Initial commit, basic shading

rework
Anton Lydike 5 years ago
commit 66f483e920

3
.gitmodules vendored

@ -0,0 +1,3 @@
[submodule "images"]
path = images
url = gitlab@git.datenvorr.at:anton/images.h.git

@ -0,0 +1,10 @@
# Raymarching in C
## Compiling:
```fish
# load requirements
nix-shell
# run gcc with flags
gcc (pkg-config --cflags --libs gtk+-3.0 | string split " ") -lm -Wall -Wextra -o march.out main.c
```

@ -0,0 +1,7 @@
with import <nixpkgs> {};
stdenv.mkDerivation {
name = "raymarcher-dev-env";
buildInputs = [
gtk3 pkgconfig gdb
];
}

@ -0,0 +1 @@
Subproject commit 0ab4ae2be9f993f26759fc03d3186a51d2770d45

@ -0,0 +1,71 @@
#include <gtk/gtk.h>
#include <math.h>
#include "images/images.h"
#include "marcher.h"
#define SCENE_MOD 2
// this is the circle distance function definition
double circle_dist(Point x, SceneObject *self) {
double r = self->args[0];
return pt_dist(pt_mod(x, SCENE_MOD), self->location) - r;
}
Color circle_color(Point hit, Point direction, SceneObject *self) {
Point obj_direction = self->location;
pt_sub(&obj_direction, pt_mod(hit, SCENE_MOD));
double angle = pt_angle(direction, obj_direction) / M_PI * 180;
Color color = self->color;
if (angle > 90) angle = 180 - angle ; // clamp angle to 0-90
color = color_mix(color, color_new(0,0,0), 1 - (angle / (double) 90));
return color;
}
SceneObject circle_new(Point loc, double radius) {
SceneObject so;
so.location = loc;
so.args = malloc(sizeof(double) * 2);
so.args[0] = radius;
so.distance = circle_dist;
so.get_color = circle_color;
so.color = color_new(255,0,0);
return so;
}
int main(int argc, char* argv[]) {
int threads = 1;
Camera cam;
cam.fov = 90;
camera_set_looking_at(&cam, pt_new(-.6,0,0), pt_new(-.5,1,0));
if (argc > 1) {
threads = atoi(argv[1]);
}
printf("threads: %d\n", threads);
// create basic scene with up to 10 objects
Scene scene = scene_new(800, 600, 10);
scene.max_steps = 64;
scene.threshold = 0.02;
scene_add_obj(&scene, circle_new(pt_new(0,1,0), .2));
//scene_add_obj(&scene, circle_new(pt_new(0,2,0), 0.5));
//scene_add_obj(&scene, circle_new(pt_new(0,-2,0), 0.5));
//scene_add_obj(&scene, circle_new(pt_new(0,-4,0), 0.5));
Image *img = render_scene(&scene, &cam, threads);
image_save_bmp(*img, "render.bmp");
image_destroy_shared(*img);
scene_destroy(scene);
return 0;
}

Binary file not shown.

@ -0,0 +1,83 @@
#ifndef __MARCHER_H__
#define __MARCHER_H__
#include "images/images.h"
// define pi if not available
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
typedef struct __myvec {
double x;
double y;
double z;
} Point;
typedef struct __mymtrx {
double entries[9];
} Matrix;
inline Point pt_new(double x, double y, double z);
Point pt_scale(Point pt, double length);
inline Point pt_normalize(Point pt);
inline double pt_length(Point pt);
void pt_add(Point* pt, Point add);
inline void pt_sub(Point* pt, Point sub);
inline double pt_dist(Point p1, Point p2);
inline Point pt_mod(Point pt, double mod);
inline double pt_dot(Point a, Point b);
inline Point pt_cross(Point a, Point b);
inline double pt_angle(Point a, Point b);
inline void pt_print(Point pt);
inline void pt_print_n(const char* name, Point pt);
typedef struct __mycam {
Point location;
Point direction;
unsigned int fov;
} Camera;
Camera camera_new(Point direction, unsigned int fov);
void camera_set_looking_at(Camera *cam, Point origin, Point thing);
// Scene objects have a position, some args, and a distance calculation function
// the distance calc function has the following signature:
// double distanceTo(Point myLocation, double * myArgs, Point externalPoint)
// where myLocation is this.location, myArgs is this.args and externalPoint is the point from wich we want to know the distance
// the get_color function takes args: point_hit, direction_hit, myArgs, MyLocation, MyColor
typedef struct __myobject {
Point location;
double * args;
double (*distance)(Point, struct __myobject *);
Color (*get_color)(Point, Point, struct __myobject *);
Color color;
} SceneObject;
typedef struct __myscene {
unsigned int width;
unsigned int height;
SceneObject * objects;
int object_count;
int allocated_space;
// some other settings
int max_steps;
double threshold;
// colors etc
Color background;
} Scene;
Image* render_scene(Scene *scene, Camera *camera, unsigned int threads);
Scene scene_new(unsigned int width, unsigned int height, int obj_count);
void scene_add_obj(Scene* scene, SceneObject object);
void scene_destroy(Scene scene);
#include "src/point.c"
#include "src/camera.c"
#include "src/scene.c"
#endif

