0.672011503200773 -"204",0.103,-0.676097548653215 -"205",0.104,-0.680172438116462 -"206",0.105,-0.684236200750524 -"207",0.106,-0.688288865715411 -"208",0.107,-0.692330462171133 -"209",0.108,-0.696361019277699 -"210",0.109,-0.70038056619512 -"211",0.11,-0.704389132083405 -"212",0.111,-0.708386746102564 -"213",0.112,-0.712373430736141 -"214",0.113,-0.716349105142462 -"215",0.114,-0.720313607150692 -"216",0.115,-0.724266772391916 -"217",0.116,-0.728208436497218 -"218",0.117,-0.732138435097683 -"219",0.118,-0.736056603824395 -"220",0.119,-0.739962778308438 -"221",0.12,-0.743856794180898 -"222",0.121,-0.747738487072857 -"223",0.122,-0.751607692615402 -"224",0.123,-0.755464246439615 -"225",0.124,-0.759307984176583 -"226",0.125,-0.763138741457388 -"227",0.126,-0.766956353913116 -"228",0.127,-0.770760657174851 -"229",0.128,-0.774551465999147 -"230",0.129,-0.778328360553404 -"231",0.13,-0.782090773406328 -"232",0.131,-0.785838134829731 -"233",0.132,-0.789569875095425 -"234",0.133,-0.793285424475225 -"235",0.134,-0.796984213240942 -"236",0.135,-0.800665671664389 -"237",0.136,-0.80432923001738 -"238",0.137,-0.807974318571727 -"239",0.138,-0.811600367599242 -"240",0.139,-0.81520680737174 -"241",0.14,-0.818793068161031 -"242",0.141,-0.82235858023893 -"243",0.142,-0.825902773877249 -"244",0.143,-0.829425079347801 -"245",0.144,-0.832924956943878 -"246",0.145,-0.836402119258292 -"247",0.146,-0.839856405073211 -"248",0.147,-0.843287654107689 -"249",0.148,-0.846695706080776 -"250",0.149,-0.850080400711525 -"251",0.15,-0.853441577718987 -"252",0.151,-0.856779076822214 -"253",0.152,-0.860092737740258 -"254",0.153,-0.863382400192171 -"255",0.154,-0.866647903897004 -"256",0.155,-0.869889088573809 -"257",0.156,-0.873105793941638 -"258",0.157,-0.876297859719542 -"259",0.158,-0.879465125626574 -"260",0.159,-0.882607431381785 -"261",0.16,-0.885724602556049 -"262",0.161,-0.888816374057309 -"263",0.162,-0.891882445024286 -"264",0.163,-0.89492251450849 -"265",0.164,-0.897936281561432 -"266",0.165,-0.900923445234623 -"267",0.166,-0.903883704579573 -"268",0.167,-0.906816758647793 -"269",0.168,-0.909722306490795 -"270",0.169,-0.912600047160089 -"271",0.17,-0.915449679707185 -"272",0.171,-0.918270903183595 -"273",0.172,-0.921063416640829 -"274",0.173,-0.923826919130399 -"275",0.174,-0.926561109703815 -"276",0.175,-0.929265687412588 -"277",0.176,-0.931940369453524 -"278",0.177,-0.934584962737102 -"279",0.178,-0.937199301850653 -"280",0.179,-0.939783221389401 -"281",0.18,-0.942336555948574 -"282",0.181,-0.944859140123397 -"283",0.182,-0.947350808509096 -"284",0.183,-0.949811395700896 -"285",0.184,-0.952240736294025 -"286",0.185,-0.954638664883707 -"287",0.186,-0.957005016065168 -"288",0.187,-0.959339624433635 -"289",0.188,-0.961642324584333 -"290",0.189,-0.963912951112488 -"291",0.19,-0.966151338613326 -"292",0.191,-0.968357321682073 -"293",0.192,-0.970530734913955 -"294",0.193,-0.972671412904197 -"295",0.194,-0.974779190248026 -"296",0.195,-0.976853901540667 -"297",0.196,-0.978895381377346 -"298",0.197,-0.98090346435329 -"299",0.198,-0.982877985063723 -"300",0.199,-0.984818778103872 -"301",0.2,-0.986725678068963 -"302",0.201,-0.988598519554222 -"303",0.202,-0.990437137154874 -"304",0.203,-0.992241365466145 -"305",0.204,-0.994011039083261 -"306",0.205,-0.995745992601449 -"307",0.206,-0.997446060615934 -"308",0.207,-0.999111077749097 -"309",0.208,-1.00074091610382 -"310",0.209,-1.0023355596171 -"311",0.21,-1.00389501299247 -"312",0.211,-1.00541928093348 -"313",0.212,-1.00690836814368 -"314",0.213,-1.00836227932662 -"315",0.214,-1.00978101918583 -"316",0.215,-1.01116459242487 -"317",0.216,-1.01251300374728 -"318",0.217,-1.01382625785661 -"319",0.218,-1.0151043594564 -"320",0.219,-1.0163473132502 -"321",0.22,-1.01755512394156 -"322",0.221,-1.01872779623402 -"323",0.222,-1.01986533483113 -"324",0.223,-1.02096774436756 -"325",0.224,-1.02203501117038 -"326",0.225,-1.02306707872828 -"327",0.226,-1.02406388441191 -"328",0.227,-1.02502536559191 -"329",0.228,-1.02595145963892 -"330",0.229,-1.02684210392358 -"331",0.23,-1.02769723581651 -"332",0.231,-1.02851679268837 -"333",0.232,-1.02930071190979 -"334",0.233,-1.0300489308514 -"335",0.234,-1.03076138688386 -"336",0.235,-1.03143801737778 -"337",0.236,-1.03207875970382 -"338",0.237,-1.03268355123261 -"339",0.238,-1.03325232933479 -"340",0.239,-1.03378503074801 -"341",0.24,-1.03428152745394 -"342",0.241,-1.03474157157901 -"343",0.242,-1.03516490226963 -"344",0.243,-1.03555125867217 -"345",0.244,-1.03590037993303 -"346",0.245,-1.0362120051986 -"347",0.246,-1.03648587361527 -"348",0.247,-1.03672172432943 -"349",0.248,-1.03691929648747 -"350",0.249,-1.03707832923578 -"351",0.25,-1.03719856172075 -"352",0.251,-1.03727973308877 -"353",0.252,-1.03732158248623 -"354",0.253,-1.03732384905952 -"355",0.254,-1.03728627195504 -"356",0.255,-1.03720859211673 -"357",0.256,-1.03709064509555 -"358",0.257,-1.03693240593497 -"359",0.258,-1.03673386087952 -"360",0.259,-1.03649499617376 -"361",0.26,-1.03621579806222 -"362",0.261,-1.03589625278944 -"363",0.262,-1.03553634659997 -"364",0.263,-1.03513606573836 -"365",0.264,-1.03469539644914 -"366",0.265,-1.03421432497686 -"367",0.266,-1.03369283756607 -"368",0.267,-1.03313092046129 -"369",0.268,-1.03252855990709 -"370",0.269,-1.031885742148 -"371",0.27,-1.03120245342856 -"372",0.271,-1.03047868162575 -"373",0.272,-1.02971446624313 -"374",0.273,-1.02890990770837 -"375",0.274,-1.02806510995707 -"376",0.275,-1.02718017692481 -"377",0.276,-1.0262552125472 -"378",0.277,-1.02529032075982 -"379",0.278,-1.02428560549827 -"380",0.279,-1.02324117069814 -"381",0.28,-1.02215712029502 -"382",0.281,-1.0210335582245 -"383",0.282,-1.01987058842218 -"384",0.283,-1.01866831482366 -"385",0.284,-1.01742684136452 -"386",0.285,-1.01614627198035 -"387",0.286,-1.01482671060676 -"388",0.287,-1.01346826117932 -"389",0.288,-1.01207102763364 -"390",0.289,-1.01063511390531 -"391",0.29,-1.00916062392992 -"392",0.291,-1.00764766164307 -"393",0.292,-1.00609633098034 -"394",0.293,-1.00450673587733 -"395",0.294,-1.00287898026963 -"396",0.295,-1.00121316809284 -"397",0.296,-0.999509403282542 -"398",0.297,-0.997767789774338 -"399",0.298,-0.995988431503817 -"400",0.299,-0.994171432406572 -"401",0.3,-0.992316896418197 -"402",0.301,-0.990424927474284 -"403",0.302,-0.988495629510426 -"404",0.303,-0.98652911550162 -"405",0.304,-0.984525630720063 -"406",0.305,-0.98248552078808 -"407",0.306,-0.980409133824596 -"408",0.307,-0.978296817948536 -"409",0.308,-0.976148921278822 -"410",0.309,-0.973965791934381 -"411",0.31,-0.971747778034135 -"412",0.311,-0.96949522769701 -"413",0.312,-0.96720848904193 -"414",0.313,-0.964887910187818 -"415",0.314,-0.9625338392536 -"416",0.315,-0.9601466243582 -"417",0.316,-0.957726613620541 -"418",0.317,-0.955274155159549 -"419",0.318,-0.952789597094147 -"420",0.319,-0.950273276952471 -"421",0.32,-0.947725419060048 -"422",0.321,-0.945146179156612 -"423",0.322,-0.942535712022997 -"424",0.323,-0.939894172440039 -"425",0.324,-0.937221715188572 -"426",0.325,-0.934518495049431 -"427",0.326,-0.931784666803449 -"428",0.327,-0.929020385231463 -"429",0.328,-0.926225805114306 -"430",0.329,-0.923401081232814 -"431",0.33,-0.920546368367821 -"432",0.331,-0.917661821300161 -"433",0.332,-0.91474759481067 -"434",0.333,-0.911803843680181 -"435",0.334,-0.908830722689531 -"436",0.335,-0.905828396631777 -"437",0.336,-0.902797110638489 -"438",0.337,-0.899737148489724 -"439",0.338,-0.896648794212154 -"440",0.339,-0.89353233183245 -"441",0.34,-0.890388045377282 -"442",0.341,-0.887216218873321 -"443",0.342,-0.884017136347239 -"444",0.343,-0.880791081825705 -"445",0.344,-0.877538339335392 -"446",0.345,-0.874259192902969 -"447",0.346,-0.870953926555109 -"448",0.347,-0.867622824318481 -"449",0.348,-0.864266170219756 -"450",0.349,-0.860884248285606 -"451",0.35,-0.857477342542701 -"452",0.351,-0.854045708297861 -"453",0.352,-0.850589424706662 -"454",0.353,-0.847108504175832 -"455",0.354,-0.843602958985476 -"456",0.355,-0.840072801415697 -"457",0.356,-0.836518043746601 -"458",0.357,-0.832938698258292 -"459",0.358,-0.829334777230874 -"460",0.359,-0.825706292944451 -"461",0.36,-0.82205325767913 -"462",0.361,-0.818375683715012 -"463",0.362,-0.814673583332204 -"464",0.363,-0.81094696881081 -"465",0.364,-0.807195852430934 -"466",0.365,-0.80342024647268 -"467",0.366,-0.799620163216154 -"468",0.367,-0.795795602594673 -"469",0.368,-0.7919465060368 -"470",0.369,-0.788072797659764 -"471",0.37,-0.78417440157816 -"472",0.371,-0.780251241906586 -"473",0.372,-0.776303242759637 -"474",0.373,-0.772330328251912 -"475",0.374,-0.768332422498005 -"476",0.375,-0.764309449612514 -"477",0.376,-0.760261333710036 -"478",0.377,-0.756187998905167 -"479",0.378,-0.752089369312503 -"480",0.379,-0.747965369046642 -"481",0.38,-0.74381592222218 -"482",0.381,-0.739640952953713 -"483",0.382,-0.735440385355839 -"484",0.383,-0.731214143543153 -"485",0.384,-0.726962151630252 -"486",0.385,-0.722684333731734 -"487",0.386,-0.718380613962194 -"488",0.387,-0.714050916436229 -"489",0.388,-0.709695165268436 -"490",0.389,-0.705313284573411 -"491",0.39,-0.700905198465751 -"492",0.391,-0.696470831060053 -"493",0.392,-0.692010106470913 -"494",0.393,-0.687522948812929 -"495",0.394,-0.683009282200695 -"496",0.395,-0.67846903074881 -"497",0.396,-0.673902118571869 -"498",0.397,-0.66930846978447 -"499",0.398,-0.664688008541503 -"500",0.399,-0.660040697671097 -"501",0.4,-0.655366610750182 -"502",0.401,-0.650665841054792 -"503",0.402,-0.645938481860954 -"504",0.403,-0.6411846264447 -"505",0.404,-0.63640436808206 -"506",0.405,-0.631597800049065 -"507",0.406,-0.626765015621744 -"508",0.407,-0.621906108076129 -"509",0.408,-0.617021170688248 -"510",0.409,-0.612110296734134 -"511",0.41,-0.607173579489815 -"512",0.411,-0.602211112231323 -"513",0.412,-0.597222988234687 -"514",0.413,-0.592209300775939 -"515",0.414,-0.587170143462582 -"516",0.415,-0.582105682795519 -"517",0.416,-0.577016249216728 -"518",0.417,-0.571902195554363 -"519",0.418,-0.566763874636577 -"520",0.419,-0.561601639291523 -"521",0.42,-0.556415842347354 -"522",0.421,-0.551206836632224 -"523",0.422,-0.545974974974285 -"524",0.423,-0.540720610201691 -"525",0.424,-0.535444095142594 -"526",0.425,-0.530145782625149 -"527",0.426,-0.524826025477508 -"528",0.427,-0.519485176527824 -"529",0.428,-0.514123588604251 -"530",0.429,-0.508741614534941 -"531",0.43,-0.50333960737663 -"532",0.431,-0.497917940809876 -"533",0.432,-0.492477025253503 -"534",0.433,-0.487017274918595 -"535",0.434,-0.481539104016238 -"536",0.435,-0.476042926757516 -"537",0.436,-0.470529157353513 -"538",0.437,-0.464998210015314 -"539",0.438,-0.459450498954003 -"540",0.439,-0.453886438380665 -"541",0.44,-0.448306442506385 -"542",0.441,-0.442710925542247 -"543",0.442,-0.437100301699336 -"544",0.443,-0.431474985188735 -"545",0.444,-0.42583539022153 -"546",0.445,-0.420181931008805 -"547",0.446,-0.414515020810824 -"548",0.447,-0.408835027306466 -"549",0.448,-0.403142253429994 -"550",0.449,-0.397436997183613 -"551",0.45,-0.391719556569527 -"552",0.451,-0.385990229589941 -"553",0.452,-0.380249314247059 -"554",0.453,-0.374497108543087 -"555",0.454,-0.368733910480227 -"556",0.455,-0.362960018060685 -"557",0.456,-0.357175729286665 -"558",0.457,-0.351381342160371 -"559",0.458,-0.345577154684009 -"560",0.459,-0.339763464859781 -"561",0.46,-0.333940570689894 -"562",0.461,-0.328108770176551 -"563",0.462,-0.322268363847686 -"564",0.463,-0.316419726369904 -"565",0.464,-0.310563316738968 -"566",0.465,-0.304699598525067 -"567",0.466,-0.298829035298392 -"568",0.467,-0.292952090629133 -"569",0.468,-0.287069228087481 -"570",0.469,-0.281180911243625 -"571",0.47,-0.275287603667757 -"572",0.471,-0.269389768930065 -"573",0.472,-0.263487870600741 -"574",0.473,-0.257582372249975 -"575",0.474,-0.251673737447957 -"576",0.475,-0.245762429764877 -"577",0.476,-0.239848912770925 -"578",0.477,-0.233933650036294 -"579",0.478,-0.22801710513117 -"580",0.479,-0.222099741625746 -"581",0.48,-0.216182023090212 -"582",0.481,-0.210264413094758 -"583",0.482,-0.204347375209573 -"584",0.483,-0.198431373004849 -"585",0.484,-0.192516870050776 -"586",0.485,-0.186604329917544 -"587",0.486,-0.180694216175342 -"588",0.487,-0.174786992394363 -"589",0.488,-0.168883122144795 -"590",0.489,-0.162983068996829 -"591",0.49,-0.157087296520656 -"592",0.491,-0.151196268286464 -"593",0.492,-0.145310447864446 -"594",0.493,-0.139430298824791 -"595",0.494,-0.133556281634579 -"596",0.495,-0.12768881376346 -"597",0.496,-0.12182828125456 -"598",0.497,-0.115975069433606 -"599",0.498,-0.110129563626324 -"600",0.499,-0.10429214915844 -"601",0.5,-0.0984632113556776 -"602",0.501,-0.0926431355437642 -"603",0.502,-0.0868323070484252 -"604",0.503,-0.0810311111953863 -"605",0.504,-0.075239933310374 -"606",0.505,-0.0694591587191126 -"607",0.506,-0.0636891727473286 -"608",0.507,-0.0579303607207476 -"609",0.508,-0.052183107965096 -"610",0.509,-0.0464477998060982 -"611",0.51,-0.0407247997058712 -"612",0.511,-0.0350142486857251 -"613",0.512,-0.0293161580121543 -"614",0.513,-0.0236305373308106 -"615",0.514,-0.0179573962873481 -"616",0.515,-0.0122967445274198 -"617",0.516,-0.00664859169667907 -"618",0.517,-0.00101294744077975 -"619",0.518,0.00461017859462617 -"620",0.519,0.0102207767638848 -"621",0.52,0.015818837421343 -"622",0.521,0.0214043509213468 -"623",0.522,0.0269773076182443 -"624",0.523,0.0325376978663815 -"625",0.524,0.0380855120201053 -"626",0.525,0.0436207404337618 -"627",0.526,0.0491433615416619 -"628",0.527,0.054653262409902 -"629",0.528,0.0601502878368741 -"630",0.529,0.0656342823917064 -"631",0.53,0.0711050906435264 -"632",0.531,0.0765625571614635 -"633",0.532,0.0820065265146452 -"634",0.533,0.0874368432721995 -"635",0.534,0.0928533520032542 -"636",0.535,0.0982558972769383 -"637",0.536,0.10364432366238 -"638",0.537,0.109018475728706 -"639",0.538,0.114378198045045 -"640",0.539,0.119723335180527 -"641",0.54,0.125053731704277 -"642",0.541,0.130369232185426 -"643",0.542,0.135669694492492 -"644",0.543,0.140955054591442 -"645",0.544,0.146225276864408 -"646",0.545,0.151480325734251 -"647",0.546,0.156720165623832 -"648",0.547,0.161944760956012 -"649",0.548,0.167154076153655 -"650",0.549,0.172348075639621 -"651",0.55,0.177526723836772 -"652",0.551,0.182689985167969 -"653",0.552,0.187837824056074 -"654",0.553,0.19297020492395 -"655",0.554,0.198087092194457 -"656",0.555,0.203188450290457 -"657",0.556,0.208274243634811 -"658",0.557,0.213344436650382 -"659",0.558,0.218399016785788 -"660",0.559,0.223438076068544 -"661",0.56,0.228461736201095 -"662",0.561,0.23347011888787 -"663",0.562,0.238463345833296 -"664",0.563,0.243441538741801 -"665",0.564,0.248404819317814 -"666",0.565,0.253353309265763 -"667",0.566,0.258287130290076 -"668",0.567,0.263206404095181 -"669",0.568,0.268111252385506 -"670",0.569,0.27300179686548 -"671",0.57,0.277878159239531 -"672",0.571,0.282740461212088 -"673",0.572,0.287588824487577 -"674",0.573,0.292423370768204 -"675",0.574,0.29724418828602 -"676",0.575,0.30205124728546 -"677",0.576,0.306844492025424 -"678",0.577,0.311623866764811 -"679",0.578,0.316389315762523 -"680",0.579,0.321140783277459 -"681",0.58,0.325878213568518 -"682",0.581,0.330601550894601 -"683",0.582,0.335310739514607 -"684",0.583,0.340005723687436 -"685",0.584,0.344686447671989 -"686",0.585,0.349352855727164 -"687",0.586,0.354004892111862 -"688",0.587,0.358642501084984 -"689",0.588,0.363265626905427 -"690",0.589,0.367874213832094 -"691",0.59,0.372468206123882 -"692",0.591,0.377047548039693 -"693",0.592,0.381612183838426 -"694",0.593,0.386162057778981 -"695",0.594,0.390697114120258 -"696",0.595,0.395217297121157 -"697",0.596,0.399722551040577 -"698",0.597,0.404212820137419 -"699",0.598,0.408688048670583 -"700",0.599,0.413148180898967 -"701",0.6,0.417593161081473 -"702",0.601,0.422022933477 -"703",0.602,0.426437442344447 -"704",0.603,0.430836631942716 -"705",0.604,0.435220446530705 -"706",0.605,0.43958882997559 -"707",0.606,0.443941653842119 -"708",0.607,0.448278633360264 -"709",0.608,0.452599463357988 -"710",0.609,0.456903838663255 -"711",0.61,0.461191454104027 -"712",0.611,0.465462004508267 -"713",0.612,0.469715184703937 -"714",0.613,0.473950689519002 -"715",0.614,0.478168213781425 -"716",0.615,0.482367452319167 -"717",0.616,0.486548099960192 -"718",0.617,0.490709851532464 -"719",0.618,0.494852401863945 -"720",0.619,0.498975445782598 -"721",0.62,0.503078678116386 -"722",0.621,0.507161793680979 -"723",0.622,0.511224486307095 -"724",0.623,0.515266448136502 -"725",0.624,0.519287371144905 -"726",0.625,0.523286947308007 -"727",0.626,0.527264868601514 -"728",0.627,0.531220827001132 -"729",0.628,0.535154514482563 -"730",0.629,0.539065623021514 -"731",0.63,0.542953844593688 -"732",0.631,0.546818871174792 -"733",0.632,0.550660394740529 -"734",0.633,0.554478107266603 -"735",0.634,0.558271700728721 -"736",0.635,0.562040867102587 -"737",0.636,0.565785298363905 -"738",0.637,0.569504688404753 -"739",0.638,0.573198815116183 -"740",0.639,0.576867571344864 -"741",0.64,0.580510858236843 -"742",0.641,0.584128576938165 -"743",0.642,0.587720628594876 -"744",0.643,0.591286914353021 -"745",0.644,0.594827335358647 -"746",0.645,0.5983417927578 -"747",0.646,0.601830187696524 -"748",0.647,0.605292421320866 -"749",0.648,0.608728394776873 -"750",0.649,0.612138009210589 -"751",0.65,0.61552116576806 -"752",0.651,0.618877765595332 -"753",0.652,0.622207709838452 -"754",0.653,0.625510899841603 -"755",0.654,0.628787242359849 -"756",0.655,0.63203665008075 -"757",0.656,0.635259035994605 -"758",0.657,0.638454313091711 -"759",0.658,0.641622394362367 -"760",0.659,0.64476319279687 -"761",0.66,0.647876621385518 -"762",0.661,0.650962593118609 -"763",0.662,0.654021020986442 -"764",0.663,0.657051817979314 -"765",0.664,0.660054897087522 -"766",0.665,0.663030171301367 -"767",0.666,0.665977553611144 -"768",0.667,0.668896957007152 -"769",0.668,0.671788294479689 -"770",0.669,0.674651479626376 -"771",0.67,0.677486437245355 -"772",0.671,0.680293101984278 -"773",0.672,0.683071408826511 -"774",0.673,0.685821292755421 -"775",0.674,0.688542688754374 -"776",0.675,0.691235531806738 -"777",0.676,0.693899756895878 -"778",0.677,0.696535299005163 -"779",0.678,0.699142093117958 -"780",0.679,0.70172007421763 -"781",0.68,0.704269177287547 -"782",0.681,0.706789337311075 -"783",0.682,0.70928048927158 -"784",0.683,0.71174256815243 -"785",0.684,0.714175508936991 -"786",0.685,0.71657924660863 -"787",0.686,0.718953716150714 -"788",0.687,0.72129885254661 -"789",0.688,0.723614590779684 -"790",0.689,0.725900865833303 -"791",0.69,0.728157612690834 -"792",0.691,0.730384766335643 -"793",0.692,0.732582261751099 -"794",0.693,0.734750033920566 -"795",0.694,0.736888017827412 -"796",0.695,0.738996148455004 -"797",0.696,0.741074360786708 -"798",0.697,0.743122589805892 -"799",0.698,0.745140770495922 -"800",0.699,0.747128837840165 -"801",0.7,0.749086726821987 -"802",0.701,0.751014371920713 -"803",0.702,0.752911702731045 -"804",0.703,0.754778646104882 -"805",0.704,0.756615128863699 -"806",0.705,0.75842107782897 -"807",0.706,0.760196419822169 -"808",0.707,0.761941081664771 -"809",0.708,0.76365499017825 -"810",0.709,0.765338072184081 -"811",0.71,0.766990254503738 -"812",0.711,0.768611463958696 -"813",0.712,0.770201627370428 -"814",0.713,0.77176067156041 -"815",0.714,0.773288523350116 -"816",0.715,0.77478510956102 -"817",0.716,0.776250357014596 -"818",0.717,0.777684199582329 -"819",0.718,0.779086622781049 -"820",0.719,0.780457635096925 -"821",0.72,0.781797245120708 -"822",0.721,0.783105461443149 -"823",0.722,0.784382292654999 -"824",0.723,0.785627747347008 -"825",0.724,0.786841834109928 -"826",0.725,0.788024561534508 -"827",0.726,0.7891759382115 -"828",0.727,0.790295972731655 -"829",0.728,0.791384673685722 -"830",0.729,0.792442049664455 -"831",0.73,0.793468109258601 -"832",0.731,0.794462861058913 -"833",0.732,0.795426313656141 -"834",0.733,0.796358450106777 -"835",0.734,0.797259109870842 -"836",0.735,0.798128082250784 -"837",0.736,0.798965156496666 -"838",0.737,0.799770121858555 -"839",0.738,0.800542767586516 -"840",0.739,0.801282882930614 -"841",0.74,0.801990257140913 -"842",0.741,0.80266467946748 -"843",0.742,0.803305939160378 -"844",0.743,0.803913825469673 -"845",0.744,0.804488127645431 -"846",0.745,0.805028634937716 -"847",0.746,0.805535136596594 -"848",0.747,0.806007421872129 -"849",0.748,0.806445280014387 -"850",0.749,0.806848536666524 -"851",0.75,0.807217175917101 -"852",0.751,0.807551224963878 -"853",0.752,0.807850711005506 -"854",0.753,0.808115661240635 -"855",0.754,0.808346102867918 -"856",0.755,0.808542063086006 -"857",0.756,0.80870356909355 -"858",0.757,0.808830648089202 -"859",0.758,0.808923327271612 -"860",0.759,0.808981633839432 -"861",0.76,0.809005594991314 -"862",0.761,0.808995237925908 -"863",0.762,0.808950589841867 -"864",0.763,0.808871677937841 -"865",0.764,0.808758529415826 -"866",0.765,0.808611193584847 -"867",0.766,0.808429794487349 -"868",0.767,0.808214471942012 -"869",0.768,0.807965365767514 -"870",0.769,0.807682615782534 -"871",0.77,0.807366361805751 -"872",0.771,0.807016743655843 -"873",0.772,0.80663390115149 -"874",0.773,0.806217974111371 -"875",0.774,0.805769102354163 -"876",0.775,0.805287425698546 -"877",0.776,0.804773083963199 -"878",0.777,0.8042262169668 -"879",0.778,0.803646964528029 -"880",0.779,0.803035466465563 -"881",0.78,0.802391862598083 -"882",0.781,0.801716292744266 -"883",0.782,0.801008896722792 -"884",0.783,0.800269814352339 -"885",0.784,0.799499185451586 -"886",0.785,0.798697149839213 -"887",0.786,0.797863847333897 -"888",0.787,0.796999417754317 -"889",0.788,0.796104000919153 -"890",0.789,0.795177736647083 -"891",0.79,0.794220764756786 -"892",0.791,0.793233225066941 -"893",0.792,0.792215257396227 -"894",0.793,0.791167001563322 -"895",0.794,0.790088597386905 -"896",0.795,0.788980184685655 -"897",0.796,0.787841903056322 -"898",0.797,0.786673857278219 -"899",0.798,0.785476079736488 -"900",0.799,0.784248593791281 -"901",0.8,0.782991422802751 -"902",0.801,0.781704590131052 -"903",0.802,0.780388119136335 -"904",0.803,0.779042033178754 -"905",0.804,0.777666355618461 -"906",0.805,0.77626110981561 -"907",0.806,0.774826319130352 -"908",0.807,0.773362006922841 -"909",0.808,0.771868196553229 -"910",0.809,0.77034491138167 -"911",0.81,0.768792174768315 -"912",0.811,0.767210010073318 -"913",0.812,0.7655984414498 -"914",0.813,0.763957549810961 -"915",0.814,0.762287509778138 -"916",0.815,0.760588504742603 -"917",0.816,0.758860718095633 -"918",0.817,0.757104333228499 -"919",0.818,0.755319533532477 -"920",0.819,0.753506502398841 -"921",0.82,0.751665423218865 -"922",0.821,0.749796479383822 -"923",0.822,0.747899854284988 -"924",0.823,0.745975731313635 -"925",0.824,0.744024293861038 -"926",0.825,0.742045725318471 -"927",0.826,0.740040209077209 -"928",0.827,0.738007928528525 -"929",0.828,0.735949066674016 -"930",0.829,0.733863790843277 -"931",0.83,0.731752247699406 -"932",0.831,0.729614582492898 -"933",0.832,0.727450940474248 -"934",0.833,0.72526146689395 -"935",0.834,0.7230463070025 -"936",0.835,0.720805606050392 -"937",0.836,0.718539509288122 -"938",0.837,0.716248161966185 -"939",0.838,0.713931709335074 -"940",0.839,0.711590296645287 -"941",0.84,0.709224069147316 -"942",0.841,0.706833172091658 -"943",0.842,0.704417750728807 -"944",0.843,0.701977950309259 -"945",0.844,0.699513920974475 -"946",0.845,0.69702593739995 -"947",0.846,0.694514405876888 -"948",0.847,0.691979739005149 -"949",0.848,0.689422349384595 -"950",0.849,0.686842649615089 -"951",0.85,0.68424105229649 -"952",0.851,0.681617970028663 -"953",0.852,0.678973815411467 -"954",0.853,0.676309001044764 -"955",0.854,0.673623939528417 -"956",0.855,0.670919043462287 -"957",0.856,0.668194725446236 -"958",0.857,0.665451398080125 -"959",0.858,0.662689473963816 -"960",0.859,0.659909365697171 -"961",0.86,0.657111478767447 -"962",0.861,0.654296095083638 -"963",0.862,0.651463391809181 -"964",0.863,0.648613542793761 -"965",0.864,0.645746721887061 -"966",0.865,0.642863102938765 -"967",0.866,0.639962859798558 -"968",0.867,0.637046166316123 -"969",0.868,0.634113196341145 -"970",0.869,0.631164123723308 -"971",0.87,0.628199122312296 -"972",0.871,0.625218365957793 -"973",0.872,0.622222028509482 -"974",0.873,0.619210283817048 -"975",0.874,0.616183305730175 -"976",0.875,0.613141268098548 -"977",0.876,0.61008434477185 -"978",0.877,0.607012709599764 -"979",0.878,0.603926536431977 -"980",0.879,0.60082599911817 -"981",0.88,0.597711271508029 -"982",0.881,0.594582527451238 -"983",0.882,0.59143994079748 -"984",0.883,0.58828368539644 -"985",0.884,0.585113935097801 -"986",0.885,0.581930863751248 -"987",0.886,0.578734645206465 -"988",0.887,0.575525453313136 -"989",0.888,0.572303461920945 -"990",0.889,0.569068844879576 -"991",0.89,0.565821776038713 -"992",0.891,0.56256242924804 -"993",0.892,0.559290963339282 -"994",0.893,0.556007398426275 -"995",0.894,0.552711679656008 -"996",0.895,0.549403751442033 -"997",0.896,0.546083558197899 -"998",0.897,0.542751044337158 -"999",0.898,0.539406154273358 -"1000",0.899,0.536048832420052 -"1001",0.9,0.532679023190788 -"1002",0.901,0.529296670999118 -"1003",0.902,0.525901720258592 -"1004",0.903,0.52249411538276 -"1005",0.904,0.519073800785174 -"1006",0.905,0.515640720879381 -"1007",0.906,0.512194820078935 -"1008",0.907,0.508736042797384 -"1009",0.908,0.505264343762812 -"1010",0.909,0.501779749946858 -"1011",0.91,0.498282319203961 -"1012",0.911,0.494772109504881 -"1013",0.912,0.491249178820382 -"1014",0.913,0.487713585121224 -"1015",0.914,0.48416538637817 -"1016",0.915,0.48060464056198 -"1017",0.916,0.477031405643417 -"1018",0.917,0.473445739593242 -"1019",0.918,0.469847700382218 -"1020",0.919,0.466237345981105 -"1021",0.92,0.462614734360666 -"1022",0.921,0.458979923491662 -"1023",0.922,0.455332971344855 -"1024",0.923,0.451673935891006 -"1025",0.924,0.44800287121006 -"1026",0.925,0.444319810422624 -"1027",0.926,0.440624779622937 -"1028",0.927,0.436917804900137 -"1029",0.928,0.433198912343356 -"1030",0.929,0.429468128041732 -"1031",0.93,0.425725478084401 -"1032",0.931,0.421970988560498 -"1033",0.932,0.418204685559159 -"1034",0.933,0.41442659516952 -"1035",0.934,0.410636743480715 -"1036",0.935,0.406835156581882 -"1037",0.936,0.403021860562156 -"1038",0.937,0.399196881510673 -"1039",0.938,0.395360245516567 -"1040",0.939,0.391511978668976 -"1041",0.94,0.387652141900216 -"1042",0.941,0.383780941566005 -"1043",0.942,0.379898621955678 -"1044",0.943,0.376005427358674 -"1045",0.944,0.37210160206443 -"1046",0.945,0.368187390362386 -"1047",0.946,0.364263036541977 -"1048",0.947,0.360328784892645 -"1049",0.948,0.356384879703825 -"1050",0.949,0.352431565264958 -"1051",0.95,0.348469085865479 -"1052",0.951,0.34449768579483 -"1053",0.952,0.340517609342445 -"1054",0.953,0.336529100797766 -"1055",0.954,0.332532404450228 -"1056",0.955,0.328527764590125 -"1057",0.956,0.324515428510455 -"1058",0.957,0.320495653240168 -"1059",0.958,0.316468697777954 -"1060",0.959,0.31243482112251 -"1061",0.96,0.308394282272525 -"1062",0.961,0.304347340226695 -"1063",0.962,0.300294253983712 -"1064",0.963,0.296235282542268 -"1065",0.964,0.292170684901057 -"1066",0.965,0.288100720058772 -"1067",0.966,0.284025647014105 -"1068",0.967,0.27994572476575 -"1069",0.968,0.275861212312399 -"1070",0.969,0.271772368652746 -"1071",0.97,0.267679452785483 -"1072",0.971,0.263582723709304 -"1073",0.972,0.2594824404229 -"1074",0.973,0.255378861924966 -"1075",0.974,0.251272247214193 -"1076",0.975,0.247162855289277 -"1077",0.976,0.243050945148907 -"1078",0.977,0.238936775791779 -"1079",0.978,0.234820606216584 -"1080",0.979,0.230702695422018 -"1081",0.98,0.226583302406769 -"1082",0.981,0.222462686169535 -"1083",0.982,0.218341105709005 -"1084",0.983,0.214218820023875 -"1085",0.984,0.210096088112835 -"1086",0.985,0.205973168974581 -"1087",0.986,0.201850321607803 -"1088",0.987,0.19772778930117 -"1089",0.988,0.193605390678688 -"1090",0.989,0.189482992056206 -"1091",0.99,0.185360593433723 -"1092",0.991,0.181238194811242 -"1093",0.992,0.177115796188759 -"1094",0.993,0.172993397566277 -"1095",0.994,0.168870998943796 -"1096",0.995,0.164748600321314 -"1097",0.996,0.160626201698831 -"1098",0.997,0.15650380307635 -"1099",0.998,0.152381404453867 -"1100",0.999,0.148259005831385 -"1101",1,0.144136607208904 -"1102",1.001,0.140014208586422 -"1103",1.002,0.135891809963939 -"1104",1.003,0.131769411341458 -"1105",1.004,0.127647012718975 -"1106",1.005,0.123524614096493 -"1107",1.006,0.119402215474011 -"1108",1.007,0.11527981685153 -"1109",1.008,0.111157418229047 -"1110",1.009,0.107035019606566 -"1111",1.01,0.102912620984083 -"1112",1.011,0.0987902223616014 -"1113",1.012,0.0946678237391188 -"1114",1.013,0.0905454251166371 -"1115",1.014,0.0864230264941545 -"1116",1.015,0.0823006278716728 -"1117",1.016,0.0781782292491911 -"1118",1.017,0.0740558306267094 -"1119",1.018,0.0699334320042268 -"1120",1.019,0.0658110333817452 -"1121",1.02,0.0616886347592625 -"1122",1.021,0.0575662361367809 -"1123",1.022,0.0534438375142982 -"1124",1.023,0.0493214388918165 -"1125",1.024,0.0451990402693349 -"1126",1.025,0.0410766416468532 -"1127",1.026,0.0369542430243706 -"1128",1.027,0.0328318444018889 -"1129",1.028,0.0287094457794063 -"1130",1.029,0.0245870471569246 -"1131",1.03,0.020464648534442 -"1132",1.031,0.0163422499119603 -"1133",1.032,0.0122198512894776 -"1134",1.033,0.00809745266699685 -"1135",1.034,0.00397505404451426 -"1136",1.035,-0.000147344577967445 -"1137",1.036,-0.00426974320045004 -"1138",1.037,-0.00839214182293174 -"1139",1.038,-0.0125145404454143 -"1140",1.039,-0.016636939067896 -"1141",1.04,-0.0207593376903786 -"1142",1.041,-0.0248817363128603 -"1143",1.042,-0.029004134935342 -"1144",1.043,-0.0331265335578237 -"1145",1.044,-0.0372489321803063 -"1146",1.045,-0.041371330802788 -"1147",1.046,-0.0454937294252706 -"1148",1.047,-0.0496161280477523 -"1149",1.048,-0.0537385266702349 -"1150",1.049,-0.0578609252927166 -"1151",1.05,-0.0619833239151983 -"1152",1.051,-0.06610572253768 -"1153",1.052,-0.0702281211601626 -"1154",1.053,-0.0743505197826443 -"1155",1.054,-0.078472918405126 -"1156",1.055,-0.0825953170276086 -"1157",1.056,-0.0867177156500903 -"1158",1.057,-0.0908401142725729 -"1159",1.058,-0.0949625128950546 -"1160",1.059,-0.0990849115175363 -"1161",1.06,-0.103207310140018 -"1162",1.061,-0.107329708762501 -"1163",1.062,-0.111452107384982 -"1164",1.063,-0.115574506007465 -"1165",1.064,-0.119696904629947 -"1166",1.065,-0.123819303252429 -"1167",1.066,-0.127941701874911 -"1168",1.067,-0.132064100497394 -"1169",1.068,-0.136186499119874 -"1170",1.069,-0.140308897742357 -"1171",1.07,-0.144431296364839 -"1172",1.071,-0.148553694987321 -"1173",1.072,-0.152676093609803 -"1174",1.073,-0.156798492232285 -"1175",1.074,-0.160920890854767 -"1176",1.075,-0.16504328947725 -"1177",1.076,-0.169165688099731 -"1178",1.077,-0.173288086722213 -"1179",1.078,-0.177410485344695 -"1180",1.079,-0.181532883967177 -"1181",1.08,-0.185655282589659 -"1182",1.081,-0.189777681212142 -"1183",1.082,-0.193900079834623 -"1184",1.083,-0.198022478457106 -"1185",1.084,-0.202144877079588 -"1186",1.085,-0.206267275702069 -"1187",1.086,-0.210389674324551 -"1188",1.087,-0.214512072947034 -"1189",1.088,-0.218634471569515 -"1190",1.089,-0.222756870191998 -"1191",1.09,-0.22687926881448 -"1192",1.091,-0.231001667436962 -"1193",1.092,-0.235124066059444 -"1194",1.093,-0.239246464681926 -"1195",1.094,-0.243368863304407 -"1196",1.095,-0.24749126192689 -"1197",1.096,-0.251613660549372 -"1198",1.097,-0.255736059171854 -"1199",1.098,-0.259858457794336 -"1200",1.099,-0.263980856416819 -"1201",1.1,-0.2681032550393 diff --git a/TeX/Plots/Data/scala_out_d_1_t.csv b/TeX/Plots/Data/scala_out_d_1_t.csv deleted file mode 100755 index fb5b119..0000000 --- a/TeX/Plots/Data/scala_out_d_1_t.csv +++ /dev/null @@ -1,101 +0,0 @@ -x_n_5000_tl_0.1,y_n_5000_tl_0.1,x_n_5000_tl_1.0,y_n_5000_tl_1.0,x_n_5000_tl_3.0,y_n_5000_tl_3.0 --5.0,1.794615305950707,-5.0,0.3982406589003759,-5.0,-0.4811539502118497 --4.898989898989899,1.6984389486364895,-4.898989898989899,0.35719218031912614,-4.898989898989899,-0.48887996302459025 --4.797979797979798,1.6014200743009022,-4.797979797979798,0.3160182633093358,-4.797979797979798,-0.4966732473871599 --4.696969696969697,1.5040575427157106,-4.696969696969697,0.27464978660531225,-4.696969696969697,-0.5045073579233731 --4.595959595959596,1.4061194142774731,-4.595959595959596,0.23293440418365288,-4.595959595959596,-0.5123589845230747 --4.494949494949495,1.3072651356075136,-4.494949494949495,0.19100397829173557,-4.494949494949495,-0.5202738824510786 --4.393939393939394,1.2078259346207492,-4.393939393939394,0.1488314515422353,-4.393939393939394,-0.5282281154332915 --4.292929292929293,1.1079271590765678,-4.292929292929293,0.10646618526238515,-4.292929292929293,-0.536250283913464 --4.191919191919192,1.0073183089866045,-4.191919191919192,0.0637511521454329,-4.191919191919192,-0.5443068679044686 --4.090909090909091,0.9064682044248323,-4.090909090909091,0.020965778107027506,-4.090909090909091,-0.5524049731989601 --3.9898989898989896,0.805095064694333,-3.9898989898989896,-0.02200882631350869,-3.9898989898989896,-0.5605562335116703 --3.888888888888889,0.7032463151196859,-3.888888888888889,-0.06548644224881082,-3.888888888888889,-0.5687680272492979 --3.787878787878788,0.6007843964001714,-3.787878787878788,-0.10914135786185346,-3.787878787878788,-0.5770307386196555 --3.686868686868687,0.4978572358270573,-3.686868686868687,-0.15292201515712506,-3.686868686868687,-0.5853131654059709 --3.5858585858585856,0.39465522349482535,-3.5858585858585856,-0.19694472820060063,-3.5858585858585856,-0.593636189078738 --3.484848484848485,0.29091175104318323,-3.484848484848485,-0.24139115547918963,-3.484848484848485,-0.6019914655156898 --3.383838383838384,0.1868284306918275,-3.383838383838384,-0.28617728400089926,-3.383838383838384,-0.6103823599700093 --3.282828282828283,0.0817944681090728,-3.282828282828283,-0.33119615483860937,-3.282828282828283,-0.6188088888423856 --3.1818181818181817,-0.023670753859105602,-3.1818181818181817,-0.3764480559542342,-3.1818181818181817,-0.6272515625106694 --3.080808080808081,-0.1299349094939808,-3.080808080808081,-0.42202262988259276,-3.080808080808081,-0.6357221532633648 --2.9797979797979797,-0.2360705715363967,-2.9797979797979797,-0.467584017465408,-2.9797979797979797,-0.6440454918766952 --2.878787878787879,-0.34125419448980393,-2.878787878787879,-0.5126079284225549,-2.878787878787879,-0.65203614244987 --2.7777777777777777,-0.443504036212927,-2.7777777777777777,-0.5569084060463078,-2.7777777777777777,-0.6594896031012563 --2.676767676767677,-0.5411482698953787,-2.676767676767677,-0.6002683604183435,-2.676767676767677,-0.6661215834468585 --2.5757575757575757,-0.6363089624800997,-2.5757575757575757,-0.6396725440402657,-2.5757575757575757,-0.6715398637661353 --2.474747474747475,-0.725241414197713,-2.474747474747475,-0.6753456416248385,-2.474747474747475,-0.674565545688341 --2.3737373737373737,-0.8010191169999671,-2.3737373737373737,-0.7066964605752718,-2.3737373737373737,-0.6765307025278043 --2.272727272727273,-0.8626605255789729,-2.272727272727273,-0.7348121862404637,-2.272727272727273,-0.6766187567521622 --2.1717171717171717,-0.911435840482434,-2.1717171717171717,-0.7592451818361001,-2.1717171717171717,-0.6747200340049733 --2.070707070707071,-0.9518228090965052,-2.070707070707071,-0.7755022118880182,-2.070707070707071,-0.6711535886166349 --1.9696969696969697,-0.9791642715505677,-1.9696969696969697,-0.7889078495544403,-1.9696969696969697,-0.6653309071624213 --1.868686868686869,-0.9959505678135467,-1.868686868686869,-0.7978655263590677,-1.868686868686869,-0.6574048849245917 --1.7676767676767677,-1.0042572630521163,-1.7676767676767677,-0.8024926242661324,-1.7676767676767677,-0.6465258005011485 --1.6666666666666665,-1.0031374573437621,-1.6666666666666665,-0.8024786300118695,-1.6666666666666665,-0.6326231142587367 --1.5656565656565657,-0.9924082586558415,-1.5656565656565657,-0.7967021619463882,-1.5656565656565657,-0.6166476676023103 --1.4646464646464645,-0.9734669180157094,-1.4646464646464645,-0.7849942222838879,-1.4646464646464645,-0.5979735104135664 --1.3636363636363638,-0.9509454078185711,-1.3636363636363638,-0.7662349774950723,-1.3636363636363638,-0.5774876452737464 --1.2626262626262625,-0.9231872651397443,-1.2626262626262625,-0.7433085627087517,-1.2626262626262625,-0.554712230754877 --1.1616161616161618,-0.8903321986477033,-1.1616161616161618,-0.7150493507052204,-1.1616161616161618,-0.5295933185437713 --1.0606060606060606,-0.8533989447900909,-1.0606060606060606,-0.6814643745239313,-1.0606060606060606,-0.5021785239088743 --0.9595959595959593,-0.8107636317978494,-0.9595959595959593,-0.6421615608115637,-0.9595959595959593,-0.472606158673678 --0.858585858585859,-0.7612745578549842,-0.858585858585859,-0.5973114244123007,-0.858585858585859,-0.4405007246413654 --0.7575757575757578,-0.7079734098301842,-0.7575757575757578,-0.5483264663676062,-0.7575757575757578,-0.4059991890198415 --0.6565656565656566,-0.6488963804386183,-0.6565656565656566,-0.49554278063844803,-0.6565656565656566,-0.3695525928005769 --0.5555555555555554,-0.5859222961089965,-0.5555555555555554,-0.4403758682478846,-0.5555555555555554,-0.33111757514282614 --0.45454545454545503,-0.5162955936688821,-0.45454545454545503,-0.38037108381900747,-0.45454545454545503,-0.28897806883385513 --0.3535353535353538,-0.4413321076045784,-0.3535353535353538,-0.31690399361617216,-0.3535353535353538,-0.24421776219711205 --0.2525252525252526,-0.3616414699818406,-0.2525252525252526,-0.25204481791119354,-0.2525252525252526,-0.19795939679257332 --0.15151515151515138,-0.2780916794094584,-0.15151515151515138,-0.18575713332565263,-0.15151515151515138,-0.15066195015784248 --0.050505050505050164,-0.18977454284683343,-0.050505050505050164,-0.11797643773197505,-0.050505050505050164,-0.10274021898431054 -0.050505050505050164,-0.0969321739577506,0.050505050505050164,-0.049351343645831554,0.050505050505050164,-0.05414525935109969 -0.15151515151515138,-4.4802289442360816E-4,0.15151515151515138,0.019464788799119597,0.15151515151515138,-0.005354051541524688 -0.2525252525252526,0.09918485823776255,0.2525252525252526,0.08804193897553166,0.2525252525252526,0.0433816826222638 -0.3535353535353538,0.1998735386668185,0.3535353535353538,0.15569793996298523,0.3535353535353538,0.09176342956997338 -0.45454545454545414,0.2999169047201809,0.45454545454545414,0.2218157527002848,0.45454545454545414,0.13952481930457306 -0.5555555555555554,0.3978204122760816,0.5555555555555554,0.2846069052305317,0.5555555555555554,0.18668380673527113 -0.6565656565656566,0.49120659266814587,0.6565656565656566,0.34467300454040606,0.6565656565656566,0.23277011860523958 -0.7575757575757578,0.5777980409414698,0.7575757575757578,0.40208229496894643,0.7575757575757578,0.27613740421328176 -0.8585858585858581,0.6568213676446025,0.8585858585858581,0.45705882493784666,0.8585858585858581,0.316305372116494 -0.9595959595959593,0.7305067401293432,0.9595959595959593,0.5066458373898202,0.9595959595959593,0.35343427932594923 -1.0606060606060606,0.7966609096765547,1.0606060606060606,0.5516149744358979,1.0606060606060606,0.38717949746647334 -1.1616161616161618,0.8521200140106753,1.1616161616161618,0.5878017101641295,1.1616161616161618,0.4170777567516486 -1.262626262626262,0.8975259277901253,1.262626262626262,0.6168588441570951,1.262626262626262,0.4446516626376453 -1.3636363636363633,0.9290861930067627,1.3636363636363633,0.6411836178298306,1.3636363636363633,0.46927636759559477 -1.4646464646464645,0.9508521659740165,1.4646464646464645,0.6610795923876176,1.4646464646464645,0.4901812911280025 -1.5656565656565657,0.9612143570080512,1.5656565656565657,0.6768219209716341,1.5656565656565657,0.5079918402617868 -1.666666666666667,0.9590141254017294,1.666666666666667,0.6878304863477654,1.666666666666667,0.5233400296358803 -1.7676767676767673,0.9434050911299104,1.7676767676767673,0.6925040592034013,1.7676767676767673,0.5351552186913862 -1.8686868686868685,0.9166484175947194,1.8686868686868685,0.6900246131027935,1.8686868686868685,0.5441567759439713 -1.9696969696969697,0.8762489440965586,1.9696969696969697,0.6764843940414706,1.9696969696969697,0.5496025817549586 -2.070707070707071,0.821609113516158,2.070707070707071,0.6566284893291617,2.070707070707071,0.5536820874974513 -2.1717171717171713,0.7581599898835192,2.1717171717171713,0.6308981649064993,2.1717171717171713,0.5533100035360206 -2.2727272727272725,0.6877704486402438,2.2727272727272725,0.6016976467409065,2.2727272727272725,0.550251787575325 -2.3737373737373737,0.610815603287697,2.3737373737373737,0.5704721438286479,2.3737373737373737,0.5445865851994449 -2.474747474747475,0.5275282181728166,2.474747474747475,0.5362814307290142,2.474747474747475,0.537858723684707 -2.5757575757575752,0.44098299617705367,2.5757575757575752,0.5007018478259194,2.5757575757575752,0.5301810557083476 -2.6767676767676765,0.3535127269572474,2.6767676767676765,0.4635791072799046,2.6767676767676765,0.5214280506499815 -2.7777777777777777,0.2669314340184933,2.7777777777777777,0.4252681214470508,2.7777777777777777,0.5119428002841875 -2.878787878787879,0.18244774892195767,2.878787878787879,0.3860805361925665,2.878787878787879,0.5020280103571171 -2.9797979797979792,0.10009287374461422,2.9797979797979792,0.34649978327862213,2.9797979797979792,0.4918997465440798 -3.0808080808080813,0.01825358803182036,3.0808080808080813,0.3067456416075246,3.0808080808080813,0.48152164248236273 -3.1818181818181817,-0.06257603867024951,3.1818181818181817,0.2670556605010131,3.1818181818181817,0.4710506406469346 -3.282828282828282,-0.14256250037038515,3.282828282828282,0.22747478740583862,3.282828282828282,0.46061400021772264 -3.383838383838384,-0.22183964093761221,3.383838383838384,0.18823442296238005,3.383838383838384,0.4502063176185161 -3.4848484848484844,-0.3000530710681483,3.4848484848484844,0.14930923451816047,3.4848484848484844,0.43983195563012295 -3.5858585858585865,-0.37715837046834677,3.5858585858585865,0.11064727810620513,3.5858585858585865,0.4294855408707603 -3.686868686868687,-0.4535879015098929,3.686868686868687,0.0721761317620166,3.686868686868687,0.41918651120808587 -3.787878787878787,-0.5295958753874862,3.787878787878787,0.03385158496402993,3.787878787878787,0.4089211108732785 -3.8888888888888893,-0.605341954214415,3.8888888888888893,-0.004196426105451837,3.8888888888888893,0.3986849690078671 -3.9898989898989896,-0.6805725256650321,3.9898989898989896,-0.04204424507819378,3.9898989898989896,0.3884698016669201 -4.09090909090909,-0.7553382625080638,4.09090909090909,-0.0795288839270637,4.09090909090909,0.37826736472008937 -4.191919191919192,-0.8294318073700058,4.191919191919192,-0.11675718948094181,4.191919191919192,0.36808861016948324 -4.292929292929292,-0.9025671571505313,4.292929292929292,-0.15379169226972225,4.292929292929292,0.3579396881040081 -4.3939393939393945,-0.9751233932017581,4.3939393939393945,-0.19069301489402432,4.3939393939393945,0.3478279422102407 -4.494949494949495,-1.0471623188798242,4.494949494949495,-0.227426975503073,4.494949494949495,0.3377388026398381 -4.595959595959595,-1.1187532876284094,4.595959595959595,-0.263878605240927,4.595959595959595,0.32767338817749475 -4.696969696969697,-1.189660915888889,4.696969696969697,-0.3001960056492053,4.696969696969697,0.3176530967513947 -4.797979797979798,-1.2601246569645388,4.797979797979798,-0.3363281464377301,4.797979797979798,0.3076778013243957 -4.8989898989899,-1.3303637186847002,4.8989898989899,-0.37225330321499334,4.8989898989899,0.29772768053304777 -5.0,-1.4004134094571867,5.0,-0.4080316669473787,5.0,0.2878184725593889 diff --git a/TeX/Plots/Data/scala_out_sin.csv b/TeX/Plots/Data/scala_out_sin.csv deleted file mode 100755 index 7a95079..0000000 --- a/TeX/Plots/Data/scala_out_sin.csv +++ /dev/null @@ -1,101 +0,0 @@ -x_n_50_tl_0.0,y_n_50_tl_0.0,x_n_500_tl_0.0,y_n_500_tl_0.0,x_n_5000_tl_0.0,y_n_5000_tl_0.0,x_n_50_tl_1.0,y_n_50_tl_1.0,x_n_500_tl_1.0,y_n_500_tl_1.0,x_n_5000_tl_1.0,y_n_5000_tl_1.0,x_n_50_tl_3.0,y_n_50_tl_3.0,x_n_500_tl_3.0,y_n_500_tl_3.0,x_n_5000_tl_3.0,y_n_5000_tl_3.0 --5.0,-0.8599583057554976,-5.0,1.6797068787192495,-5.0,1.7379689606223239,-5.0,-0.42741272499487776,-5.0,0.23661838590976328,-5.0,0.20399386816229978,-5.0,0.13095951218866275,-5.0,-0.46242184829078237,-5.0,-0.41058629664051305 --4.898989898989899,-0.8456047840536887,-4.898989898989899,1.5940442438460278,-4.898989898989899,1.6472202329485999,-4.898989898989899,-0.4276431031893983,-4.898989898989899,0.20862681459226723,-4.898989898989899,0.17824071850107404,-4.898989898989899,0.10539057470765349,-4.898989898989899,-0.4609018322257037,-4.898989898989899,-0.4110599614729015 --4.797979797979798,-0.8312512623518801,-4.797979797979798,1.5066655952530659,-4.797979797979798,1.5560370024912986,-4.797979797979798,-0.42787348138391906,-4.797979797979798,0.18056404254218186,-4.797979797979798,0.1523309553054011,-4.797979797979798,0.07982163722664384,-4.797979797979798,-0.4593800781031771,-4.797979797979798,-0.41155161184122596 --4.696969696969697,-0.8168977406500709,-4.696969696969697,1.4192486056640365,-4.696969696969697,1.4641612521550218,-4.696969696969697,-0.42810385957843955,-4.696969696969697,0.1524990189306639,-4.696969696969697,0.1262143553005724,-4.696969696969697,0.05464380509332076,-4.696969696969697,-0.4578583174084625,-4.696969696969697,-0.41205688060740875 --4.595959595959596,-0.8025442189482614,-4.595959595959596,1.3308076153149195,-4.595959595959596,1.3718747642404912,-4.595959595959596,-0.42833423777296026,-4.595959595959596,0.12443399531914556,-4.595959595959596,0.10000299804643913,-4.595959595959596,0.029720704709016,-4.595959595959596,-0.45633655338498746,-4.595959595959596,-0.4126005212950324 --4.494949494949495,-0.788190697246453,-4.494949494949495,1.2408764237610932,-4.494949494949495,1.2794547935729972,-4.494949494949495,-0.42856461596748074,-4.494949494949495,0.09628036393480953,-4.494949494949495,0.07370213597938947,-4.494949494949495,0.004797604324711557,-4.494949494949495,-0.45481454100468904,-4.494949494949495,-0.41317280828652125 --4.393939393939394,-0.7757194193374484,-4.393939393939394,1.150777108936673,-4.393939393939394,1.1865984175078124,-4.393939393939394,-0.4287949941620015,-4.393939393939394,0.06803799087458409,-4.393939393939394,0.047353868838267546,-4.393939393939394,-0.019952866294811474,-4.393939393939394,-0.4532902682540511,-4.393939393939394,-0.41378088791316736 --4.292929292929293,-0.7635428572249876,-4.292929292929293,1.0606777941122512,-4.292929292929293,1.0935156155193826,-4.292929292929293,-0.42902537235652216,-4.292929292929293,0.039745189354681264,-4.292929292929293,0.020863777423783696,-4.292929292929293,-0.04424719286600705,-4.292929292929293,-0.45176167641583376,-4.292929292929293,-0.41441903123033147 --4.191919191919192,-0.7514991436388702,-4.191919191919192,0.9705784792878309,-4.191919191919192,0.9999451479756023,-4.191919191919192,-0.42925575055104276,-4.191919191919192,0.01144626171509771,-4.191919191919192,-0.005903721047402898,-4.191919191919192,-0.06854151943720274,-4.191919191919192,-0.4502329821869361,-4.191919191919192,-0.415076548381381 --4.090909090909091,-0.7396941691045894,-4.090909090909091,0.8798554638230421,-4.090909090909091,0.9059203084364202,-4.090909090909091,-0.42948612874556336,-4.090909090909091,-0.016952280979816926,-4.090909090909091,-0.03298925765732338,-4.090909090909091,-0.09283584600839848,-4.090909090909091,-0.44869972853751156,-4.090909090909091,-0.4157629995846106 --3.9898989898989896,-0.7279252765177078,-3.9898989898989896,0.7884244803113447,-3.9898989898989896,0.811474387051809,-3.9898989898989896,-0.42971650694008423,-3.9898989898989896,-0.04548036359257723,-3.9898989898989896,-0.06017986522111469,-3.9898989898989896,-0.11713017257959416,-3.9898989898989896,-0.44715472797022665,-3.9898989898989896,-0.41647096691012625 --3.888888888888889,-0.7161580919866168,-3.888888888888889,0.6966140451148786,-3.888888888888889,0.7168906385054419,-3.888888888888889,-0.4299468851346048,-3.888888888888889,-0.07408610945271141,-3.888888888888889,-0.0874709084540591,-3.888888888888889,-0.14142449915078953,-3.888888888888889,-0.4456015995456161,-3.888888888888889,-0.4171930364234525 --3.787878787878788,-0.7043909074555256,-3.787878787878788,0.604803249010758,-3.787878787878788,0.6219712537736367,-3.787878787878788,-0.4301772633291252,-3.787878787878788,-0.10285723661640957,-3.787878787878788,-0.11503695886523099,-3.787878787878788,-0.16571882572198493,-3.787878787878788,-0.4440477592686527,-3.787878787878788,-0.41792735866227004 --3.686868686868687,-0.6926237229244344,-3.686868686868687,0.512070766385858,-3.686868686868687,0.5265347560169878,-3.686868686868687,-0.4304076415236461,-3.686868686868687,-0.13176620357773466,-3.686868686868687,-0.1429497539600965,-3.686868686868687,-0.19001315229318066,-3.686868686868687,-0.44249216926013074,-3.686868686868687,-0.4186788950692494 --3.5858585858585856,-0.680856538393343,-3.5858585858585856,0.418341406261733,-3.5858585858585856,0.43037422799158725,-3.5858585858585856,-0.43063801971816673,-3.5858585858585856,-0.16072772857488207,-3.5858585858585856,-0.17103810603915154,-3.5858585858585856,-0.21430747886437626,-3.5858585858585856,-0.44093657925160834,-3.5858585858585856,-0.41944890491602094 --3.484848484848485,-0.6690893538622519,-3.484848484848485,0.3230008626762439,-3.484848484848485,0.33347359833985296,-3.484848484848485,-0.43086839791268744,-3.484848484848485,-0.189786562504877,-3.484848484848485,-0.1992640699299042,-3.484848484848485,-0.238601805435572,-3.484848484848485,-0.4393809892430859,-3.484848484848485,-0.4202525693559286 --3.383838383838384,-0.6573221693311603,-3.383838383838384,0.22755806300474243,-3.383838383838384,0.23599152727957395,-3.383838383838384,-0.4310987761072079,-3.383838383838384,-0.21885301172451227,-3.383838383838384,-0.22770533404467666,-3.383838383838384,-0.2628961320067672,-3.383838383838384,-0.43781693796746485,-3.383838383838384,-0.4210766722370822 --3.282828282828283,-0.6455549848000697,-3.282828282828283,0.13172938749299176,-3.282828282828283,0.13785071540835,-3.282828282828283,-0.4313291543017285,-3.282828282828283,-0.24792012144222308,-3.282828282828283,-0.25633384693349226,-3.282828282828283,-0.28719045857796294,-3.282828282828283,-0.4362515901030497,-3.282828282828283,-0.42192705020460003 --3.1818181818181817,-0.6337878002689783,-3.1818181818181817,0.03583960513370717,-3.1818181818181817,0.03926297085619488,-3.1818181818181817,-0.43155953249624923,-3.1818181818181817,-0.2770868438988566,-3.1818181818181817,-0.28512064843139634,-3.1818181818181817,-0.3114847851491585,-3.1818181818181817,-0.4346861097486259,-3.1818181818181817,-0.42279043662854426 --3.080808080808081,-0.6219933944673289,-3.080808080808081,-0.06005017722557655,-3.080808080808081,-0.05953650043486377,-3.080808080808081,-0.4317899106907698,-3.080808080808081,-0.30634202732953336,-3.080808080808081,-0.3140197227479732,-3.080808080808081,-0.33577911172035446,-3.080808080808081,-0.4331124443470669,-3.080808080808081,-0.42366980349780375 --2.9797979797979797,-0.6084802589111126,-2.9797979797979797,-0.15590935392992944,-2.9797979797979797,-0.15810366579897028,-2.9797979797979797,-0.4320202888852905,-2.9797979797979797,-0.33549678779642544,-2.9797979797979797,-0.3430021282671825,-2.9797979797979797,-0.3600734382915496,-2.9797979797979797,-0.4315218307109141,-2.9797979797979797,-0.42449207343700956 --2.878787878787879,-0.5891232690738096,-2.878787878787879,-0.24713180817765498,-2.878787878787879,-0.2552003497036097,-2.878787878787879,-0.43225066707981114,-2.878787878787879,-0.36352866123332933,-2.878787878787879,-0.3716002292573769,-2.878787878787879,-0.38436776486274526,-2.878787878787879,-0.42982012082652077,-2.878787878787879,-0.4251380414134998 --2.7777777777777777,-0.5636588831509095,-2.7777777777777777,-0.33701300990207655,-2.7777777777777777,-0.35066910453142525,-2.7777777777777777,-0.4324810452743318,-2.7777777777777777,-0.3911342117000581,-2.7777777777777777,-0.39951657101606874,-2.7777777777777777,-0.4086620914339411,-2.7777777777777777,-0.42794280685642583,-2.7777777777777777,-0.4254095546530059 --2.676767676767677,-0.538194497228009,-2.676767676767677,-0.4265304961947721,-2.676767676767677,-0.4419057912445846,-2.676767676767677,-0.4295143886441945,-2.676767676767677,-0.41758811768544335,-2.676767676767677,-0.4264377612958712,-2.676767676767677,-0.4329564180051365,-2.676767676767677,-0.4251801800597513,-2.676767676767677,-0.42514350551302893 --2.5757575757575757,-0.5127301113051083,-2.5757575757575757,-0.5160338868263108,-2.5757575757575757,-0.530562896182845,-2.5757575757575757,-0.4209813938653777,-2.5757575757575757,-0.4421888684751682,-2.5757575757575757,-0.4521958194404763,-2.5757575757575757,-0.4572507445763323,-2.5757575757575757,-0.4220835438175992,-2.5757575757575757,-0.42424941235712643 --2.474747474747475,-0.48726572538220836,-2.474747474747475,-0.6045443334592155,-2.474747474747475,-0.615529859161848,-2.474747474747475,-0.4124483990865609,-2.474747474747475,-0.4657884717671948,-2.474747474747475,-0.4762840194362591,-2.474747474747475,-0.480179747245649,-2.474747474747475,-0.4184871960008546,-2.474747474747475,-0.4227211360179997 --2.3737373737373737,-0.4618013394593081,-2.3737373737373737,-0.6866461198443653,-2.3737373737373737,-0.6916556206405179,-2.3737373737373737,-0.4039154043077441,-2.3737373737373737,-0.4872175481179362,-2.3737373737373737,-0.49664688375599,-2.3737373737373737,-0.5021327343044837,-2.3737373737373737,-0.4148617786025484,-2.3737373737373737,-0.42058969704823307 --2.272727272727273,-0.4363369535364072,-2.272727272727273,-0.7664221699283893,-2.272727272727273,-0.76211944205629,-2.272727272727273,-0.3953824095289272,-2.272727272727273,-0.5066515567337302,-2.272727272727273,-0.5156479697413601,-2.272727272727273,-0.5240857213633179,-2.272727272727273,-0.4101489198915738,-2.272727272727273,-0.41773244666508813 --2.1717171717171717,-0.41087256761350716,-2.1717171717171717,-0.8294863656303931,-2.1717171717171717,-0.8275864122047706,-2.1717171717171717,-0.38684941475011053,-2.1717171717171717,-0.5248642081767847,-2.1717171717171717,-0.5320776321494358,-2.1717171717171717,-0.5460387084221523,-2.1717171717171717,-0.40386935734460455,-2.1717171717171717,-0.41386532161191136 --2.070707070707071,-0.38540818169060687,-2.070707070707071,-0.8777818560548117,-2.070707070707071,-0.8828614286116081,-2.070707070707071,-0.37790597680581006,-2.070707070707071,-0.5419305295559403,-2.070707070707071,-0.5450192204063132,-2.070707070707071,-0.5535021346303699,-2.070707070707071,-0.3970390682426877,-2.070707070707071,-0.40816135821642785 --1.9696969696969697,-0.3599437957677064,-1.9696969696969697,-0.9240065596308831,-1.9696969696969697,-0.9252381701217932,-1.9696969696969697,-0.3679210297690768,-1.9696969696969697,-0.5515520831674893,-1.9696969696969697,-0.5532507694312989,-1.9696969696969697,-0.5395642887779512,-1.9696969696969697,-0.3899536977126602,-1.9696969696969697,-0.4010221140801823 --1.868686868686869,-0.3344794098448062,-1.868686868686869,-0.9642081153190732,-1.868686868686869,-0.9553319880266173,-1.868686868686869,-0.3579360827323437,-1.868686868686869,-0.5596849243269256,-1.868686868686869,-0.556146459781286,-1.868686868686869,-0.5226399861377664,-1.868686868686869,-0.38238093755017905,-1.868686868686869,-0.3924834151653046 --1.7676767676767677,-0.3090150239219054,-1.7676767676767677,-1.0007396420666628,-1.7676767676767677,-0.9785388909278812,-1.7676767676767677,-0.34795113569561026,-1.7676767676767677,-0.5614467949548656,-1.7676767676767677,-0.556098671354368,-1.7676767676767677,-0.4982759643499402,-1.7676767676767677,-0.37323932215085087,-1.7676767676767677,-0.3822790688909727 --1.6666666666666665,-0.2835506379990052,-1.6666666666666665,-1.0187333297343348,-1.6666666666666665,-0.990642179129256,-1.6666666666666665,-0.3378404050890797,-1.6666666666666665,-0.5581030917440444,-1.6666666666666665,-0.5516597526410076,-1.6666666666666665,-0.47067804898067184,-1.6666666666666665,-0.3614402633008814,-1.6666666666666665,-0.37030436851426224 --1.5656565656565657,-0.2580862520761052,-1.5656565656565657,-1.0247628857811257,-1.5656565656565657,-0.9908786897501635,-1.5656565656565657,-0.32764529263529574,-1.5656565656565657,-0.5521110428952534,-1.5656565656565657,-0.543054168961121,-1.5656565656565657,-0.44308013361140386,-1.5656565656565657,-0.34868249075072216,-1.5656565656565657,-0.35699361568660476 --1.4646464646464645,-0.2326218661532044,-1.4646464646464645,-1.0034906902849632,-1.4646464646464645,-0.9791175953628313,-1.4646464646464645,-0.3174501801815117,-1.4646464646464645,-0.5459322825614802,-1.4646464646464645,-0.5306579767422843,-1.4646464646464645,-0.41548221824213516,-1.4646464646464645,-0.3311832422822113,-1.4646464646464645,-0.3422960409489238 --1.3636363636363638,-0.20715748023030392,-1.3636363636363638,-0.9673348570651019,-1.3636363636363638,-0.9595107779813504,-1.3636363636363638,-0.30725506772772765,-1.3636363636363638,-0.5358046337748493,-1.3636363636363638,-0.5149935986561597,-1.3636363636363638,-0.3878843028728669,-1.3636363636363638,-0.3132121589299601,-1.3636363636363638,-0.32640862478895577 --1.2626262626262625,-0.1816930943074038,-1.2626262626262625,-0.9225014127525308,-1.2626262626262625,-0.9337929369785798,-1.2626262626262625,-0.29705995527394363,-1.2626262626262625,-0.5219865374295057,-1.2626262626262625,-0.49551878203869837,-1.2626262626262625,-0.3602863875035988,-1.2626262626262625,-0.2946441284959401,-1.2626262626262625,-0.3093875165551468 --1.1616161616161618,-0.15622870838450328,-1.1616161616161618,-0.8751043056611054,-1.1616161616161618,-0.8989581380947891,-1.1616161616161618,-0.2868560938657385,-1.1616161616161618,-0.5034750880272445,-1.1616161616161618,-0.47203943335323734,-1.1616161616161618,-0.33268847213433056,-1.1616161616161618,-0.274883632364574,-1.1616161616161618,-0.290930041718859 --1.0606060606060606,-0.13076432246160322,-1.0606060606060606,-0.821606899074672,-1.0606060606060606,-0.8584249497008333,-1.0606060606060606,-0.27660353819390815,-1.0606060606060606,-0.48270847299437897,-1.0606060606060606,-0.44464074915622404,-1.0606060606060606,-0.3050905567650622,-1.0606060606060606,-0.25396600066040825,-1.0606060606060606,-0.27118022111102713 --0.9595959595959593,-0.1052999365387022,-0.9595959595959593,-0.7640740662013277,-0.9595959595959593,-0.8091349495541134,-0.9595959595959593,-0.2663509825220778,-0.9595959595959593,-0.4531496187924299,-0.9595959595959593,-0.4131252245857649,-0.9595959595959593,-0.2774926413957938,-0.9595959595959593,-0.2325608605277687,-0.9595959595959593,-0.24999263682664583 --0.858585858585859,-0.07983555061580246,-0.858585858585859,-0.6997648036121712,-0.858585858585859,-0.7481101580520273,-0.858585858585859,-0.24945014324598108,-0.858585858585859,-0.4128551081137216,-0.858585858585859,-0.3783375004573455,-0.858585858585859,-0.24988890615957382,-0.858585858585859,-0.20970608424200354,-0.858585858585859,-0.22760758480332924 --0.7575757575757578,-0.054371164692902076,-0.7575757575757578,-0.6349094271338603,-0.7575757575757578,-0.6820384544330558,-0.7575757575757578,-0.22976061598357173,-0.7575757575757578,-0.37194755761368214,-0.7575757575757578,-0.34125536540984164,-0.7575757575757578,-0.22211577202959193,-0.7575757575757578,-0.18612295967753525,-0.7575757575757578,-0.20435972492122192 --0.6565656565656566,-0.028906778770001355,-0.6565656565656566,-0.5675463340257147,-0.6565656565656566,-0.6095055279444694,-0.6565656565656566,-0.21007108872116223,-0.6565656565656566,-0.33089771921954814,-0.6565656565656566,-0.3018873155488892,-0.6565656565656566,-0.193901705770251,-0.6565656565656566,-0.16215648653127196,-0.6565656565656566,-0.17931671250996567 --0.5555555555555554,-0.003442392847101086,-0.5555555555555554,-0.4979737843441253,-0.5555555555555554,-0.5294156894319434,-0.5555555555555554,-0.17756203711819088,-0.5555555555555554,-0.28543993548509355,-0.5555555555555554,-0.26041062451302716,-0.5555555555555554,-0.1652647608815763,-0.5555555555555554,-0.13697108727984195,-0.5555555555555554,-0.15330854213602407 --0.45454545454545503,0.022021993075799252,-0.45454545454545503,-0.41446378537016554,-0.45454545454545503,-0.44063136513918405,-0.45454545454545503,-0.14370193132078618,-0.45454545454545503,-0.2395445410097954,-0.45454545454545503,-0.21652789115320525,-0.45454545454545503,-0.13529651419425484,-0.45454545454545503,-0.11162353028803523,-0.45454545454545503,-0.12623393965312618 --0.3535353535353538,0.047486378998699605,-0.3535353535353538,-0.32279891003383887,-0.3535353535353538,-0.3477046435373429,-0.3535353535353538,-0.10934683153775412,-0.3535353535353538,-0.19101529776271153,-0.3535353535353538,-0.17035416577174828,-0.3535353535353538,-0.10509845793132169,-0.3535353535353538,-0.08626013443382194,-0.3535353535353538,-0.0984136402387288 --0.2525252525252526,0.07295076492159988,-0.2525252525252526,-0.2310925448666578,-0.2525252525252526,-0.25069145628093464,-0.2525252525252526,-0.07491795886312486,-0.2525252525252526,-0.14150481827496786,-0.2525252525252526,-0.12255925867115473,-0.2525252525252526,-0.07490040166838845,-0.2525252525252526,-0.060434579838324495,-0.2525252525252526,-0.07006332009798681 --0.15151515151515138,0.09843047923373265,-0.15151515151515138,-0.13636354870852932,-0.15151515151515138,-0.15095910699954188,-0.15151515151515138,-0.040306119685216676,-0.15151515151515138,-0.08982558834407159,-0.15151515151515138,-0.07398207558396772,-0.15151515151515138,-0.044702345405455264,-0.15151515151515138,-0.033631412543263274,-0.15151515151515138,-0.04141233375856603 --0.050505050505050164,0.12391212075429944,-0.050505050505050164,-0.03941345742250633,-0.050505050505050164,-0.04947445191778734,-0.050505050505050164,-0.005694280507308445,-0.050505050505050164,-0.03797674651308919,-0.050505050505050164,-0.025080464074353173,-0.050505050505050164,-0.014504289142522105,-0.050505050505050164,-0.006446181090338347,-0.050505050505050164,-0.012381418678247798 -0.050505050505050164,0.14939376227486617,0.050505050505050164,0.056551574802519614,0.050505050505050164,0.0525838784102356,0.050505050505050164,0.028911158365061536,0.050505050505050164,0.013973891774473416,0.050505050505050164,0.023794553267499748,0.050505050505050164,0.01583885016218507,0.050505050505050164,0.021038028372213642,0.050505050505050164,0.016846741994686543 -0.15151515151515138,0.17487540379543332,0.15151515151515138,0.15017264202689645,0.15151515151515138,0.15408973105493792,0.15151515151515138,0.062183868537649845,0.15151515151515138,0.06589471730593952,0.15151515151515138,0.07245763138776953,0.15151515151515138,0.046508129166361926,0.15151515151515138,0.04842915541973139,0.15151515151515138,0.04601083462340586 -0.2525252525252526,0.2003570453160002,0.2525252525252526,0.24151055338001104,0.2525252525252526,0.2530277286116801,0.2525252525252526,0.09533027991528796,0.2525252525252526,0.11633887943820748,0.2525252525252526,0.11992049316059605,0.2525252525252526,0.07717740817053882,0.2525252525252526,0.07538338916654858,0.2525252525252526,0.07493657104851133 -0.3535353535353538,0.22583868683656727,0.3535353535353538,0.3245702345293225,0.3535353535353538,0.3487077570947679,0.3535353535353538,0.12847669129292608,0.3535353535353538,0.1661606781018032,0.3535353535353538,0.16626942811591283,0.3535353535353538,0.10784668717471575,0.3535353535353538,0.10205978943459323,0.3535353535353538,0.10356289911566637 -0.45454545454545414,0.25132032835713397,0.45454545454545414,0.4042440047834261,0.45454545454545414,0.4412637068427958,0.45454545454545414,0.15705349698246504,0.45454545454545414,0.21489012650224273,0.45454545454545414,0.21055873443432177,0.45454545454545414,0.1385159661788923,0.45454545454545414,0.12849799626750344,0.45454545454545414,0.13171638145035697 -0.5555555555555554,0.2768019698777009,0.5555555555555554,0.48386343064481413,0.5555555555555554,0.5292644209820558,0.5555555555555554,0.1822941322301175,0.5555555555555554,0.26332131026810235,0.5555555555555554,0.25282542280637477,0.5555555555555554,0.16918524518306918,0.5555555555555554,0.1537986605041808,0.5555555555555554,0.15885558014342485 -0.6565656565656566,0.30228361139826787,0.6565656565656566,0.5582703975525269,0.6565656565656566,0.6095279265110211,0.6565656565656566,0.20753476747777022,0.6565656565656566,0.311752494033962,0.6565656565656566,0.2926908500466596,0.6565656565656566,0.1998545241872461,0.6565656565656566,0.17827793057103108,0.6565656565656566,0.18425901109338033 -0.7575757575757578,0.3276630675001063,0.7575757575757578,0.6240165672599972,0.7575757575757578,0.6817170975194252,0.7575757575757578,0.23277540272542308,0.7575757575757578,0.35585725421977105,0.7575757575757578,0.32990973382338223,0.7575757575757578,0.23052380319142296,0.7575757575757578,0.19993717433313357,0.7575757575757578,0.20856541522380753 -0.8585858585858581,0.35294340046326517,0.8585858585858581,0.6832251591090945,0.8585858585858581,0.7490023509530548,0.8585858585858581,0.2580160379730755,0.8585858585858581,0.39411574874383437,0.8585858585858581,0.3646086605463153,0.8585858585858581,0.2611930821955996,0.8585858585858581,0.21959645347898898,0.8585858585858581,0.2319021251050189 -0.9595959595959593,0.3782237334264241,0.9595959595959593,0.7379264665053952,0.9595959595959593,0.8101967957597399,0.9595959595959593,0.28325667322072823,0.9595959595959593,0.4295026011065611,0.9595959595959593,0.39755496473819213,0.9595959595959593,0.2918623611997765,0.9595959595959593,0.23923560012200779,0.9595959595959593,0.25414437767202697 -1.0606060606060606,0.40350406638958297,1.0606060606060606,0.7921580999576039,1.0606060606060606,0.865038072851208,1.0606060606060606,0.3013557830052828,1.0606060606060606,0.4622992830762259,1.0606060606060606,0.4264742505103137,1.0606060606060606,0.3225316402039533,1.0606060606060606,0.2583177367004956,1.0606060606060606,0.27509011865395333 -1.1616161616161618,0.4287843993527419,1.1616161616161618,0.8463753861957045,1.1616161616161618,0.9101530745705552,1.1616161616161618,0.30890687222540525,1.1616161616161618,0.4901351365169132,1.1616161616161618,0.45319808589043276,1.1616161616161618,0.35276108409396234,1.1616161616161618,0.27725858987652097,1.1616161616161618,0.29560030900846 -1.262626262626262,0.4540647323159006,1.262626262626262,0.897495878378595,1.262626262626262,0.9417185837581196,1.262626262626262,0.3164579614455276,1.262626262626262,0.5145846409490937,1.262626262626262,0.4780296455205537,1.262626262626262,0.3794404038170447,1.262626262626262,0.2943968389517317,1.262626262626262,0.3152556528081 -1.3636363636363633,0.47934506527905946,1.3636363636363633,0.9371746663372353,1.3636363636363633,0.9683350572505884,1.3636363636363633,0.32400905066565,1.3636363636363633,0.5362370529858077,1.3636363636363633,0.49985847015098533,1.3636363636363633,0.4061135157391696,1.3636363636363633,0.31086438420332474,1.3636363636363633,0.33319398921001137 -1.4646464646464645,0.5046253982422182,1.4646464646464645,0.9707358108138878,1.4646464646464645,0.9850292043911345,1.4646464646464645,0.3315601398857724,1.4646464646464645,0.5531019255981576,1.4646464646464645,0.5181848921010453,1.4646464646464645,0.43278662766129444,1.4646464646464645,0.32679862313827224,1.4646464646464645,0.34908318351734496 -1.5656565656565657,0.519310758600954,1.5656565656565657,0.9906032176938914,1.5656565656565657,0.9918397190961462,1.5656565656565657,0.3391112291058948,1.5656565656565657,0.5659801950328859,1.5656565656565657,0.5323498791465002,1.5656565656565657,0.4511009412793216,1.5656565656565657,0.34162587661768695,1.5656565656565657,0.3628958484057042 -1.666666666666667,0.51401635833774,1.666666666666667,1.005715077214144,1.666666666666667,0.9899656142606021,1.666666666666667,0.346662318326017,1.666666666666667,0.575829702298404,1.666666666666667,0.541260149475436,1.666666666666667,0.4674803110925756,1.666666666666667,0.35601920704359724,1.666666666666667,0.37572761649169056 -1.7676767676767673,0.5060676795476615,1.7676767676767673,1.0131883048070176,1.7676767676767673,0.9786887428475383,1.7676767676767673,0.35421340754613934,1.7676767676767673,0.5828151703640635,1.7676767676767673,0.5455395874048847,1.7676767676767673,0.4838510153495891,1.7676767676767673,0.3703169330810678,1.7676767676767673,0.38781035405087 -1.8686868686868685,0.495017206229559,1.8686868686868685,0.9802541539054102,1.8686868686868685,0.9559310588882513,1.8686868686868685,0.3617644967662619,1.8686868686868685,0.5839088497682434,1.8686868686868685,0.5467157898697311,1.8686868686868685,0.49835864007261943,1.8686868686868685,0.38410765063343066,1.8686868686868685,0.3977196343512365 -1.9696969696969697,0.48396673291145637,1.9696969696969697,0.9263388630289161,1.9696969696969697,0.9221166683929235,1.9696969696969697,0.36931558598638414,1.9696969696969697,0.5804936028756624,1.9696969696969697,0.5450082343452209,1.9696969696969697,0.5115510651058692,1.9696969696969697,0.39647206872026003,1.9696969696969697,0.4057110985660076 -2.070707070707071,0.4729162595933537,2.070707070707071,0.8698358861835761,2.070707070707071,0.8764481362001709,2.070707070707071,0.3768666752065065,2.070707070707071,0.574716686049867,2.070707070707071,0.5394474878302619,2.070707070707071,0.5097127295818997,2.070707070707071,0.4049032898801099,2.070707070707071,0.41126316053027995 -2.1717171717171713,0.46186578627525116,2.1717171717171713,0.8081407617658106,2.1717171717171713,0.8224404974364862,2.1717171717171713,0.38441776442662906,2.1717171717171713,0.5655375705620478,2.1717171717171713,0.5300324428024472,2.1717171717171713,0.49554940844796147,2.1717171717171713,0.4101839304627971,2.1717171717171713,0.4155357725301964 -2.2727272727272725,0.4491770446280175,2.2727272727272725,0.7442526428212628,2.2727272727272725,0.7592323649828391,2.2727272727272725,0.391968853646751,2.2727272727272725,0.552350323381661,2.2727272727272725,0.5163813504127768,2.2727272727272725,0.48094925798793925,2.2727272727272725,0.413936941837358,2.2727272727272725,0.41843071308941276 -2.3737373737373737,0.43609986761848685,2.3737373737373737,0.675405575107383,2.3737373737373737,0.6874741372997285,2.3737373737373737,0.39951994286687353,2.3737373737373737,0.5335539998256553,2.3737373737373737,0.49865541506871236,2.3737373737373737,0.4655571015656922,2.3737373737373737,0.4173906236056948,2.3737373737373737,0.42027249977934045 -2.474747474747475,0.4066895271847391,2.474747474747475,0.5978840366507735,2.474747474747475,0.6073682995880296,2.474747474747475,0.40692119452733155,2.474747474747475,0.5117177142842388,2.474747474747475,0.4784532511364369,2.474747474747475,0.4501649451434452,2.474747474747475,0.4206585025597512,2.474747474747475,0.4213399238172195 -2.5757575757575752,0.3749622763477891,2.5757575757575752,0.5099585586540418,2.5757575757575752,0.5223271133442401,2.5757575757575752,0.41415264022012394,2.5757575757575752,0.4850415148130571,2.5757575757575752,0.4567094947730761,2.5757575757575752,0.43458555601387144,2.5757575757575752,0.42158324745022285,2.5757575757575752,0.42181632222498416 -2.6767676767676765,0.3432350255108388,2.6767676767676765,0.4205365946887392,2.6767676767676765,0.432906236858961,2.6767676767676765,0.4199131836378292,2.6767676767676765,0.45218830888592937,2.6767676767676765,0.4332394825941561,2.6767676767676765,0.41774264448225407,2.6767676767676765,0.42145613907090707,2.6767676767676765,0.4215504924390677 -2.7777777777777777,0.3115077746738885,2.7777777777777777,0.32930350370842715,2.7777777777777777,0.3412321347424227,2.7777777777777777,0.42274639662898705,2.7777777777777777,0.4163402713183856,2.7777777777777777,0.40851950219775013,2.7777777777777777,0.40089973295063663,2.7777777777777777,0.4209228617300304,2.7777777777777777,0.4203590184673923 -2.878787878787879,0.27978052383693824,2.878787878787879,0.23807041272811588,2.878787878787879,0.24760314946640188,2.878787878787879,0.42557960962014507,2.878787878787879,0.3802049595409251,2.878787878787879,0.383057999391408,2.878787878787879,0.3840568214190192,2.878787878787879,0.41938009129458526,2.878787878787879,0.41854626446476473 -2.9797979797979792,0.24805327299998842,2.9797979797979792,0.14646854757187647,2.9797979797979792,0.15264712621771054,2.9797979797979792,0.428104678899817,2.9797979797979792,0.3432577786602793,2.9797979797979792,0.35694448241628624,2.9797979797979792,0.367213909887402,2.9797979797979792,0.41773298189050795,2.9797979797979792,0.4163510447804036 -3.0808080808080813,0.21632602216303798,3.0808080808080813,0.05456143993271787,3.0808080808080813,0.057336396951423035,3.0808080808080813,0.42910204221273207,3.0808080808080813,0.30602019255320434,3.0808080808080813,0.3305660520102483,3.0808080808080813,0.3503709983557844,3.0808080808080813,0.41593157838764133,3.0808080808080813,0.41396474245507225 -3.1818181818181817,0.18459877132608776,3.1818181818181817,-0.03733538955626138,3.1818181818181817,-0.03779843888287274,3.1818181818181817,0.4300994055256468,3.1818181818181817,0.26873960102765904,3.1818181818181817,0.30419224859801247,3.1818181818181817,0.3335280868241671,3.1818181818181817,0.41409475876758717,3.1818181818181817,0.41152646064562604 -3.282828282828282,0.15287152048913782,3.282828282828282,-0.12920906194738088,3.282828282828282,-0.13249853932321157,3.282828282828282,0.43099899837317435,3.282828282828282,0.2314874157056526,3.282828282828282,0.27788417508140784,3.282828282828282,0.3164995410780566,3.282828282828282,0.4122620364061852,3.282828282828282,0.40912247673587887 -3.383838383838384,0.12114426965218736,3.383838383838384,-0.22108273433850145,3.383838383838384,-0.22672866959540386,3.383838383838384,0.4318917322435721,3.383838383838384,0.19424068277399548,3.383838383838384,0.25176947991950477,3.383838383838384,0.2992528546417876,3.383838383838384,0.41043205422405316,3.383838383838384,0.40674183306733336 -3.4848484848484844,0.08941701881523752,3.4848484848484844,-0.3129564067296208,3.4848484848484844,-0.3204339220693533,3.4848484848484844,0.43278446611396965,3.4848484848484844,0.15713787053146627,3.4848484848484844,0.22587592408322044,3.4848484848484844,0.2820061682055188,3.4848484848484844,0.4086021011097265,3.4848484848484844,0.4043698847877142 -3.5858585858585865,0.058162275193419995,3.5858585858585865,-0.40462815693660914,3.5858585858585865,-0.41324795154433747,3.5858585858585865,0.4336771999843675,3.5858585858585865,0.12019800234358827,3.5858585858585865,0.20009983185318994,3.5858585858585865,0.2647594817692496,3.5858585858585865,0.4067722514909233,3.5858585858585865,0.40203120630187705 -3.686868686868687,0.027654025225499562,3.686868686868687,-0.49422269067564845,3.686868686868687,-0.505293720158625,3.686868686868687,0.43456993385476517,3.686868686868687,0.08338176166505175,3.686868686868687,0.17451220690194294,3.686868686868687,0.24694025624429472,3.686868686868687,0.40494401437700783,3.686868686868687,0.39972779600606 -3.787878787878787,-0.0028542247424208616,3.787878787878787,-0.5825355853286744,3.787878787878787,-0.5971159649192432,3.787878787878787,0.4354626677251625,3.787878787878787,0.04665044899957155,3.787878787878787,0.14916273839002891,3.787878787878787,0.22899283485249716,3.787878787878787,0.40312179798093106,3.787878787878787,0.39746202764807126 -3.8888888888888893,-0.03336247471034154,3.8888888888888893,-0.6703463394238872,3.8888888888888893,-0.68824406601414,3.8888888888888893,0.4363554015955604,3.8888888888888893,0.009919136334091362,3.8888888888888893,0.12414842115967273,3.8888888888888893,0.21104541346069938,3.8888888888888893,0.4013011021954902,3.8888888888888893,0.3952295870367829 -3.9898989898989896,-0.06387072467826214,3.9898989898989896,-0.7575928168757736,3.9898989898989896,-0.7784133912470257,3.9898989898989896,0.437248135465958,3.9898989898989896,-0.026722390982327433,3.9898989898989896,0.09939234299162882,3.9898989898989896,0.19309799206890174,3.9898989898989896,0.399484052282032,3.9898989898989896,0.3930265651896393 -4.09090909090909,-0.0943789746461824,4.09090909090909,-0.8443788481067765,4.09090909090909,-0.8681309126980375,4.09090909090909,0.43814086933635565,4.09090909090909,-0.06308596529257729,4.09090909090909,0.07491765400345742,4.09090909090909,0.1750164743635475,4.09090909090909,0.39766754707663343,4.09090909090909,0.3908577509521082 -4.191919191919192,-0.12488722461410334,4.191919191919192,-0.9297917533069101,4.191919191919192,-0.9573364023412008,4.191919191919192,0.4390336032067535,4.191919191919192,-0.09929539509789244,4.191919191919192,0.05074971564267564,4.191919191919192,0.1568727764842795,4.191919191919192,0.3958543351530404,4.191919191919192,0.38872432233841003 -4.292929292929292,-0.15539547458202363,4.292929292929292,-1.0140884125491687,4.292929292929292,-1.0459165238042567,4.292929292929292,0.4399263370771512,4.292929292929292,-0.1349334585206603,4.292929292929292,0.02675516616820918,4.292929292929292,0.13872907860501169,4.292929292929292,0.3940418892740997,4.292929292929292,0.38661923148208605 -4.3939393939393945,-0.18590372454994458,4.3939393939393945,-1.0972974392893766,4.3939393939393945,-1.1342383379633272,4.3939393939393945,0.4408190709475487,4.3939393939393945,-0.16982980680843562,4.3939393939393945,0.002964652994963484,4.3939393939393945,0.11796054958424437,4.3939393939393945,0.3922298874756054,4.3939393939393945,0.3845302650106349 -4.494949494949495,-0.216411974517865,4.494949494949495,-1.179182894055243,4.494949494949495,-1.2221355458185688,4.494949494949495,0.44032091498508585,4.494949494949495,-0.20469748939648835,4.494949494949495,-0.0206002794035424,4.494949494949495,0.09701325884395126,4.494949494949495,0.39041788567711144,4.494949494949495,0.38248614430609396 -4.595959595959595,-0.24692022448578524,4.595959595959595,-1.2601894992373368,4.595959595959595,-1.3091379548259912,4.595959595959595,0.4390119198940737,4.595959595959595,-0.239564339118166,4.595959595959595,-0.044064215802437315,4.595959595959595,0.07606596810365834,4.595959595959595,0.38861853091288373,4.595959595959595,0.3804739406387159 -4.696969696969697,-0.2774284744537062,4.696969696969697,-1.3408190143954206,4.696969696969697,-1.395667382198044,4.696969696969697,0.4377029248030613,4.696969696969697,-0.2744311888398445,4.696969696969697,-0.06739710896332894,4.696969696969697,0.05511867736336504,4.696969696969697,0.38683625018149875,4.696969696969697,0.37848669218529357 -4.797979797979798,-0.3079367244216266,4.797979797979798,-1.4214485295534998,4.797979797979798,-1.4814148159277154,4.797979797979798,0.436393929712049,4.797979797979798,-0.3092980385615221,4.797979797979798,-0.09057526494106827,4.797979797979798,0.034171386623072064,4.797979797979798,0.3850542123238927,4.797979797979798,0.37652869146057905 -4.8989898989899,-0.3384449743895474,4.8989898989899,-1.5019215376311323,4.8989898989899,-1.5662892316768398,4.8989898989899,0.4350560618496009,4.8989898989899,-0.34416306870335767,4.8989898989899,-0.11357143325279366,4.8989898989899,0.013224095882778591,4.8989898989899,0.383272237289863,4.8989898989899,0.37460430584833954 -5.0,-0.3689532243574676,5.0,-1.5820215750973248,5.0,-1.6508596672714462,5.0,0.43307940950570034,5.0,-0.37879161071248096,5.0,-0.13636462992911846,5.0,-0.007723194857514326,5.0,0.38149127984729847,5.0,0.37272620912380855 diff --git a/TeX/Plots/Data/sin_6.csv b/TeX/Plots/Data/sin_6.csv deleted file mode 100644 index 8acc554..0000000 --- a/TeX/Plots/Data/sin_6.csv +++ /dev/null @@ -1,7 +0,0 @@ -x,y --3.14159265358979 , -1.22464679914735e-16 --1.88495559215388 , -0.951056516295154 --0.628318530717959 , -0.587785252292473 -0.628318530717959 , 0.587785252292473 -1.88495559215388 , 0.951056516295154 -3.14159265358979 , 1.22464679914735e-16 diff --git a/TeX/Plots/Data/sin_conv.csv b/TeX/Plots/Data/sin_conv.csv deleted file mode 100644 index 18f9767..0000000 --- a/TeX/Plots/Data/sin_conv.csv +++ /dev/null @@ -1,64 +0,0 @@ -,x_i,y_i,x_d,y_d,x,y -"1",0,0,-0.251688505259414,-0.109203329280437,-0.0838961684198045,-0.0364011097601456 -"2",0.1,0.0998334166468282,0.216143831477992,0.112557051753147,0.00912581751114394,0.0102181849309398 -"3",0.2,0.198669330795061,0.351879533708722,0.52138915851383,0.120991434720523,0.180094983253476 -"4",0.3,0.29552020666134,-0.0169121548298757,0.0870956013269369,0.0836131805695847,0.163690012207993 -"5",0.4,0.389418342308651,0.278503661037003,0.464752686490904,0.182421968363305,0.294268636359638 -"6",0.5,0.479425538604203,0.241783494554983,0.521480762031938,0.216291763003623,0.399960258238722 -"7",0.6,0.564642473395035,0.67288177436767,0.617435509386938,0.35521581484916,0.469717955748659 -"8",0.7,0.644217687237691,0.692239292735764,0.395366561077235,0.492895242512842,0.472257444593698 -"9",0.8,0.717356090899523,0.779946606884677,0.830045203984444,0.621840812496715,0.609161571471379 -"10",0.9,0.783326909627483,0.796987424421658,0.801263132114778,0.723333122197902,0.682652280249237 -"11",1,0.841470984807897,1.06821012817873,0.869642838589798,0.860323524382936,0.752971972337735 -"12",1.1,0.891207360061435,1.50128637982775,0.899079529605641,1.09148187598916,0.835465707990221 -"13",1.2,0.932039085967226,1.1194263347154,0.906626360727432,1.13393429991233,0.875953352580199 -"14",1.3,0.963558185417193,1.24675170552299,1.07848030956084,1.2135821540696,0.950969562327306 -"15",1.4,0.98544972998846,1.32784804980202,0.76685418220594,1.2818141129714,0.899892140468108 -"16",1.5,0.997494986604054,1.23565831982523,1.07310713979952,1.2548338349408,0.961170357331681 -"17",1.6,0.999573603041505,1.90289281875567,0.88003153305018,1.47254506382487,0.94006950203764 -"18",1.7,0.991664810452469,1.68871194985252,1.01829329437246,1.56940444551462,0.955793455192302 -"19",1.8,0.973847630878195,1.72179983981017,1.02268013575533,1.64902528694529,0.988666907865147 -"20",1.9,0.946300087687414,2.0758716236832,0.805032560816536,1.83908127693465,0.928000158917177 -"21",2,0.909297426825682,2.11118945422405,1.0134691646089,1.94365432453739,0.957334347939419 -"22",2.1,0.863209366648874,2.00475777514698,0.86568986134637,1.9826265174693,0.924298444442167 -"23",2.2,0.80849640381959,2.40773948766051,0.667018023975934,2.15807575978944,0.826761739840873 -"24",2.3,0.74570521217672,2.14892522112975,0.872704236332415,2.17485332420928,0.839957045849706 -"25",2.4,0.675463180551151,2.41696701330131,0.253955021611832,2.26412064248401,0.631186439537074 -"26",2.5,0.598472144103957,2.4087686184711,0.49450592290142,2.33847747374241,0.557319074033222 -"27",2.6,0.515501371821464,2.55312145187913,0.343944677655963,2.4151672191424,0.467867318187242 -"28",2.7,0.42737988023383,2.6585492172135,0.528990826178838,2.51649125567521,0.447178678139147 -"29",2.8,0.334988150155905,2.86281283456189,0.311400289332401,2.65184232661008,0.399952143417531 -"30",2.9,0.239249329213982,2.74379162744449,0.501282616227342,2.70796893413474,0.432791852065713 -"31",3,0.141120008059867,2.95951338295806,0.241385538727577,2.81576254355573,0.373424929745113 -"32",3.1,0.0415806624332905,2.87268165585702,0.0764217470113609,2.85626015646841,0.264426413128825 -"33",3.2,-0.0583741434275801,3.29898326143096,-0.272500742891131,3.0101734240017,0.0756660807058224 -"34",3.3,-0.157745694143249,3.64473302259565,-0.24394459655987,3.24463496592626,-0.0688606479078372 -"35",3.4,-0.255541102026832,3.46698556586598,-0.184272732807665,3.35339770834784,-0.15210430721581 -"36",3.5,-0.35078322768962,3.67208160089566,-0.119933071489115,3.51318482264886,-0.176430496141549 -"37",3.6,-0.442520443294852,3.73738883546162,-0.486197268315415,3.62961845872181,-0.283186040443485 -"38",3.7,-0.529836140908493,3.77209072631297,-0.70275845349803,3.68619468325631,-0.422698101171958 -"39",3.8,-0.611857890942719,3.66424718733509,-0.482410535792735,3.69727905622484,-0.462935060857071 -"40",3.9,-0.687766159183974,3.72257849834575,-0.58477261395861,3.71784166083333,-0.543108060927685 -"41",4,-0.756802495307928,3.85906293918747,-0.703015362823377,3.76539960460785,-0.618449987254768 -"42",4.1,-0.818277111064411,4.0131961543859,-0.900410257326814,3.84632588679948,-0.708384794580195 -"43",4.2,-0.871575772413588,4.0263131749378,-0.906044808231391,3.92085812717095,-0.789303202089581 -"44",4.3,-0.916165936749455,4.77220075671212,-0.530827398816399,4.22925719163087,-0.729943577630504 -"45",4.4,-0.951602073889516,4.4795636311648,-1.26672674728111,4.35331987391088,-0.921377204806384 -"46",4.5,-0.977530117665097,4.5088210845027,-0.886168448505782,4.44898342417679,-0.914264630323723 -"47",4.6,-0.993691003633465,4.70645816063034,-1.1082213336257,4.58861983576766,-0.97806804633887 -"48",4.7,-0.999923257564101,4.48408312008838,-0.98352521226689,4.55827710678399,-1.01979325501755 -"49",4.8,-0.996164608835841,4.97817348334347,-1.03043977928678,4.69715193557134,-1.02203657500247 -"50",4.9,-0.982452612624332,5.09171179984929,-0.948912592308037,4.8484480091335,-0.999631162740658 -"51",5,-0.958924274663138,4.87710566000798,-0.825224506141761,4.87693462801326,-0.937722874707385 -"52",5.1,-0.925814682327732,5.04139294635392,-0.718936957124138,4.97198282698482,-0.856650521199568 -"53",5.2,-0.883454655720153,4.94893136398377,-0.992753696742329,4.98294046406006,-0.885371127105841 -"54",5.3,-0.832267442223901,5.38128555915899,-0.717434652733088,5.10670981664685,-0.816103747160468 -"55",5.4,-0.772764487555987,5.46192736637355,-0.724060934669406,5.2398375587704,-0.780347098915984 -"56",5.5,-0.705540325570392,5.30834840605735,-0.721772537926303,5.28807996342596,-0.766498807502665 -"57",5.6,-0.631266637872321,5.53199687756185,-0.583133415115471,5.40779902870202,-0.688843253413245 -"58",5.7,-0.550685542597638,5.9238064899769,-0.541063721566544,5.59865656961444,-0.627040990301198 -"59",5.8,-0.464602179413757,5.8067999294844,-0.43156566524513,5.68077207716296,-0.552246304884294 -"60",5.9,-0.373876664830236,5.93089453525347,-0.604056792592816,5.80084302534748,-0.550733954237757 -"61",6,-0.279415498198926,6.02965160059402,-0.234452930170458,5.91786841211583,-0.434812265604247 -"62",6.1,-0.182162504272095,5.88697419016579,-0.135764844759742,5.91990685000071,-0.323660336266941 -"63",6.2,-0.0830894028174964,5.91445270773648,-0.0073552500992853,5.92798052258888,-0.205537962618181 diff --git a/TeX/Plots/RN_vs_RS.tex b/TeX/Plots/RN_vs_RS.tex deleted file mode 100644 index 1c2166f..0000000 --- a/TeX/Plots/RN_vs_RS.tex +++ /dev/null @@ -1,141 +0,0 @@ -\pgfplotsset{ -compat=1.11, -legend image code/.code={ -\draw[mark repeat=2,mark phase=2] -plot coordinates { -(0cm,0cm) -(0.075cm,0cm) %% default is (0.3cm,0cm) -(0.15cm,0cm) %% default is (0.6cm,0cm) -};% -} -} -\begin{figure} - \begin{subfigure}[b]{0.5\textwidth} - \begin{subfigure}[b]{\textwidth} - \begin{adjustbox}{width=\textwidth, height=0.25\textheight} - \begin{tikzpicture} - \begin{axis}[ - ytick = {-1, 0, 1, 2}, - yticklabels = {$-1$, $\phantom{-0.}0$, $1$, $2$},] - \addplot table [x=x, y=y, col sep=comma, only marks, - forget plot] {Plots/Data/sin_6.csv}; - \addplot [black, line width=2pt] table [x=x, y=y, col - sep=comma, mark=none] {Plots/Data/matlab_0.csv}; - \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.0, - y=y_n_5000_tl_0.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv}; - \addlegendentry{$f_1^{*, 0.1}$}; - \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{$\lambda = 0.1$} - \end{subfigure}\\ - \begin{subfigure}[b]{\textwidth} - \begin{adjustbox}{width=\textwidth, height=0.25\textheight} - \begin{tikzpicture} - \begin{axis} - \addplot table [x=x, y=y, col sep=comma, only marks, - forget plot] {Plots/Data/sin_6.csv}; - \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_1.csv}; - \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0, - y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv}; - \addlegendentry{$f_1^{*, 1.0}$}; - \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{$\lambda = 1.0$} - \end{subfigure}\\ - \begin{subfigure}[b]{\textwidth} - \begin{adjustbox}{width=\textwidth, height=0.25\textheight} - \begin{tikzpicture} - \begin{axis} - \addplot table [x=x, y=y, col sep=comma, only marks, - forget plot] {Plots/Data/sin_6.csv}; - \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_3.csv}; - \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0, - y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv}; - \addlegendentry{$f_1^{*, 3.0}$}; - \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{$\lambda = 3.0$} - \end{subfigure} - \end{subfigure} - \begin{subfigure}[b]{0.5\textwidth} - \begin{subfigure}[b]{\textwidth} - \begin{adjustbox}{width=\textwidth, height=0.245\textheight} - \begin{tikzpicture} - \begin{axis}[ - ytick = {-2,-1, 0, 1, 2}, - yticklabels = {$-2$,$-1$, $\phantom{-0.}0$, $1$, $2$},] - \addplot table [x=x, y=y, col sep=comma, only marks, - forget plot] {Plots/Data/data_sin_d_t.csv}; - \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_01.csv}; - \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.1, - y=y_n_5000_tl_0.1, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv}; - \addlegendentry{$f_1^{*, 0.1}$}; - \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{$\lambda = 0.1$} - \end{subfigure}\\ - \begin{subfigure}[b]{\textwidth} - \begin{adjustbox}{width=\textwidth, height=0.25\textheight} - \begin{tikzpicture} - \begin{axis} - \addplot table [x=x, y=y, col sep=comma, only marks, - forget plot] {Plots/Data/data_sin_d_t.csv}; - \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_1.csv}; - \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0, - y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv}; - \addlegendentry{$f_1^{*, 1.0}$}; - \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda},*}$}; - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{$\lambda = 1.0$} - \end{subfigure}\\ - \begin{subfigure}[b]{\textwidth} - \begin{adjustbox}{width=\textwidth, height=0.25\textheight} - \begin{tikzpicture} - \begin{axis} - \addplot table [x=x, y=y, col sep=comma, only marks, - forget plot] {Plots/Data/data_sin_d_t.csv}; - \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_3.csv}; - \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0, - y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv}; - \addlegendentry{$f_1^{*, 3.0}$}; - \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{$\lambda = 3.0$} - \end{subfigure} - \end{subfigure} - \caption[Comparison of shallow neural networks and regression - splines]{% In these Figures the behaviour stated in ... is - % visualized - % in two exaples. For $(a), (b), (c)$ six values of sinus equidistantly - % spaced on $[-\pi, \pi]$ have been used as training data. For - % $(d),(e),(f)$ 15 equidistand values have been used, where - % $y_i^{train} = \sin(x_i^{train}) + \varepsilon_i$ and - % $\varepsilon_i \sim \mathcal{N}(0, 0.3)$. For - % $\mathcal{RN}_w^{\tilde{\lambda, *}}$ the random weights are - % distributed as follows - % \begin{align*} - % \xi_k &\sim - % \end{align*} - Ridge Penalized Neural Network compared to Regression Spline, - with them being trained on $\text{data}_A$ in a), b), c) and on - $\text{data}_B$ in d), e), f). - The Parameters of each are given above. - } - \label{fig:rn_vs_rs} -\end{figure} -%%% Local Variables: -%%% mode: latex -%%% TeX-master: -%%% End: diff --git a/TeX/Plots/SGD_vs_GD.tex b/TeX/Plots/SGD_vs_GD.tex deleted file mode 100644 index e2f8cfb..0000000 --- a/TeX/Plots/SGD_vs_GD.tex +++ /dev/null @@ -1,93 +0,0 @@ -\pgfplotsset{ -compat=1.11, -legend image code/.code={ -\draw[mark repeat=2,mark phase=2] -plot coordinates { -(0cm,0cm) -(0.0cm,0cm) %% default is (0.3cm,0cm) -(0.0cm,0cm) %% default is (0.6cm,0cm) -};% -} -} -\begin{figure} - \begin{subfigure}[h!]{\textwidth} - \begin{tikzpicture} - \begin{axis}[tick style = {draw = none}, width = \textwidth, - height = 0.6\textwidth, - xtick = {1, 3, 5,7,9,11,13,15,17,19}, - xticklabels = {$2$, $4$, $6$, $8$, - $10$,$12$,$14$,$16$,$18$,$20$}, - xlabel = {training epoch}, ylabel = {classification accuracy}] - \addplot table - [x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_01.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_05.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_1.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma] - {Plots/Data/SGD_01_b32.log}; - - \addlegendentry{GD$_{0.01}$} - \addlegendentry{GD$_{0.05}$} - \addlegendentry{GD$_{0.1}$} - \addlegendentry{SGD$_{0.01}$} - \end{axis} - \end{tikzpicture} - %\caption{Classification accuracy} - \end{subfigure} - \begin{subfigure}[b]{\textwidth} - \begin{tikzpicture} - \begin{axis}[tick style = {draw = none}, width = \textwidth, - height = 0.6\textwidth, - ytick = {0, 1, 2, 3, 4}, - yticklabels = {$0$, $1$, $\phantom{0.}2$, $3$, $4$}, - xtick = {1, 3, 5,7,9,11,13,15,17,19}, - xticklabels = {$2$, $4$, $6$, $8$, - $10$,$12$,$14$,$16$,$18$,$20$}, - xlabel = {training epoch}, ylabel = {error measure\vphantom{fy}}] - \addplot table - [x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_01.log}; - \addplot table - [x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_05.log}; - \addplot table - [x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_1.log}; - \addplot table - [x=epoch, y=val_loss, col sep=comma] {Plots/Data/SGD_01_b32.log}; - - \addlegendentry{GD$_{0.01}$} - \addlegendentry{GD$_{0.05}$} - \addlegendentry{GD$_{0.1}$} - \addlegendentry{SGD$_{0.01}$} - - \end{axis} - \end{tikzpicture} - \caption{Performance metrics during training} - \end{subfigure} - % \\~\\ - \caption[Performance comparison of SDG and GD]{The neural network given in ?? trained with different - algorithms on the MNIST handwritten digits data set. For gradient - descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{\cdot}$). For - stochastic gradient descend a batch size of 32 and learning rate - of 0.01 is used (SDG$_{0.01}$).} - \label{fig:sgd_vs_gd} -\end{figure} - -\begin{table}[h] - \begin{tabu} to \textwidth {@{} *4{X[c]}c*4{X[c]} @{}} - \multicolumn{4}{c}{Classification Accuracy} - &~&\multicolumn{4}{c}{Error Measure} - \\\cline{1-4}\cline{6-9} - GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$ - \\\cline{1-4}\cline{6-9} - \multicolumn{9}{c}{test}\\ - 0.265&0.633&0.203&0.989&&2.267&1.947&3.91&0.032 - \end{tabu} - \caption{Performance metrics of the networks trained in - Figure~\ref{fig:sgd_vs_gd} after 20 training epochs.