started rework, points now use avx

rework
Anton Lydike 4 years ago
parent 266f243703
commit 4131f7e2d1

2
.gitignore vendored

@ -1,4 +1,6 @@
*.bmp
*.png
*.out
*.old.c
test.c
out/

@ -3,42 +3,18 @@
#include "images/images.h"
#include "src/point.h"
#include "src/rays.h"
// define pi if not available
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
struct __myvec;
struct __mymtrx;
struct __mycam;
struct __myobject;
struct __myscene;
typedef struct __myvec {
double x;
double y;
double z;
} Point;
typedef struct __mymtrx {
double entries[9];
} Matrix;
inline Point pt_new(double x, double y, double z);
inline Point pt_scale(Point pt, double length);
inline Point pt_normalize(Point pt);
inline double pt_length(Point pt);
inline void pt_add(Point* pt, Point add);
inline void pt_sub(Point* pt, Point sub);
inline double pt_dist(Point p1, Point p2);
inline Point pt_mod(Point pt, double mod);
inline double pt_dot(Point a, Point b);
inline Point pt_cross(Point a, Point b);
inline double pt_angle(Point a, Point b);
inline void pt_print(Point pt);
inline void pt_print_n(const char* name, Point pt);
typedef struct __mycam {
Point location;
Point direction;
@ -90,7 +66,6 @@ void scene_add_obj(Scene* scene, SceneObject object);
void scene_destroy(Scene scene);
#include "src/point.c"
#include "src/camera.c"
#include "src/scene.c"

@ -0,0 +1,13 @@
/*
This handles code for generating rays
*/
#ifndef MARCHER_CAMERA_H
#define MARCHER_CAMERA_H
#endif