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

@ -0,0 +1,172 @@
#include "../marcher.h"
#include <sys/wait.h>
#include <sys/mman.h>
Camera camera_new(Point direction, unsigned int fov) {
Camera camera;
camera.location = pt_new(0,0,0);
camera.fov = fov;
// normalize camera direction
camera.direction = pt_normalize(direction);
return camera;
}
void camera_set_looking_at(Camera *cam, Point origin, Point thing) {
cam->location = origin;
pt_sub(&thing, origin);
cam->direction = pt_normalize(thing);
}
void camera_iterate_rays_const_angle(Camera camera, int width, int height, int threads, void (*callback)(Point, int, int)) {
// negative threads => single threaded.
if (threads < 0) threads = 0;
Point span_z, span_xy;
// get rotation axis
pt_orthogonal_plane(camera.direction, &span_z, &span_xy);
printf("rendering %ix%i px", width, height);
pt_print_n("span_xy", span_xy);
pt_print_n("span_z", span_z);
// angle between rays
double angle_step = camera.fov / (double) (width - 1);
// rotation applied to reach the outmost end of the view
double angle_start_h = - (camera.fov / 2.0);
double angle_start_v = ((angle_step * (height - 1)) / 2) ;
printf("step: %f\nstart_h: %f\nstart_v: %f\n", angle_step, angle_start_h, angle_start_v);
// calculate both rotation matrices (expensive!)
Matrix rot_z = mtrx_rotation(span_z, angle_step);
Matrix rot_xy = mtrx_rotation(span_xy, -angle_step);
// rotate vector to starting location (bot left of screen)
// (very expensive!)
Point starting_point = mtrx_mult(
mtrx_rotation(span_xy, angle_start_v),
mtrx_mult(
mtrx_rotation(span_z, angle_start_h),
camera.direction
)
);
// initialize threads
int thread_id = 0;
for (int i = 0; i < threads - 1; i++) {
if (fork() == 0) {
thread_id = i + 1;
break;
}
}
printf("Thread %i reporting for duty\n", thread_id);
// this point is rotated for every pixel
Point curr_pt = starting_point;
// (0,0) screenspace is bottom left corner
for (int y = 0; y < height; y++) {
curr_pt = mtrx_mult(rot_xy, starting_point);
// move starting point one row down
starting_point = curr_pt;
if (y % threads != thread_id) continue;
for (int x = 0; x < width; x++) {
callback(curr_pt, x, y);
curr_pt = mtrx_mult(rot_z, curr_pt); // rotate point
}
}
if (thread_id != 0) {
printf("Thread %i is finished\n", thread_id);
exit(0);
}
int status;
for (int i = 0; i < threads - 1; i++) {
printf("Waiting for threads... %d/%d\n", i, threads);
while(wait(&status) > 0) {}
}
printf("got threads\n");
}
void camera_iterate_rays_const_dist(Camera camera, int width, int height, int threads, void (*callback)(Point, int, int)) {
// negative threads => single threaded.
if (threads < 0) threads = 0;
Point span_z, span_xy;
// get rotation axis
pt_orthogonal_plane(camera.direction, &span_z, &span_xy);
printf("rendering %ix%i px\n", width, height);
pt_print_n("span_xy", span_xy);
pt_print_n("span_z", span_z);
// distance each ray has from anothe on the ortogonal plane
double step_dist = 2 / (double) (width - 1);
// vectors to move on the projection plane
Point move_right = pt_scale(span_xy, step_dist);
Point move_up = pt_scale(span_z, step_dist);;
printf("step: %f\n", step_dist);
// set starting point
Point starting_point = pt_normalize(camera.direction);
// rotate starting point to (0,0)
pt_add(&starting_point, pt_mult(move_right, - width / (double) 2));
pt_add(&starting_point, pt_mult(move_up, - height / (double) 2));
// initialize threads
int thread_id = 0;
for (int i = 0; i < threads - 1; i++) {
if (fork() == 0) {
thread_id = i + 1;
break;
}
}
printf("Thread %i reporting for duty\n", thread_id);
// this point is moved for every pixel
Point curr_pt = starting_point;
// (0,0) screenspace is bottom left corner
for (int y = 0; y < height; y++) {
// move one row up (this has to be done in every thread!)
pt_add(&starting_point, move_up);
// only render the lines this thread is responsible for
if (y % threads != thread_id) continue;
// actually iterate this line
curr_pt = starting_point;
for (int x = 0; x < width; x++) {
callback(curr_pt, x, y);
pt_add(&curr_pt, move_right); // move pt right to next pt
}
}
if (thread_id != 0) {
printf("Thread %i is finished\n", thread_id);
exit(0);
}
int status;
for (int i = 0; i < threads - 1; i++) {
printf("Waiting for threads... %d/%d\n", i, threads);
while(wait(&status) > 0) {}
}
printf("got threads\n");
}