} - \label{table:sgd_vs_gd} -\end{table} -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "../main" -%%% End: diff --git a/TeX/Plots/_region_.tex b/TeX/Plots/_region_.tex deleted file mode 100644 index ae8d959..0000000 --- a/TeX/Plots/_region_.tex +++ /dev/null @@ -1,71 +0,0 @@ -\message{ !name(pfg_test.tex)}\documentclass{article} -\usepackage{pgfplots} -\usepackage{filecontents} -\usepackage{subcaption} -\usepackage{adjustbox} -\usepackage{xcolor} -\usepackage{graphicx} -\usetikzlibrary{calc, 3d} - -\begin{document} - -\message{ !name(pfg_test.tex) !offset(6) } - - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{True position (\textcolor{red}{red}), distorted data (black)} -\end{figure} -\begin{center} -\begin{figure}[h] - \begin{subfigure}{0.49\textwidth} - \includegraphics[width=\textwidth]{Data/klammern.jpg} - \caption{Original Picure} - \end{subfigure} - \begin{subfigure}{0.49\textwidth} - \includegraphics[width=\textwidth]{Data/image_conv4.png} - \caption{test} - \end{subfigure} - \begin{subfigure}{0.49\textwidth} - \includegraphics[width=\textwidth]{Data/image_conv5.png} - \caption{test} - \end{subfigure} - \begin{subfigure}{0.49\textwidth} - \includegraphics[width=\textwidth]{Data/image_conv6.png} - \caption{test} - \end{subfigure} -\end{figure} -\end{center} - -\begin{figure} - \begin{adjustbox}{width=\textwidth} - \begin{tikzpicture} - \begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)] - \node[canvas is xy plane at z=0, transform shape] at (0,0) - {\includegraphics[width=5cm]{Data/klammern_r.jpg}}; - \node[canvas is xy plane at z=2, transform shape] at (0,-0.2) - {\includegraphics[width=5cm]{Data/klammern_g.jpg}}; - \node[canvas is xy plane at z=4, transform shape] at (0,-0.4) - {\includegraphics[width=5cm]{Data/klammern_b.jpg}}; - \node[canvas is xy plane at z=4, transform shape] at (-8,-0.2) - {\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}}; - \end{scope} - \end{tikzpicture} - \end{adjustbox} - \caption{On the right the red, green and blue chanels of the picture - are displayed. In order to better visualize the color channes the - black and white picture of each channel has been colored in the - respective color. Combining the layers results in the image on the - left} -\end{figure} - - - -\message{ !name(pfg_test.tex) !offset(3) } - -\end{document} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: t -%%% End: diff --git a/TeX/Plots/fashion_mnist.tex b/TeX/Plots/fashion_mnist.tex deleted file mode 100644 index 2a6e4d7..0000000 --- a/TeX/Plots/fashion_mnist.tex +++ /dev/null @@ -1,53 +0,0 @@ -\begin{figure}[h] - \centering - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist0.pdf} - \caption{T-shirt/top} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist1.pdf} - \caption{Trousers} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist2.pdf} - \caption{Pullover} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist3.pdf} - \caption{Dress} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist4.pdf} - \caption{Coat} - \end{subfigure}\\ - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist5.pdf} - \caption{Sandal} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist6.pdf} - \caption{Shirt} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist7.pdf} - \caption{Sneaker} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist8.pdf} - \caption{Bag} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/fashion_mnist9.pdf} - \caption{Ankle boot} - \end{subfigure} - \caption[Fashion MNIST data set]{The fashtion MNIST data set contains 70.000 images of - preprocessed product images from Zalando, which are categorized as - T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, - Sneaker, Bag, Ankle boot. Of these images 60.000 are used as training images, while - the rest are used to validate the models trained.} - \label{fig:MNIST} -\end{figure} -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "../main" -%%% End: diff --git a/TeX/Plots/gen_dropout.tex b/TeX/Plots/gen_dropout.tex deleted file mode 100644 index deb84f9..0000000 --- a/TeX/Plots/gen_dropout.tex +++ /dev/null @@ -1,82 +0,0 @@ -\pgfplotsset{ -compat=1.11, -legend image code/.code={ -\draw[mark repeat=2,mark phase=2] -plot coordinates { -(0cm,0cm) -(0.15cm,0cm) %% default is (0.3cm,0cm) -(0.3cm,0cm) %% default is (0.6cm,0cm) -};% -} -} -\begin{figure} - \begin{subfigure}[h]{\textwidth} - \begin{tikzpicture} - \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed, - /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth, - height = 0.6\textwidth, ymin = 0.988, legend style={at={(0.9825,0.0175)},anchor=south east}, - xlabel = {epoch}, ylabel = {Classification Accuracy}, cycle - list/Dark2, every axis plot/.append style={line width =1.25pt}] - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_full_mean.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_dropout_02_full_mean.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_dropout_04_full_mean.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_dropout_02_full_mean.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_dropout_04_full_mean.log}; - \addplot [dashed] table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_full_mean.log}; - - \addlegendentry{\footnotesize{G.}} - \addlegendentry{\footnotesize{G. + D. 0.2}} - \addlegendentry{\footnotesize{G. + D. 0.4}} - \addlegendentry{\footnotesize{D. 0.2}} - \addlegendentry{\footnotesize{D. 0.4}} - \addlegendentry{\footnotesize{Default}} - \end{axis} - \end{tikzpicture} - \caption{Classification accuracy} - \vspace{.25cm} - \end{subfigure} - \begin{subfigure}[h]{1.0\linewidth} - \begin{tabu} to \textwidth {@{}lc*5{X[c]}@{}} - \Tstrut \Bstrut & \textsc{\,Adam\,} & D. 0.2 & D. 0.4 & G. &G.+D.\,0.2 & G.+D.\,0.4 \\ - \hline - \multicolumn{7}{c}{Test Accuracy}\Bstrut \\ - \cline{2-7} - mean \Tstrut & 0.9914 & 0.9923 & 0.9930 & 0.9937 & 0.9938 & 0.9943 \\ - max & 0.9926 & 0.9930 & 0.9934 & 0.9946 & 0.9955 & 0.9956 \\ - min & 0.9887 & 0.9909 & 0.9922 & 0.9929 & 0.9929 & 0.9934 \\ - \hline - \multicolumn{7}{c}{Training Accuracy}\Bstrut \\ - \cline{2-7} - mean \Tstrut & 0.9994 & 0.9991 & 0.9989 & 0.9967 & 0.9954 & 0.9926 \\ - max & 0.9996 & 0.9996 & 0.9992 & 0.9979 & 0.9971 & 0.9937 \\ - min & 0.9992 & 0.9990 & 0.9984 & 0.9947 & 0.9926 & 0.9908 \\ - \end{tabu} - \caption{Mean and maximum accuracy after 48 epochs of training.} - \label{fig:gen_dropout_b} - \end{subfigure} - \caption[Performance comparison of overfitting measures]{Accuracy for the net given in ... with Dropout (D.), - data generation (G.), a combination, or neither (Default) implemented and trained - with \textsc{Adam}. For each epoch the 60.000 training samples - were used, or for data generation 10.000 steps with each using - batches of 60 generated data points. For each configuration the - model was trained 5 times and the average accuracies at each epoch - are given in (a). Mean, maximum and minimum values of accuracy on - the test and training set are given in (b).} - \label{fig:gen_dropout} -\end{figure} -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "../main" -%%% End: diff --git a/TeX/Plots/mnist.tex b/TeX/Plots/mnist.tex deleted file mode 100644 index 7f1b924..0000000 --- a/TeX/Plots/mnist.tex +++ /dev/null @@ -1,41 +0,0 @@ -\begin{figure}[h] - \centering - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist0.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist1.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist2.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist3.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist4.pdf} - \end{subfigure}\\ - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist5.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist6.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist7.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist8.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist9.pdf} - \end{subfigure} - \caption[MNIST data set]{The MNIST data set contains 70.000 images of preprocessed handwritten - digits. Of these images 60.000 are used as training images, while - the rest are used to validate the models trained.} - \label{fig:MNIST} -\end{figure} -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "../main" -%%% End: diff --git a/TeX/Plots/pfg_test.tex b/TeX/Plots/pfg_test.tex deleted file mode 100644 index 76f9407..0000000 --- a/TeX/Plots/pfg_test.tex +++ /dev/null @@ -1,301 +0,0 @@ -\documentclass[a4paper, 12pt, draft=true]{article} -\usepackage{pgfplots} -\usepackage{filecontents} -\usepackage{subcaption} -\usepackage{adjustbox} -\usepackage{xcolor} -\usepackage{tabu} -\usepackage{showframe} -\usepackage{graphicx} -\usepackage{titlecaps} -\usetikzlibrary{calc, 3d} -\usepgfplotslibrary{colorbrewer} - -\newcommand\Tstrut{\rule{0pt}{2.6ex}} % = `top' strut -\newcommand\Bstrut{\rule[-0.9ex]{0pt}{0pt}} % = `bottom' strut - -\begin{document} -\pgfplotsset{ -compat=1.11, -legend image code/.code={ -\draw[mark repeat=2,mark phase=2] -plot coordinates { -(0cm,0cm) -(0.3cm,0cm) %% default is (0.3cm,0cm) -(0.6cm,0cm) %% default is (0.6cm,0cm) -};% -} -} -\begin{figure} - \begin{subfigure}[h]{\textwidth} - \begin{tikzpicture} - \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed, - /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth, - height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east}, - ylabel = {Test Accuracy}, cycle - list/Dark2, every axis plot/.append style={line width - =1.25pt}] - % \addplot [dashed] table - % [x=epoch, y=accuracy, col sep=comma, mark = none] - % {Data/adam_datagen_full.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_1.mean}; - % \addplot [dashed] table - % [x=epoch, y=accuracy, col sep=comma, mark = none] - % {Data/adam_datagen_dropout_02_full.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_datagen_1.mean}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_datagen_dropout_02_1.mean}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_dropout_02_1.mean}; - - - \addlegendentry{\footnotesize{G.}} - \addlegendentry{\footnotesize{G. + D. 0.2}} - \addlegendentry{\footnotesize{G. + D. 0.4}} - \addlegendentry{\footnotesize{D. 0.2}} - \addlegendentry{\footnotesize{D. 0.4}} - \addlegendentry{\footnotesize{Default}} - \end{axis} - \end{tikzpicture} - \caption{1 sample per class} - \vspace{0.25cm} - \end{subfigure} - \begin{subfigure}[h]{\textwidth} - \begin{tikzpicture} - \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed, - /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth, - height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east}, - ylabel = {Test Accuracy}, cycle - list/Dark2, every axis plot/.append style={line width - =1.25pt}] - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_dropout_00_10.mean}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_dropout_02_10.mean}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_datagen_dropout_00_10.mean}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_datagen_dropout_02_10.mean}; - - - \addlegendentry{\footnotesize{G.}} - \addlegendentry{\footnotesize{G. + D. 0.2}} - \addlegendentry{\footnotesize{G. + D. 0.4}} - \addlegendentry{\footnotesize{D. 0.2}} - \addlegendentry{\footnotesize{D. 0.4}} - \addlegendentry{\footnotesize{Default}} - \end{axis} - \end{tikzpicture} - \caption{10 samples per class} - \end{subfigure} - \begin{subfigure}[h]{\textwidth} - \begin{tikzpicture} - \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed, - /pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth, - height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east}, - xlabel = {epoch}, ylabel = {Test Accuracy}, cycle - list/Dark2, every axis plot/.append style={line width - =1.25pt}, ymin = {0.92}] - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_dropout_00_100.mean}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_dropout_02_100.mean}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_datagen_dropout_00_100.mean}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Data/adam_datagen_dropout_02_100.mean}; - - \addlegendentry{\footnotesize{G.}} - \addlegendentry{\footnotesize{G. + D. 0.2}} - \addlegendentry{\footnotesize{G. + D. 0.4}} - \addlegendentry{\footnotesize{D. 0.2}} - \addlegendentry{\footnotesize{D. 0.4}} - \addlegendentry{\footnotesize{Default}} - \end{axis} - \end{tikzpicture} - \caption{100 samples per class} - \vspace{.25cm} - \end{subfigure} - \caption{Accuracy for the net given in ... with Dropout (D.), - data generation (G.), a combination, or neither (Default) implemented and trained - with \textsc{Adam}. For each epoch the 60.000 training samples - were used, or for data generation 10.000 steps with each using - batches of 60 generated data points. For each configuration the - model was trained 5 times and the average accuracies at each epoch - are given in (a). Mean, maximum and minimum values of accuracy on - the test and training set are given in (b).} -\end{figure} -\begin{table} - \centering - \begin{tabu} to \textwidth {@{}l*4{X[c]}@{}} - \Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\ - \hline - & - \multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\ - \cline{2-5} - max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\ - min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\ - mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\ - var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\ - \hline - & - \multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\ - \cline{2-5} - max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\ - min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\ - mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\ - var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\ - \hline - & - \multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\ - \cline{2-5} - max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\ - min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\ - mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\ - var & 2e-05 & 1e-05 & 1e-05 & 0 \\ - \hline - \end{tabu} - \caption{Values of the test accuracy of the model trained 10 times - of random training sets containing 1, 10 and 100 data points per - class.} -\end{table} - -\begin{center} - \begin{figure}[h] - \centering - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist0.pdf} - \caption{original\\image} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist_gen_zoom.pdf} - \caption{random\\zoom} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist_gen_shear.pdf} - \caption{random\\shear} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist_gen_rotation.pdf} - \caption{random\\rotation} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist_gen_shift.pdf} - \caption{random\\positional shift} - \end{subfigure}\\ - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist5.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist6.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist7.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist8.pdf} - \end{subfigure} - \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Data/mnist9.pdf} - \end{subfigure} - \caption{The MNIST data set contains 70.000 images of preprocessed handwritten - digits. Of these images 60.000 are used as training images, while - the rest are used to validate the models trained.} -\end{figure} -\end{center} - -\begin{figure} - \begin{adjustbox}{width=\textwidth} - \begin{tikzpicture} - \begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)] - \node[canvas is xy plane at z=0, transform shape] at (0,0) - {\includegraphics[width=5cm]{Data/klammern_r.jpg}}; - \node[canvas is xy plane at z=2, transform shape] at (0,-0.2) - {\includegraphics[width=5cm]{Data/klammern_g.jpg}}; - \node[canvas is xy plane at z=4, transform shape] at (0,-0.4) - {\includegraphics[width=5cm]{Data/klammern_b.jpg}}; - \node[canvas is xy plane at z=4, transform shape] at (-8,-0.2) - {\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}}; - \end{scope} - \end{tikzpicture} - \end{adjustbox} - \caption{On the right the red, green and blue chanels of the picture - are displayed. In order to better visualize the color channes the - black and white picture of each channel has been colored in the - respective color. Combining the layers results in the image on the - left} -\end{figure} - -\begin{figure} - \centering - \begin{subfigure}{.45\linewidth} - \centering - \begin{tikzpicture} - \begin{axis}[enlargelimits=false, ymin=0, ymax = 1, width=\textwidth] - \addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)}; - \end{axis} - \end{tikzpicture} - \end{subfigure} - \begin{subfigure}{.45\linewidth} - \centering - \begin{tikzpicture} - \begin{axis}[enlargelimits=false, width=\textwidth] - \addplot[domain=-5:5, samples=100]{tanh(x)}; - \end{axis} - \end{tikzpicture} - \end{subfigure} - \begin{subfigure}{.45\linewidth} - \centering - \begin{tikzpicture} - \begin{axis}[enlargelimits=false, width=\textwidth, - ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1] - \addplot[domain=-5:5, samples=100]{max(0,x)}; - \end{axis} - \end{tikzpicture} - \end{subfigure} - \begin{subfigure}{.45\linewidth} - \centering - \begin{tikzpicture} - \begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1, - ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}] - \addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)}; - \end{axis} - \end{tikzpicture} - \end{subfigure} -\end{figure} - - -\begin{tikzpicture} -\begin{axis}[enlargelimits=false] -\addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)}; -\addplot[domain=-5:5, samples=100]{tanh(x)}; -\addplot[domain=-5:5, samples=100]{max(0,x)}; -\end{axis} -\end{tikzpicture} - -\begin{tikzpicture} -\begin{axis}[enlargelimits=false] -\addplot[domain=-2*pi:2*pi, samples=100]{cos(deg(x))}; -\end{axis} -\end{tikzpicture} - -\end{document} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: t -%%% End: diff --git a/TeX/Plots/sdg_comparison.tex b/TeX/Plots/sdg_comparison.tex deleted file mode 100644 index 2812432..0000000 --- a/TeX/Plots/sdg_comparison.tex +++ /dev/null @@ -1,78 +0,0 @@ -\pgfplotsset{ -compat=1.11, -legend image code/.code={ -\draw[mark repeat=2,mark phase=2] -plot coordinates { -(0cm,0cm) -(0.0cm,0cm) %% default is (0.3cm,0cm) -(0.0cm,0cm) %% default is (0.6cm,0cm) -};% -} -} -\begin{figure} - \begin{subfigure}[h]{\textwidth} - \begin{tikzpicture} - \begin{axis}[tick style = {draw = none}, width = \textwidth, - height = 0.6\textwidth, ymin = 0.92, legend style={at={(0.9825,0.75)},anchor=north east}, - xlabel = {epoch}, ylabel = {Classification Accuracy}] - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adagrad.