@ -1,180 +1,64 @@
#include <math.h>
#include <stdio.h>
// basically a vector3
inline Point pt_new(double x, double y, double z) {
Point pt;
pt.x = x;
pt.y = y;
pt.z = z;
return pt;
inline void pt_print(point x) {
printf("(%f,%f,%f)\n", x[0], x[1], x[2]);
}
// scale vector to length
inline Point pt_scale(Point pt, double length) {
double f = length / pt_length(pt);
return pt_new(
pt.x * f,
pt.y * f,
pt.z * f
);
inline void pt_print(point x, const char* name) {
printf("%s = (%f,%f,%f)\n", name, x[0], x[1], x[2]);
}
inline Point pt_mult(Point pt, double scalar) {
return pt_new(
pt.x * scalar,
pt.y * scalar,
pt.z * scalar
);
// length related functions
inline point pt_scale(point x, double length) {
length = length / pt_length(x);
return x * length;
}
inline double pt_length(point x) {
return sqrt((x[0] * x[0]) + (x[1] * x[1]) + (x[2] * x[2]));
}
inline point pt_normalize(point x) {
return pt_scale(x, 1);
}
// return internal angle between a and b
inline double pt_angle(Point a, Point b) {
// angle related functions
inline double pt_angle(point x, point y) {
return acos(pt_dot(
pt_normalize(a),
pt_normalize(b)
));
}
// get the length of vector
inline double pt_length(Point pt) {
return sqrt((pt.x * pt.x) + (pt.y * pt.y) + (pt.z * pt.z));
// miscelaneous vector operations:
inline double pt_dot(point x, point y) {
return x[0]*x[0] + x[1]*x[1] + x[2]*x[2];
}
// add the vector add to the vector pt
inline void pt_add(Point* pt, Point add) {
pt->x = pt->x + add.x;
pt->y = pt->y + add.y;
pt->z = pt->z + add.z;
inline point pt_cross(point x, point y) {
return (point){
x[1]*y[2] - x[2]*y[2],
x[2]*y[0] - x[0]*y[2],
x[0]*y[2] - x[2]*y[0]
};
}
// add the vector add to the vector pt
inline void pt_sub(Point* pt, Point sub) {
pt->x -= sub.x;
pt->y -= sub.y;
pt->z -= sub.z;
}
inline double pt_dist(Point p1, Point p2) {
pt_sub(&p1, p2);
return pt_length(p1);
}
// normalize a vector
inline Point pt_normalize(Point pt) {
return pt_scale(pt, 1);
inline point pt_mod(point x, double mod) {
return (point){fmod(x[0], mod), fmod(x[1], mod), fmod(x[2], mod)};
}
// dot product of two vectors
inline double pt_dot(Point a, Point b) {
return a.x*b.x + a.y*b.y + a.z*b.z;
}
// cross product of two vectors
inline Point pt_cross(Point a, Point b) {
return pt_new(
a.y*b.z - a.z*b.y,
a.z*b.x - a.x*b.z,
a.x*b.y - a.y*b.x
);
}
inline void pt_print(Point pt) {
printf("(%f, %f, %f)\n", pt.x, pt.y, pt.z);
}
inline void pt_print_n(const char* name, Point pt) {
printf("%s: (%f, %f, %f)\n", name, pt.x, pt.y, pt.z);
// call fabs on each entry
inline point pt_abs(point x) {
return (point){fabs(x[0]), fabs(x[1]), fabs(x[2])}
}
// find two vectors that span the orthogonal plane, where
// span_xy is a vector lying on the xy-plane (and pointing left)
// and span_z is orthogonal to span_xy pointing "upwards"
void pt_orthogonal_plane(Point pt, Point *span_z, Point *span_xy) {
void pt_orthogonal_plane(point pt, point *span_z, point *span_xy) {
pt = pt_normalize(pt);
point left = (point){0,0,1};
// get the vector lying on the xy axis
// this is done by
*span_xy = pt_normalize(pt_cross(pt_new(0,0,1), pt)); // points to the "left" (of the viewing direction)
*span_xy = pt_normalize(pt_cross(left, pt)); // points to the "left" (of the viewing direction)
// now use this, to find the vector
*span_z = pt_normalize(pt_cross(pt, *span_xy));
}
inline Point pt_mod(Point pt, double mod) {
return pt_new(
fabs(fmod(pt.x, mod)),
fabs(fmod(pt.y, mod)),
fabs(fmod(pt.z, mod))
);
}
///////////////////////////////
////// Matrix operations //////
///////////////////////////////
/* create a new matrix with entries:
x1 x2 x3
y1 y2 y3
z1 z2 z3
*/
inline Matrix mtrx_new(double x1, double x2, double x3,
double y1, double y2, double y3,
double z1, double z2, double z3)
{
Matrix m;
m.entries[0] = x1;
m.entries[1] = y1;
m.entries[2] = z1;
m.entries[3] = x2;
m.entries[4] = y2;
m.entries[5] = z2;
m.entries[6] = x3;
m.entries[7] = y3;
m.entries[8] = z3;
return m;
}
inline Point mtrx_mult(Matrix mtrx, Point pt) {
Point result;
double *m = mtrx.entries;
result.x = m[0] * pt.x + m[3] * pt.y + m[6] * pt.z;
result.y = m[1] * pt.x + m[4] * pt.y + m[7] * pt.z;
result.z = m[2] * pt.x + m[5] * pt.y + m[8] * pt.z;
return result;
}
// create a rotation matrix around an axis given by the normalized axis vector (u)
// taken from https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
Matrix mtrx_rotation(Point u, double theta) {
double theta_rad = theta * (M_PI / 180);
double cost = cos(theta_rad);
double sint = sin(theta_rad);
return mtrx_new(
cost+u.x*u.x*(1-cost), u.x*u.y*(1-cost)-u.z*sint, u.x*u.z*(1-cost)+u.y*sint,
u.y*u.x*(1-cost)+u.z*sint, cost+u.y*u.y*(1-cost), u.y*u.z*(1-cost)-u.x*sint,
u.z*u.x*(1-cost)-u.y*sint, u.z*u.y*(1-cost)+u.x*sint, cost+u.z*u.z*(1-cost)
);
}
void mtrx_print(Matrix mtrx) {
printf(" %8.2f %8.2f %8.2f\n %8.2f %8.2f %8.2f\n %8.2f %8.2f %8.2f\n",
mtrx.entries[0], mtrx.entries[3], mtrx.entries[6],
mtrx.entries[1], mtrx.entries[4], mtrx.entries[7],
mtrx.entries[2], mtrx.entries[5], mtrx.entries[8]
);
}
inline Matrix mtrx_outer_prod(Point a, Point b) {
return mtrx_new(
a.x*b.x, a.x*b.y, a.x*b.z,
a.y*b.x, a.y*b.y, a.y*b.z,
a.z*b.x, a.z*b.y, a.z*b.z
);
}