@ -0,0 +1,180 @@
#include <math.h>
#include <stdio.h>
// basically a vector3
inline Point pt_new(double x, double y, double z) {
Point pt;
pt.x = x;
pt.y = y;
pt.z = z;
return pt;
}
// scale vector to length
Point pt_scale(Point pt, double length) {
double f = length / pt_length(pt);
return pt_new(
pt.x * f,
pt.y * f,
pt.z * f
);
}
inline Point pt_mult(Point pt, double scalar) {
return pt_new(
pt.x * scalar,
pt.y * scalar,
pt.z * scalar
);
}
// return internal angle between a and b
inline double pt_angle(Point a, Point b) {
return acos(pt_dot(
pt_normalize(a),
pt_normalize(b)
));
}
// get the length of vector
inline double pt_length(Point pt) {
return sqrt((pt.x * pt.x) + (pt.y * pt.y) + (pt.z * pt.z));
}
// add the vector add to the vector pt
void pt_add(Point* pt, Point add) {
pt->x = pt->x + add.x;
pt->y = pt->y + add.y;
pt->z = pt->z + add.z;
}
// add the vector add to the vector pt
inline void pt_sub(Point* pt, Point sub) {
pt->x -= sub.x;
pt->y -= sub.y;
pt->z -= sub.z;
}
inline double pt_dist(Point p1, Point p2) {
pt_sub(&p1, p2);
return pt_length(p1);
}
// normalize a vector
inline Point pt_normalize(Point pt) {
return pt_scale(pt, 1);
}
// dot product of two vectors
inline double pt_dot(Point a, Point b) {
return a.x*b.x + a.y*b.y + a.z*b.z;
}
// cross product of two vectors
inline Point pt_cross(Point a, Point b) {
return pt_new(
a.y*b.z - a.z*b.y,
a.z*b.x - a.x*b.z,
a.x*b.y - a.y*b.x
);
}
inline void pt_print(Point pt) {
printf("(%f, %f, %f)\n", pt.x, pt.y, pt.z);
}
inline void pt_print_n(const char* name, Point pt) {
printf("%s: (%f, %f, %f)\n", name, pt.x, pt.y, pt.z);
}
// find two vectors that span the orthogonal plane, where
// span_xy is a vector lying on the xy-plane (and pointing left)
// and span_z is orthogonal to span_xy pointing "upwards"
void pt_orthogonal_plane(Point pt, Point *span_z, Point *span_xy) {
pt = pt_normalize(pt);
// get the vector lying on the xy axis
// this is done by
*span_xy = pt_normalize(pt_cross(pt_new(0,0,1), pt)); // points to the "left" (of the viewing direction)
// now use this, to find the vector
*span_z = pt_normalize(pt_cross(pt, *span_xy));
}
inline Point pt_mod(Point pt, double mod) {
return pt_new(
fmod(pt.x, mod),
fmod(pt.y, mod),
fmod(pt.z, mod)
);
}
///////////////////////////////
////// Matrix operations //////
///////////////////////////////
/* create a new matrix with entries:
x1 x2 x3
y1 y2 y3
z1 z2 z3
*/
inline Matrix mtrx_new(double x1, double x2, double x3,
double y1, double y2, double y3,
double z1, double z2, double z3)
{
Matrix m;
m.entries[0] = x1;
m.entries[1] = y1;
m.entries[2] = z1;
m.entries[3] = x2;
m.entries[4] = y2;
m.entries[5] = z2;
m.entries[6] = x3;
m.entries[7] = y3;
m.entries[8] = z3;
return m;
}
inline Point mtrx_mult(Matrix mtrx, Point pt) {
Point result;
double *m = mtrx.entries;
result.x = m[0] * pt.x + m[3] * pt.y + m[6] * pt.z;
result.y = m[1] * pt.x + m[4] * pt.y + m[7] * pt.z;
result.z = m[2] * pt.x + m[5] * pt.y + m[8] * pt.z;
return result;
}
// create a rotation matrix around an axis given by the normalized axis vector (u)
// taken from https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
Matrix mtrx_rotation(Point u, double theta) {
double theta_rad = theta * (M_PI / 180);
double cost = cos(theta_rad);
double sint = sin(theta_rad);
return mtrx_new(
cost+u.x*u.x*(1-cost), u.x*u.y*(1-cost)-u.z*sint, u.x*u.z*(1-cost)+u.y*sint,
u.y*u.x*(1-cost)+u.z*sint, cost+u.y*u.y*(1-cost), u.y*u.z*(1-cost)-u.x*sint,
u.z*u.x*(1-cost)-u.y*sint, u.z*u.y*(1-cost)+u.x*sint, cost+u.z*u.z*(1-cost)
);
}
void mtrx_print(Matrix mtrx) {
printf(" %8.2f %8.2f %8.2f\n %8.2f %8.2f %8.2f\n %8.2f %8.2f %8.2f\n",
mtrx.entries[0], mtrx.entries[3], mtrx.entries[6],
mtrx.entries[1], mtrx.entries[4], mtrx.entries[7],
mtrx.entries[2], mtrx.entries[5], mtrx.entries[8]
);
}
inline Matrix mtrx_outer_prod(Point a, Point b) {
return mtrx_new(
a.x*b.x, a.x*b.y, a.x*b.z,
a.y*b.x, a.y*b.y, a.y*b.z,
a.z*b.x, a.z*b.y, a.z*b.z
);
}