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adadelta.log}; - \addplot table - [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam.log}; - - \addlegendentry{\footnotesize{ADAGRAD}} - \addlegendentry{\footnotesize{ADADELTA}} - \addlegendentry{\footnotesize{ADAM}} - \addlegendentry{SGD$_{0.01}$} - \end{axis} - \end{tikzpicture} - %\caption{Classification accuracy} - \vspace{.25cm} - \end{subfigure} - % \begin{subfigure}[b]{\textwidth} - % \begin{tikzpicture} - % \begin{axis}[tick style = {draw = none}, width = \textwidth, - % height = 0.6\textwidth, ymax = 0.5, - % xlabel = {epoch}, ylabel = {Error Measure\vphantom{y}},ytick ={0,0.1,0.2,0.3,0.4,0.45,0.5}, yticklabels = - % {0,0.1,0.2,0.3,0.4,\phantom{0.94},0.5}] - % \addplot table - % [x=epoch, y=val_loss, col sep=comma, mark = none] {Plots/Data/adagrad.log}; - % \addplot table - % [x=epoch, y=val_loss, col sep=comma, mark = none] {Plots/Data/adadelta.log}; - % \addplot table - % [x=epoch, y=val_loss, col sep=comma, mark = none] {Plots/Data/adam.log}; - - % \addlegendentry{\footnotesize{ADAGRAD}} - % \addlegendentry{\footnotesize{ADADELTA}} - % \addlegendentry{\footnotesize{ADAM}} - % \addlegendentry{SGD$_{0.01}$} - - % \end{axis} - % \end{tikzpicture} - % \caption{Performance metrics during training} - % \vspace{.25cm} - % \end{subfigure} - \begin{subfigure}[b]{1.0\linewidth} - \begin{tabu} to \textwidth {@{} *3{X[c]}c*3{X[c]} @{}} - \multicolumn{3}{c}{Classification Accuracy} - &~&\multicolumn{3}{c}{Error Measure} - \\\cline{1-3}\cline{5-7} - ADAGRAD&ADADELTA&ADAM&&ADAGRAD&ADADELTA&ADAM - \\\cline{1-3}\cline{5-7} - 1&1&1&&1&1&1 - \end{tabu} - \caption{Performace metrics after 20 epochs} - \end{subfigure} - \caption[Performance comparison of training algorithms]{Classification accuracy on the test set and ...Performance metrics of the network given in ... trained - with different optimization algorithms} - \label{fig:comp_alg} -\end{figure} -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "../main" -%%% End: diff --git a/TeX/Plots/sin_conv.csv b/TeX/Plots/sin_conv.csv deleted file mode 100644 index 73f9e5c..0000000 --- a/TeX/Plots/sin_conv.csv +++ /dev/null @@ -1,64 +0,0 @@ -"","x_i","y_i","x_d","y_d","x","y" -"1",0,0,0.0815633019993375,0.095134925029757,0.0815633019993375,0.095134925029757 -"2",0.1,0.0998334166468282,-0.137539012603596,0.503920419784276,-0.137539012603596,0.503920419784276 -"3",0.2,0.198669330795061,0.219868163218743,0.32022289024623,0.219868163218743,0.32022289024623 -"4",0.3,0.29552020666134,0.378332723534869,0.474906286765401,0.378332723534869,0.474906286765401 -"5",0.4,0.389418342308651,0.286034335293811,0.422891394375764,0.215056588291437,0.412478430748051 -"6",0.5,0.479425538604203,-0.109871707385461,0.229661026779107,0.122574532557623,0.353221043330047 -"7",0.6,0.564642473395035,0.91036951450573,0.56079130435097,0.451160317716352,0.452893574072324 -"8",0.7,0.644217687237691,0.899001194675409,0.714355793051917,0.491731451724399,0.514477919331008 -"9",0.8,0.717356090899523,0.733791390723896,0.694085383523086,0.488943974889845,0.530054084580656 -"10",0.9,0.783326909627483,0.893642943873427,0.739792642916928,0.599785378272423,0.575149967162231 -"11",1,0.841470984807897,0.895913227983752,0.658288213778898,0.650886140047209,0.577618711891772 -"12",1.1,0.891207360061435,1.01252219752013,0.808981437684505,0.726263244907525,0.643161394030218 -"13",1.2,0.932039085967226,1.30930912337975,1.04111824066026,0.872590842152803,0.745714536528734 -"14",1.3,0.963558185417193,1.0448292335495,0.741250429230841,0.850147062957694,0.687171673021914 -"15",1.4,0.98544972998846,1.57369086195552,1.17277927321094,1.06520673597544,0.847936751231165 -"16",1.5,0.997494986604054,1.61427415976939,1.3908361301708,1.15616745244604,0.969474391592075 -"17",1.6,0.999573603041505,1.34409615749122,0.976992098566069,1.13543598207093,0.889434319996364 -"18",1.7,0.991664810452469,1.79278028030419,1.02939764179765,1.33272772191879,0.935067381106346 -"19",1.8,0.973847630878195,1.50721559744085,0.903076361857071,1.30862923824728,0.91665506605512 -"20",1.9,0.946300087687414,1.835014641556,0.830477479204284,1.45242210409837,0.889715842048808 -"21",2,0.909297426825682,1.98589997236352,0.887302138185342,1.56569111721857,0.901843632635883 -"22",2.1,0.863209366648874,2.31436634488224,0.890096618924313,1.73810390755555,0.899632162941341 -"23",2.2,0.80849640381959,2.14663445612581,0.697012453130415,1.77071083163663,0.831732978616874 -"24",2.3,0.74570521217672,2.17162372560288,0.614243640399509,1.84774268936257,0.787400621584077 -"25",2.4,0.675463180551151,2.2488591417345,0.447664288915269,1.93366609303299,0.707449056213168 -"26",2.5,0.598472144103957,2.56271588872389,0.553368843490625,2.08922735802261,0.702402440783529 -"27",2.6,0.515501371821464,2.60986205081511,0.503762006272682,2.17548673152621,0.657831176057599 -"28",2.7,0.42737988023383,2.47840649766003,0.215060732402894,2.20251747034638,0.533903400086802 -"29",2.8,0.334988150155905,2.99861119922542,0.28503285049582,2.43015164462239,0.512492561673074 -"30",2.9,0.239249329213982,3.09513467852082,0.245355736487949,2.54679545455398,0.461447717313721 -"31",3,0.141120008059867,2.86247369846558,0.0960140633436418,2.55274767368554,0.371740588261606 -"32",3.1,0.0415806624332905,2.79458017090243,-0.187923650913249,2.59422388058738,0.234694070506915 -"33",3.2,-0.0583741434275801,3.6498183243501,-0.186738431858275,2.9216851043241,0.173308072295566 -"34",3.3,-0.157745694143249,3.19424275971809,-0.221908035274934,2.86681135711315,0.101325637659584 -"35",3.4,-0.255541102026832,3.53166785156005,-0.295496842654793,3.03827050777863,0.0191967841533109 -"36",3.5,-0.35078322768962,3.53250700922714,-0.364585027403596,3.12709094619305,-0.0558446366563474 -"37",3.6,-0.442520443294852,3.52114271616751,-0.363845774016092,3.18702722489489,-0.10585071711408 -"38",3.7,-0.529836140908493,3.72033580551176,-0.386489608468821,3.31200591645168,-0.158195730190865 -"39",3.8,-0.611857890942719,4.0803717995796,-0.64779795182054,3.49862620703954,-0.284999326812438 -"40",3.9,-0.687766159183974,3.88351729419721,-0.604406622894426,3.51908925124143,-0.324791870057922 -"41",4,-0.756802495307928,3.9941257036697,-0.8061112437715,3.62222513609486,-0.438560071688316 -"42",4.1,-0.818277111064411,3.81674488816054,-0.548538951165239,3.63032709398802,-0.41285438330036 -"43",4.2,-0.871575772413588,4.47703348424544,-0.998992385231986,3.88581748102334,-0.592305016590357 -"44",4.3,-0.916165936749455,4.46179199544059,-0.969288921090897,3.96444243944485,-0.643076376622242 -"45",4.4,-0.951602073889516,4.15184730382548,-1.11987501275525,3.93838897981045,-0.743258835859858 -"46",4.5,-0.977530117665097,4.64522916494355,-0.772872365801468,4.15504805602606,-0.691414328153313 -"47",4.6,-0.993691003633465,4.68087925098283,-0.650422764094352,4.24176417425486,-0.675107584174976 -"48",4.7,-0.999923257564101,5.00475403211142,-0.922605880059771,4.41432228408005,-0.770625346502085 -"49",4.8,-0.996164608835841,4.71428836112322,-1.14280193223997,4.41279031790692,-0.861010494025717 -"50",4.9,-0.982452612624332,5.02115518218406,-0.9819618243158,4.57449352886454,-0.843786948015608 -"51",5,-0.958924274663138,4.92057344952522,-0.872931430146499,4.61418118503201,-0.836318916150308 -"52",5.1,-0.925814682327732,5.37277893732831,-0.91444926304078,4.81555148166217,-0.864686555983682 -"53",5.2,-0.883454655720153,5.19524942845082,-1.41169784739596,4.84152902094499,-1.03768305406186 -"54",5.3,-0.832267442223901,5.4432222181271,-0.726481337519931,4.98565483155961,-0.856094353978009 -"55",5.4,-0.772764487555987,4.98285013865449,-0.692803346852181,4.90897053115903,-0.838425020062396 -"56",5.5,-0.705540325570392,5.33298025214155,-0.343702005257262,5.0497327607228,-0.711573964373115 -"57",5.6,-0.631266637872321,5.49935694796791,-0.828968673188174,5.15036520204232,-0.816467931201244 -"58",5.7,-0.550685542597638,5.69204187550805,-0.481580461165225,5.26232964126231,-0.689500817105975 -"59",5.8,-0.464602179413757,5.84391772412888,-0.20453899468884,5.38069867877875,-0.564365367144995 -"60",5.9,-0.373876664830236,5.48166674139637,-0.597796931577294,5.3357436834558,-0.649913835818738 -"61",6,-0.279415498198926,5.77474590863769,-0.280234463056808,5.46956415981143,-0.524503219480344 -"62",6.1,-0.182162504272095,6.36764321572312,-0.0996286988755344,5.7169871104113,-0.422854073705143 -"63",6.2,-0.0830894028174964,6.46175133910451,-0.025702847911482,5.83540227044819,-0.355719019286555 diff --git a/TeX/Plots/sin_conv.tex b/TeX/Plots/sin_conv.tex deleted file mode 100644 index 2a6e35b..0000000 --- a/TeX/Plots/sin_conv.tex +++ /dev/null @@ -1,45 +0,0 @@ -\begin{figure} - \centering - \begin{subfigure}[b]{0.49\textwidth} - \centering - \begin{adjustbox}{width=\textwidth, height=0.25\textheight} - \begin{tikzpicture} - \begin{axis}[tick style = {draw = none}, xticklabel = \empty, - yticklabel=\empty] - \addplot [mark options={scale = 0.7}, mark = o] table - [x=x_d,y=y_d, col sep = comma] {Plots/Data/sin_conv.csv}; - \addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Plots/Data/sin_conv.csv}; - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{True position (\textcolor{red}{red}), distorted position data (black)} - \end{subfigure} - \begin{subfigure}[b]{0.49\textwidth} - \centering - \begin{adjustbox}{width=\textwidth, height=0.25\textheight} - \begin{tikzpicture} - \begin{axis}[tick style = {draw = none}, xticklabel = \empty, - yticklabel=\empty] - \addplot [mark options={scale = 0.7}, mark = o] table [x=x,y=y, col - sep = comma] {Plots/Data/sin_conv.csv}; - \addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Plots/Data/sin_conv.csv}; - \end{axis} - \end{tikzpicture} - \end{adjustbox} - \caption{True position (\textcolor{red}{red}), filtered position data (black)} - \end{subfigure} - \caption[Signal smoothing using convolution]{Example for noise reduction using convolution with simulated - positional data. As filter - $g(i)=\left(\nicefrac{1}{3},\nicefrac{1}{4},\nicefrac{1}{5},\nicefrac{1}{6},\nicefrac{1}{20}\right)_{(i-1)}$ - is chosen and applied to the $x$ and $y$ coordinate - data seperately. The convolution of both signals with $g$ - improves the MSE of the positions from 0.196 to 0.170 and - visibly smoothes the data. - } - \label{fig:sin_conv} -\end{figure} - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "../main" -%%% End: diff --git a/TeX/Plots/y.tex b/TeX/Plots/y.tex deleted file mode 100644 index bd3b524..0000000 --- a/TeX/Plots/y.tex +++ /dev/null @@ -1,5 +0,0 @@ - -%%% Local Variables: -%%% mode: latex -%%% TeX-master: "../main" -%%% End: diff --git a/TeX/appendixA.tex b/TeX/appendixA.tex index de656fa..9428b00 100644 --- a/TeX/appendixA.tex +++ b/TeX/appendixA.tex @@ -1,6 +1,7 @@ \newpage \begin{appendices} + \counterwithin{lstfloat}{section} \section{Proofs for sone Lemmata in ...} In the following there will be proofs for some important Lemmata in Section~\ref{sec:theo38}. Further proofs not discussed here can be @@ -8,17 +9,20 @@ \begin{Theorem}[Proof of Lemma~\ref{theo38}] \end{Theorem} -\begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}_k}{v_k}\approx\mathcal{O}(\frac{1}{n})$] - For any $\lambda > 0$ and training data $(x_i^{\text{train}}, - y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in - \left\{1,\dots,N\right\}$, we have - \[ - \max_{k \in \left\{1,\dots,n\right\}} \frac{w^{*, - \tilde{\lambda}}_k}{v_k} = \po_{n\to\infty} - \] + \begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}_k}{v_k}\approx\mathcal{O}(\frac{1}{n})$] + For any $\lambda > 0$ and training data $(x_i^{\text{train}}, + y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in + \left\{1,\dots,N\right\}$, we have + \[ + \max_{k \in \left\{1,\dots,n\right\}} \frac{w^{*, + \tilde{\lambda}}_k}{v_k} = \po_{n\to\infty} + \] + + \end{Lemma} + +\input{Appendix_code.tex} -\end{Lemma} \end{appendices} diff --git a/TeX/bibliograpy.bib b/TeX/bibliograpy.bib index fa4f252..f519fe8 100644 --- a/TeX/bibliograpy.bib +++ b/TeX/bibliograpy.bib @@ -201,4 +201,49 @@ url={https://openreview.net/forum?id=rkgz2aEKDr} doi = "https://doi.org/10.1016/j.neucom.2018.09.013", url = "http://www.sciencedirect.com/science/article/pii/S0925231218310749", author = "Maayan Frid-Adar and Idit Diamant and Eyal Klang and Michal Amitai and Jacob Goldberger and Hayit Greenspan" +} + +@online{fashionMNIST, + author = {Han Xiao and Kashif Rasul and Roland Vollgraf}, + title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms}, + date = {2017-08-28}, + year = {2017}, + eprintclass = {cs.LG}, + eprinttype = {arXiv}, + eprint = {cs.LG/1708.07747}, +} + +@inproceedings{10.1145/3206098.3206111, +author = {Kowsari, Kamran and Heidarysafa, Mojtaba and Brown, Donald E. and Meimandi, Kiana Jafari and Barnes, Laura E.}, +title = {RMDL: Random Multimodel Deep Learning for Classification}, +year = {2018}, +isbn = {9781450363549}, +publisher = {Association for Computing Machinery}, +address = {New York, NY, USA}, +url = {https://doi.org/10.1145/3206098.3206111}, +doi = {10.1145/3206098.3206111}, +booktitle = {Proceedings of the 2nd International Conference on Information System and Data Mining}, +pages = {19–28}, +numpages = {10}, +keywords = {Supervised Learning, Deep Learning, Data Mining, Text Classification, Deep Neural Networks, Image Classification}, +location = {Lakeland, FL, USA}, +series = {ICISDM '18} +} + +@article{random_erasing, + author = {Zhun Zhong and + Liang Zheng and + Guoliang Kang and + Shaozi Li and + Yi Yang}, + title = {Random Erasing Data Augmentation}, + journal = {CoRR}, + volume = {abs/1708.04896}, + year = {2017}, + url = {http://arxiv.org/abs/1708.04896}, + archivePrefix = {arXiv}, + eprint = {1708.04896}, + timestamp = {Mon, 13 Aug 2018 16:47:52 +0200}, + biburl = {https://dblp.org/rec/journals/corr/abs-1708-04896.bib}, + bibsource = {dblp computer science bibliography, https://dblp.org} } \ No newline at end of file diff --git a/TeX/further_applications_of_nn.tex b/TeX/further_applications_of_nn.tex index ac308e1..62fa90f 100644 --- a/TeX/further_applications_of_nn.tex +++ b/TeX/further_applications_of_nn.tex @@ -2,9 +2,13 @@ As neural networks are applied to problems of higher complexity often resulting in higher dimensionality of the input the amount of -parameters in the network rises drastically. For example a network -with ... -A way to combat the +parameters in the network rises drastically. +For very large inputs such as high resolution image data due to the +fully connected nature of the neural network the amount of parameters +can ... exceed the amount that is feasible for training and storage. +A way to combat this is by using layers which are only sparsely +connected and share parameters between nodes. This can be implemented +using convolution.\todo{Überleitung besser schreiben} \subsection{Convolution} @@ -18,7 +22,7 @@ functions is integrated after one has been reversed and shifted. This operation can be described as a filter-function $g$ being applied to $f$, as values $f(t)$ are being replaced by an average of values of $f$ -weighted by $g$ in position $t$. +weighted by a filter-function $g$ in position $t$. The convolution operation allows plentiful manipulation of data, with a simple example being smoothing of real-time data. Consider a sensor measuring the location of an object (e.g. via GPS). We expect the @@ -29,7 +33,7 @@ the data to reduce the noise. Using convolution for this task, we can control the significance we want to give each data-point. We might want to give a larger weight to more recent measurements than older ones. If we assume these measurements are taken on a discrete -timescale, we need to introduce discrete convolution first. Let $f$, +timescale, we need to introduce discrete convolution first. \\Let $f$, $g: \mathbb{Z} \to \mathbb{R}$ then \[ @@ -39,7 +43,7 @@ Applying this on the data with the filter $g$ chosen accordingly we are able to improve the accuracy, which can be seen in Figure~\ref{fig:sin_conv}. -\input{Plots/sin_conv.tex} +\input{Figures/sin_conv.tex} This form of discrete convolution can also be applied to functions with inputs of higher dimensionality. Let $f$, $g: \mathbb{Z}^d \to \mathbb{R}$ then @@ -51,12 +55,12 @@ with inputs of higher dimensionality. Let $f$, $g: \mathbb{Z}^d \to This will prove to be a useful framework for image manipulation but in order to apply convolution to images we need to discuss representation of image data first. Most often images are represented -by each pixel being a mixture of base colors these base colors define +by each pixel being a mixture of base colors. These base colors define the color-space in which the image is encoded. Often used are color-spaces RGB (red, blue, green) or CMYK (cyan, magenta, yellow, black). An example of an image split in its red, green and blue channel is given in -Figure~\ref{fig:rgb} Using this +Figure~\ref{fig:rgb}. Using this encoding of the image we can define a corresponding discrete function describing the image, by mapping the coordinates $(x,y)$ of an pixel and the @@ -75,13 +79,13 @@ channel (color) $c$ to the respective value $v$ \begin{tikzpicture} \begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)] \node[canvas is xy plane at z=0, transform shape] at (0,0) - {\includegraphics[width=5cm]{Plots/Data/klammern_r.jpg}}; + {\includegraphics[width=5cm]{Figures/Data/klammern_r.jpg}}; \node[canvas is xy plane at z=2, transform shape] at (0,-0.2) - {\includegraphics[width=5cm]{Plots/Data/klammern_g.jpg}}; + {\includegraphics[width=5cm]{Figures/Data/klammern_g.jpg}}; \node[canvas is xy plane at z=4, transform shape] at (0,-0.4) - {\includegraphics[width=5cm]{Plots/Data/klammern_b.jpg}}; + {\includegraphics[width=5cm]{Figures/Data/klammern_b.jpg}}; \node[canvas is xy plane at z=4, transform shape] at (-8,-0.2) - {\includegraphics[width=5.3cm]{Plots/Data/klammern_rgb.jpg}}; + {\includegraphics[width=5.3cm]{Figures/Data/klammern_rgb.jpg}}; \end{scope} \end{tikzpicture} \end{adjustbox} @@ -104,6 +108,14 @@ convolution (I * g)_{x,y,c} = \sum_{i,j,l \in \mathbb{Z}} I_{x-i,y-j,c-l} g_{i,j,l}. \] +As images are finite in size for pixels close enough to the border +that the filter ... the convolution is not well defined. In such cases +padding can be used. With padding the image is enlarged beyond .. with +0 entries to +ensure the convolution is well defined for all pixels. If no padding +is used the size of the output is reduced to \textit{size of input - + size of kernel +1} in each dimension. + Simple examples for image manipulation using convolution are smoothing operations or rudimentary detection of edges in grayscale images, meaning they only @@ -143,38 +155,38 @@ wise. Examples of convolution with both kernels are given in Figure~\ref{fig:img \centering \begin{subfigure}{0.3\textwidth} \centering - \includegraphics[width=\textwidth]{Plots/Data/klammern.jpg} + \includegraphics[width=\textwidth]{Figures/Data/klammern.jpg} \caption{Original Picture} \label{subf:OrigPicGS} \end{subfigure} \begin{subfigure}{0.3\textwidth} \centering - \includegraphics[width=\textwidth]{Plots/Data/image_conv9.png} + \includegraphics[width=\textwidth]{Figures/Data/image_conv9.png} \caption{\hspace{-2pt}Gaussian Blur $\sigma^2 = 1$} \end{subfigure} \begin{subfigure}{0.3\textwidth} \centering - \includegraphics[width=\textwidth]{Plots/Data/image_conv10.png} + \includegraphics[width=\textwidth]{Figures/Data/image_conv10.png} \caption{Gaussian Blur $\sigma^2 = 4$} \end{subfigure}\\ \begin{subfigure}{0.3\textwidth} \centering - \includegraphics[width=\textwidth]{Plots/Data/image_conv4.png} + \includegraphics[width=\textwidth]{Figures/Data/image_conv4.png} \caption{Sobel Operator $x$-direction} \end{subfigure} \begin{subfigure}{0.3\textwidth} \centering - \includegraphics[width=\textwidth]{Plots/Data/image_conv5.png} + \includegraphics[width=\textwidth]{Figures/Data/image_conv5.png} \caption{Sobel Operator $y$-direction} \end{subfigure} \begin{subfigure}{0.3\textwidth} \centering - \includegraphics[width=\textwidth]{Plots/Data/image_conv6.png} + \includegraphics[width=\textwidth]{Figures/Data/image_conv6.png} \caption{Sobel Operator combined} \end{subfigure} % \begin{subfigure}{0.24\textwidth} % \centering -% \includegraphics[width=\textwidth]{Plots/Data/image_conv6.png} +% \includegraphics[width=\textwidth]{Figures/Data/image_conv6.png} % \caption{test} % \end{subfigure} \caption[Convolution applied on image]{Convolution of original greyscale Image (a) with different @@ -344,7 +356,7 @@ In order to illustrate this behavior we modeled a convolutional neural network to ... handwritten digits. The data set used for this is the MNIST database of handwritten digits (\textcite{MNIST}, Figure~\ref{fig:MNIST}). -\input{Plots/mnist.tex} +\input{Figures/mnist.tex} The network used consists of two convolution and max pooling layers followed by one fully connected hidden layer and the output layer. Both covolutional layers utilize square filters of size five which are @@ -359,7 +371,7 @@ The architecture of the convolutional neural network is summarized in Figure~\ref{fig:mnist_architecture}. \begin{figure} - \missingfigure{network architecture} + \includegraphics[width=\textwidth]{Figures/Data/convnet_fig.pdf} \caption{architecture} \label{fig:mnist_architecture} \end{figure} @@ -380,7 +392,7 @@ gradient calculated on the subset it performs far better than the network using true gradients when training for the same mount of time. \todo{vergleich training time} -\input{Plots/SGD_vs_GD.tex} +\input{Figures/SGD_vs_GD.tex} \clearpage \subsection{\titlecap{modified stochastic gradient descent}} An inherent problem of the stochastic gradient descent algorithm is @@ -631,7 +643,7 @@ Here it can be seen that the ADAM algorithm performs far better than the other algorithms, with AdaGrad and Adelta following... bla bla -\input{Plots/sdg_comparison.tex} +\input{Figures/sdg_comparison.tex} % \subsubsubsection{Stochastic Gradient Descent} \clearpage @@ -741,23 +753,23 @@ mirroring. \begin{figure}[h] \centering \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist0.