@ -0,0 +1,48 @@
/*
This library for working with 3D Points uses AVX instructions to speed up computation.
It declares the type <point>, which should be treated as immutable once initialized.
All operations conducted on points are prefixed with pt_
In addition to the functions declared here, the following operators are supported:
point [+|-|*|/] [point|double] (2.0 is treated as {2.0, 2.0, 2.0})
point [=|<=|>=] [point|double]
Constructing a point is done like this: point x = (point) {1.0, 2.0, 3.0}
*/
#ifndef MARCHER_POINT_H
#define MARCHER_POINT_H
// vector of type double with length 3
typedef double point __attribute__ ((vector_size (sizeof(double) * 4)));
inline void pt_print(point x);
inline void pt_print(point x, const char* name);
// length related functions
inline point pt_scale(point x, double length);
inline double pt_length(point x);
inline point pt_normalize(point x);
// angle related functions
inline double pt_angle(point x, point y);
// miscelaneous vector operations:
inline double pt_dot(point x, point y);
inline point pt_cross(point x, point y);
inline point pt_mod(point x, double mod);
// call fabs on each entry
inline point pt_abs(point x);
// find two vectors that span the orthogonal plane, where
// span_xy is a vector lying on the xy-plane (and pointing left)
// and span_z is orthogonal to span_xy pointing "upwards"
void pt_orthogonal_plane(point pt, point *span_z, point *span_xy)
#include "point.c"
#endif

@ -0,0 +1,39 @@
#import <math.h>
#include <stdlib.h>
void ray_advance(ray *r, double distance) {
ray->position += pt_scale(ray->direction, distance);
}
// try sqrt(size) random rays from the bunch and calulate the max distance for every one of them
// take the smallest max distance, this is our guess.
double bundle_dispersion(ray_bundle bundle) {
int samples = sqrt(bundle.size); // this should be enough points
// large number
double guess = 10000000;
for (int i = 0; i < samples; i++) {
searched[i] = index;
double dist = 0;
point x = bundle.rays[rand() % bundle.size].position;
for (int j = 0; j < bundle.size; j++) {
double curr_dist = pt_dist(x, bundle.rays[j].position);
if (curr_dist > dist) {
dist = curr_dist;
}
}
if (guess < dist) {
guess = dist;
}
}
}
void bundle_advance(ray_bundle bundle, double distance) {
for (int i = 0; i < bundle.size; i++) {
ray_advance(bundle.rays + i, distance);
}
}

@ -0,0 +1,32 @@
/*
This file defines rays and ray bundles. A ray is at a location and has a direction.
RAYS ARE MUTABLE!
*/
#ifndef MARCHER_RAYS_H
#define MARCHER_RAYS_H
#include "point.h"
//
typedef struct _ray {
point direction;
point position;
} ray;
void ray_advance(ray r, double distance);
typedef struct _ray_bundle {
ray[] rays;
int count;
} ray_bundle;
// upper bound for distances between points (not the least upper bound)
double bundle_dispersion(ray_bundle bundle);
void bundle_advance(ray_bundle bundle, double distance);
#include "rays.c"
#endif

BIN
test

Binary file not shown.
Loading…
Cancel
Save