@ -0,0 +1,121 @@
#include "../marcher.h"
#include "../images/images.h"
#include <limits.h>
static Image* current_image;
static Scene* current_scene;
static Camera* current_camera;
Color march_ray(Point origin, Point direction, Scene* scene);
void camera_iter_callback(Point direction, int x, int y);
Scene scene_new(unsigned int width, unsigned int height, int obj_count) {
Scene scene;
scene.height = height;
scene.width = width;
scene.max_steps = 32;
scene.threshold = 0.02;
scene.object_count = 0;
scene.objects = malloc(obj_count * sizeof(SceneObject));
scene.allocated_space = obj_count;
scene.background = color_new(0,0,0);
return scene;
}
void scene_add_obj(Scene* scene, SceneObject object) {
if (scene->object_count >= scene->allocated_space) return; // limit reached
// TODO realloc
scene->objects[scene->object_count] = object;
scene->object_count++;
}
// render out the scene with threads
// creates a shared image, so destroy with image_destroy_shared then free struct with free_shared_memory
Image* render_scene(Scene *scene, Camera *camera, unsigned int threads) {
current_image = malloc(sizeof(Image));
current_scene = scene;
current_camera= camera;
// initialize shared pixel buffer
image_new_shared(scene->width, scene->height, current_image);
// iterate over the rays
camera_iterate_rays_const_dist(*camera, scene->width, scene->height, threads, camera_iter_callback);
// or camera_iterate_rays_const_angle for lense distortion (this might not work correctly tho)
// return the drawn image
return current_image;
}
// march the ray, set the color. repeated for each direction generated by the camera
void camera_iter_callback(Point direction, int x, int y) {
Color c = march_ray(current_camera->location, direction, current_scene);
image_set_px_c(*current_image, x, y, c);
}
Color march_ray(Point origin, Point direction, Scene* scene) {
// some local variables
Point pos = origin;
double closest_encounter = DBL_MAX;
double dist = closest_encounter;
// the closest object we have
SceneObject* closest_obj = scene->objects;
// get steps, threshold from scene
int steps = scene->max_steps;
double threshold = scene->threshold;
// as long as we did not max out steps, or got very close to an object
while (steps > 0 && dist > threshold) {
dist = 100;
// find distance to closest object
for(int i = 0; i < scene->object_count; i++) {
// get pointer to scene obj
SceneObject* obj = scene->objects + i;
double curr_dist = scene->objects[i].distance(pos, obj);
// if we are close
if (curr_dist < dist) {
dist = curr_dist;
closest_obj = obj;
}
}
// write down our closest encounter
if (dist < closest_encounter) closest_encounter = dist;
// scale direction vector to distance, then add it to our position
Point step_vector = pt_scale(direction, dist);
pt_add(&pos, step_vector);
// one step taken...
steps--;
}
// check for a hit
if (dist <= threshold) {
// a hit!
return closest_obj->get_color(pos, direction, closest_obj);
} else {
// a miss :(
// this should be 0!
return scene->background;
}
}
void scene_destroy(Scene scene) {
for (int i = 0; i < scene.object_count; i++) {
// free args memory
free(scene.objects[i].args);
}
free(scene.objects);
}
Loading…
Cancel
Save