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist0.pdf} \caption{original\\image} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist_gen_zoom.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist_gen_zoom.pdf} \caption{random\\zoom} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist_gen_shear.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist_gen_shear.pdf} \caption{random\\shear} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist_gen_rotation.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist_gen_rotation.pdf} \caption{random\\rotation} \end{subfigure} \begin{subfigure}{0.19\textwidth} - \includegraphics[width=\textwidth]{Plots/Data/mnist_gen_shift.pdf} + \includegraphics[width=\textwidth]{Figures/Data/mnist_gen_shift.pdf} \caption{random\\positional shift} \end{subfigure} \caption[Image data generation]{Example for the manipuations used in ... As all images are @@ -781,9 +793,9 @@ reduction in overfitting can be seen in accuracy decreases with test accuracy increasing. However utlitizing data generation as well as dropout with a probability of 0.4 seems to be a too aggressive approach as the training accuracy drops below the -test accuracy. +test accuracy\todo{kleine begründung}. -\input{Plots/gen_dropout.tex} +\input{Figures/gen_dropout.tex} \todo{Vergleich verschiedene dropout größen auf MNSIT o.ä., subset als training set?} @@ -796,24 +808,56 @@ the available data can be highly limited. In these problems the networks are highly ... for overfitting the data. In order to get a understanding of accuracys achievable and the impact of the measures to prevent overfitting discussed above we and train -the network on datasets of varying sizes. -First we use the mnist handwriting dataset and then a slightly harder -problem given by the mnist fashion dataset which contains PREEDITED -pictures of clothes from 10 different categories. - -\input{Plots/fashion_mnist.tex} - -For training for each class a certain number of random datapoints are -chosen for training the network. The sizes chosen are: -full dataset: ... per class\\ -1000 per class -100 per class -10 per class - -the results for training .. are given in ... Here can be seen... that -for small training sets data generation has a large impact on the accuracy. - -\begin{table} +the network on datasets of varying sizes with different measures implemented. +For training we use the mnist handwriting dataset as well as the fashion +mnist dataset. The fashion mnist dataset is a benchmark set build by +\textcite{fashionMNIST} in order to provide a harder set, as state of +the art models are able to achive accuracies of 99.88\% +(\textcite{10.1145/3206098.3206111}) on the handwriting set. +The dataset contains 70.000 preprocessed images of clothes from +zalando, a overview is given in Figure~\ref{fig:fashionMNIST}. + +\input{Figures/fashion_mnist.tex} + +\afterpage{ + \noindent +\begin{minipage}{\textwidth} + \small + \begin{tabu} to \textwidth {@{}l*4{X[c]}@{}} + \Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\ + \hline + & + \multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\ + \cline{2-5} + max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\ + min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\ + mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\ + var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\ + \hline + & + \multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\ + \cline{2-5} + max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\ + min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\ + mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\ + var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\ + \hline + & + \multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\ + \cline{2-5} + max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\ + min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\ + mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\ + var & 2e-05 & 1e-05 & 1e-05 & 0 \\ + \hline + \end{tabu} + \normalsize + \captionof{table}{Values of the test accuracy of the model trained + 10 times + on random MNIST handwriting training sets containing 1, 10 and 100 + data points per class after 125 epochs. The mean achieved accuracy + for the full set employing both overfitting measures is } + \small \centering \begin{tabu} to \textwidth {@{}l*4{X[c]}@{}} \Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\ @@ -843,14 +887,51 @@ for small training sets data generation has a large impact on the accuracy. var & 2e-05 & 1e-05 & 1e-05 & 0 \\ \hline \end{tabu} - \caption{Values of the test accuracy of the model trained 10 times - of random training sets containing 1, 10 and 100 data points per - class.} -\end{table} + \normalsize + \captionof{table}{Values of the test accuracy of the model trained 10 times + on random fashion MNIST training sets containing 1, 10 and 100 data points per + class. The mean achieved accuracy for the full dataset is: ....} +\end{minipage} +\clearpage % if needed/desired +} + +The random datasets chosen for training are made up of a certain +number of datapoints for each class, which are chosen at random. The +sizes chosen for the comparisons are the full dataset, 100, 10 and 1 +data points +per class. + +For the task of classifying the fashion data a slightly altered model +is used. The convolutional layers with filters of size 5 are replaced +by two consecutive convolutional layers with filters of size 3. +This is done in order to have more ... in order to better ... the data +in the model. A diagram of the architecture is given in +Figure~\ref{fig:fashion_MNIST}. + +For both scenarios the model are trained 10 times on randomly +... training sets. Additionally models of the same architecture where +a dropout layer with a ... 20\% is implemented and/or datageneration +is used to augment the data during training. The values for the +datageneration are given in CODE APPENDIX. + +The models are trained for 125 epoch to ensure enough random +augmentations of the input images are considered to ensure +convergence. The test accuracies of the models after training for 125 +epoch are given in Figure~\ref{...} for the handwriting +and in Figure~\ref{...} for the fashion scenario. Additionally the +average test accuracies of the models are given for each epoch in +Figure ... and Figure... + +\begin{figure} + \includegraphics[width=\textwidth]{Figures/Data/cnn_fashion_fig.pdf} + \caption{Convolutional neural network architecture used to model the + fashion MNIST dataset.} + \label{fig:mnist_architecture} +\end{figure} \begin{figure}[h] \centering - + \small \begin{subfigure}[h]{\textwidth} \begin{tikzpicture} \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed, @@ -861,16 +942,16 @@ for small training sets data generation has a large impact on the accuracy. =1.25pt}] \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_1.mean}; + {Figures/Data/adam_1.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_dropout_02_1.mean}; + {Figures/Data/adam_dropout_02_1.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_1.mean}; + {Figures/Data/adam_datagen_1.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_dropout_02_1.mean}; + {Figures/Data/adam_datagen_dropout_02_1.mean}; \addlegendentry{\footnotesize{Default}} @@ -894,16 +975,16 @@ for small training sets data generation has a large impact on the accuracy. =1.25pt}] \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_dropout_00_10.mean}; + {Figures/Data/adam_dropout_00_10.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_dropout_02_10.mean}; + {Figures/Data/adam_dropout_02_10.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_dropout_00_10.mean}; + {Figures/Data/adam_datagen_dropout_00_10.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_dropout_02_10.mean}; + {Figures/Data/adam_datagen_dropout_02_10.mean}; \addlegendentry{\footnotesize{Default.}} @@ -924,16 +1005,16 @@ for small training sets data generation has a large impact on the accuracy. =1.25pt}, ymin = {0.92}] \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_dropout_00_100.mean}; + {Figures/Data/adam_dropout_00_100.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_dropout_02_100.mean}; + {Figures/Data/adam_dropout_02_100.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_dropout_00_100.mean}; + {Figures/Data/adam_datagen_dropout_00_100.mean}; \addplot table [x=epoch, y=val_accuracy, col sep=comma, mark = none] - {Plots/Data/adam_datagen_dropout_02_100.mean}; + {Figures/Data/adam_datagen_dropout_02_100.mean}; \addlegendentry{\footnotesize{Default.}} \addlegendentry{\footnotesize{D. 0.2}} @@ -945,27 +1026,29 @@ for small training sets data generation has a large impact on the accuracy. \vspace{.25cm} \end{subfigure} \caption{} - \label{mnist fashion} + \label{fig:MNISTfashion} \end{figure} \begin{figure}[h] \centering \missingfigure{datagen fashion} - \caption{Sample pictures of the mnist fashioyn dataset, one per + \caption{Sample pictures of the mnist fashion dataset, one per class.} \label{mnist fashion} \end{figure} \clearpage -\section{Bla} +\section{Schluss} \begin{itemize} - \item generate more data, GAN etc + \item generate more data, GAN etc \textcite{gan} \item Transfer learning, use network trained on different task and - repurpose it / train it with the training data + repurpose it / train it with the training data \textcite{transfer_learning} + \item random erasing fashion mnist 96.35\% accuracy \textcite{random_erasing} \end{itemize} -\textcite{transfer_learning} -\textcite{gan} + + + %%% Local Variables: %%% mode: latex diff --git a/TeX/main.tex b/TeX/main.tex index d300e53..df34ced 100644 --- a/TeX/main.tex +++ b/TeX/main.tex @@ -34,10 +34,13 @@ \usepackage{todonotes} \usepackage{lipsum} \usepackage[ruled,vlined]{algorithm2e} -\usepackage{showframe} +%\usepackage{showframe} \usepackage[protrusion=true, expansion=true, kerning=true, letterspace = 150]{microtype} \usepackage{titlecaps} +\usepackage{afterpage} +\usepackage{xcolor} +\usepackage{chngcntr} \captionsetup[sub]{justification=centering} @@ -52,7 +55,123 @@ \pgfplotsset{compat = 1.16} \usepackage[export]{adjustbox} - +\definecolor{maroon}{cmyk}{0, 0.87, 0.68, 0.32} +\definecolor{halfgray}{gray}{0.55} +\definecolor{ipython_frame}{RGB}{207, 207, 207} +\definecolor{ipython_bg}{RGB}{247, 247, 247} +\definecolor{ipython_red}{RGB}{186, 33, 33} +\definecolor{ipython_green}{RGB}{0, 128, 0} +\definecolor{ipython_cyan}{RGB}{64, 128, 128} +\definecolor{ipython_purple}{RGB}{110, 64, 130} + +\usepackage{listings} +\usepackage{float} + +\newfloat{lstfloat}{htbp}{lop} +\floatname{lstfloat}{Listing} +\def\lstfloatautorefname{Listing} + +\lstset{ + breaklines=true, + % + extendedchars=true, + literate= + {á}{{\'a}}1 {é}{{\'e}}1 {í}{{\'i}}1 {ó}{{\'o}}1 {ú}{{\'u}}1 + {Á}{{\'A}}1 {É}{{\'E}}1 {Í}{{\'I}}1 {Ó}{{\'O}}1 {Ú}{{\'U}}1 + {à}{{\`a}}1 {è}{{\`e}}1 {ì}{{\`i}}1 {ò}{{\`o}}1 {ù}{{\`u}}1 + {À}{{\`A}}1 {È}{{\'E}}1 {Ì}{{\`I}}1 {Ò}{{\`O}}1 {Ù}{{\`U}}1 + {ä}{{\"a}}1 {ë}{{\"e}}1 {ï}{{\"i}}1 {ö}{{\"o}}1 {ü}{{\"u}}1 + {Ä}{{\"A}}1 {Ë}{{\"E}}1 {Ï}{{\"I}}1 {Ö}{{\"O}}1 {Ü}{{\"U}}1 + {â}{{\^a}}1 {ê}{{\^e}}1 {î}{{\^i}}1 {ô}{{\^o}}1 {û}{{\^u}}1 + {Â}{{\^A}}1 {Ê}{{\^E}}1 {Î}{{\^I}}1 {Ô}{{\^O}}1 {Û}{{\^U}}1 + {œ}{{\oe}}1 {Œ}{{\OE}}1 {æ}{{\ae}}1 {Æ}{{\AE}}1 {ß}{{\ss}}1 + {ç}{{\c c}}1 {Ç}{{\c C}}1 {ø}{{\o}}1 {å}{{\r a}}1 {Å}{{\r A}}1 + {€}{{\EUR}}1 {£}{{\pounds}}1 +} + +%% +%% Python definition (c) 1998 Michael Weber +%% Additional definitions (2013) Alexis Dimitriadis +%% modified by me (should not have empty lines) +%% +\lstdefinelanguage{iPython}{ + morekeywords={access,and,break,class,continue,def,del,elif,else,except,exec,finally,for,from,global,if,import, + in,is,lambda,not,or,pass,print,raise,return,try,while},% + % + % Built-ins + morekeywords=[2]{abs,all,any,basestring,bin,bool,bytearray,callable,chr,classmethod,cmp,compile,complex,delattr,dict,dir,divmod,enumerate,eval,execfile,file,filter,float,format,frozenset,getattr,globals,hasattr,hash,help,hex,id,input,int,isinstance,issubclass,iter,len,list,locals,long,map,max,memoryview,min,next,object,oct,open,ord,pow,property,range,raw_input,reduce,reload,repr,reversed,round,set,setattr,slice,sorted,staticmethod,str,sum,super,tuple,type,unichr,unicode,vars,xrange,zip,apply,buffer,coerce,intern,val},% + % + sensitive=true,% + morecomment=[l]\#,% + morestring=[b]',% + morestring=[b]",% + % + morestring=[s]{'''}{'''},% used for documentation text (mulitiline strings) + morestring=[s]{"""}{"""},% added by Philipp Matthias Hahn + % + morestring=[s]{r'}{'},% `raw' strings + morestring=[s]{r"}{"},% + morestring=[s]{r'''}{'''},% + morestring=[s]{r"""}{"""},% + morestring=[s]{u'}{'},% unicode strings + morestring=[s]{u"}{"},% + morestring=[s]{u'''}{'''},% + morestring=[s]{u"""}{"""},% + % + % {replace}{replacement}{lenght of replace} + % *{-}{-}{1} will not replace in comments and so on + literate= + {á}{{\'a}}1 {é}{{\'e}}1 {í}{{\'i}}1 {ó}{{\'o}}1 {ú}{{\'u}}1 + {Á}{{\'A}}1 {É}{{\'E}}1 {Í}{{\'I}}1 {Ó}{{\'O}}1 {Ú}{{\'U}}1 + {à}{{\`a}}1 {è}{{\`e}}1 {ì}{{\`i}}1 {ò}{{\`o}}1 {ù}{{\`u}}1 + {À}{{\`A}}1 {È}{{\'E}}1 {Ì}{{\`I}}1 {Ò}{{\`O}}1 {Ù}{{\`U}}1 + {ä}{{\"a}}1 {ë}{{\"e}}1 {ï}{{\"i}}1 {ö}{{\"o}}1 {ü}{{\"u}}1 + {Ä}{{\"A}}1 {Ë}{{\"E}}1 {Ï}{{\"I}}1 {Ö}{{\"O}}1 {Ü}{{\"U}}1 + {â}{{\^a}}1 {ê}{{\^e}}1 {î}{{\^i}}1 {ô}{{\^o}}1 {û}{{\^u}}1 + {Â}{{\^A}}1 {Ê}{{\^E}}1 {Î}{{\^I}}1 {Ô}{{\^O}}1 {Û}{{\^U}}1 + {œ}{{\oe}}1 {Œ}{{\OE}}1 {æ}{{\ae}}1 {Æ}{{\AE}}1 {ß}{{\ss}}1 + {ç}{{\c c}}1 {Ç}{{\c C}}1 {ø}{{\o}}1 {å}{{\r a}}1 {Å}{{\r A}}1 + {€}{{\EUR}}1 {£}{{\pounds}}1 + % + {^}{{{\color{ipython_purple}\^{}}}}1 + {=}{{{\color{ipython_purple}=}}}1 + % + {+}{{{\color{ipython_purple}+}}}1 + {*}{{{\color{ipython_purple}$^\ast$}}}1 + {/}{{{\color{ipython_purple}/}}}1 + % + {+=}{{{+=}}}1 + {-=}{{{-=}}}1 + {*=}{{{$^\ast$=}}}1 + {/=}{{{/=}}}1, + literate= + *{-}{{{\color{ipython_purple}-}}}1 + {?}{{{\color{ipython_purple}?}}}1, + % + identifierstyle=\color{black}\ttfamily, + commentstyle=\color{ipython_red}\ttfamily, + stringstyle=\color{ipython_red}\ttfamily, + keepspaces=true, + showspaces=false, + showstringspaces=false, + % + rulecolor=\color{ipython_frame}, + frame=single, + frameround={t}{t}{t}{t}, + framexleftmargin=6mm, + numbers=left, + numberstyle=\tiny\color{halfgray}, + % + % + backgroundcolor=\color{ipython_bg}, + % extendedchars=true, + basicstyle=\scriptsize, + keywordstyle=\color{ipython_green}\ttfamily, + morekeywords = [3]{Int, Double}, + morekeywords = [2]{foldRight, case}, + keywordstyle = [3]{\color{ipython_purple}\ttfamily}, + keywordstyle = [2]{\color{ipython_cyan}\ttfamily}, +} \usepackage[style=authoryear, backend=bibtex]{biblatex} \urlstyle{same} @@ -103,14 +222,31 @@ %\textbf{Seminar Machine--Learning: Unsupervised %Learning} \newline %Institut für Mathematik der Universität %Augsburg\\ %Lehrstuhl für Rechnerorientierte Statistik und %Datenanalyse\\ -\smallskip\hrule\bigskip \begin{center} - {\huge{Electricity Price Forecasting based on Regression Tree Models}} -\end{center} -\hrulefill + \huge \textbf{Master Thesis}\\ + \vspace{1cm} + \Large \textbf{University Augsburg\\Department of Mathematics\\Chair of + Computational Statistics and Data Analysis} + \vspace{1cm} +\end{center} + +\begin{figure}[h] + \centering + \includegraphics[scale=1.3]{Figures/Uni_Aug_Siegel_32Grad_schwarz.png} +\end{figure} + +\begin{center} + \vspace{1cm} + \huge \textbf{TITLE Neural Network bla blub langer Titel}\\ + \vspace{1cm} + \huge \textbf{Tim Tobias Arndt}\\ + \vspace{1cm} + \Large \textbf{October 2020} +\end{center} + \pagenumbering{gobble} -\newpage +\clearpage %\setcounter{tocdepth}{4} \tableofcontents \clearpage diff --git a/TeX/theo_3_8.tex b/TeX/theo_3_8.tex index 9045f66..e6a2e6a 100644 --- a/TeX/theo_3_8.tex +++ b/TeX/theo_3_8.tex @@ -195,13 +195,13 @@ plot coordinates { height = 0.6\textwidth] \addplot table [x=x, y=y, col sep=comma, only marks,mark options={scale = - 0.7}] {Plots/Data/overfit.csv}; + 0.7}] {Figures/Data/overfit.csv}; \addplot [red, line width=0.8pt] table [x=x_n, y=s_n, col - sep=comma, forget plot] {Plots/Data/overfit.csv}; + sep=comma, forget plot] {Figures/Data/overfit.csv}; \addplot [black, line width=0.8pt] table [x=x_n, y=y_n, col - sep=comma] {Plots/Data/overfit.csv}; + sep=comma] {Figures/Data/overfit.csv}; \addplot [black, line width=0.8pt, dashed] table [x=x, y=y, col - sep=comma] {Plots/Data/overfit_spline.csv}; + sep=comma] {Figures/Data/overfit_spline.csv}; \addlegendentry{\footnotesize{data}}; \addlegendentry{\footnotesize{$\mathcal{NN}_{\vartheta^*}$}}; @@ -950,7 +950,7 @@ results are given in Figure~\ref{fig:rs_vs_rs}, here it can be seen that in the intervall of the traing data $[-\pi, \pi]$ the neural network and smoothing spline are nearly identical, coinciding with the proposition. -\input{Plots/RN_vs_RS} +\input{Figures/RN_vs_RS} %%% Local Variables: