46 lines
1.8 KiB
Python
46 lines
1.8 KiB
Python
import numpy as np
|
|
from mlp.layers import ConvolutionalLayer
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description='Welcome to GAN-Shot-Learning script')
|
|
|
|
parser.add_argument('--student_id', nargs="?", type=str, help='Your student id in the format "sxxxxxxx"')
|
|
|
|
args = parser.parse_args()
|
|
|
|
student_id = args.student_id
|
|
|
|
def generate_inputs(student_id):
|
|
student_number = student_id
|
|
tests = np.arange(96).reshape((2, 3, 4, 4))
|
|
tests[:, 0, :, :] = float(student_number[1:3]) / 10 - 5
|
|
tests[:, :, 1, :] = float(student_number[3:5]) / 10 - 5
|
|
tests[:, 2, :, :] = float(student_number[5:7]) / 10 - 5
|
|
tests[0, 1, :, :] = float(student_number[7]) / 10 - 5
|
|
return tests
|
|
|
|
|
|
|
|
test_inputs = generate_inputs(student_id)
|
|
test_grads_wrt_outputs = np.arange(-20, 16).reshape((2, 2, 3, 3))
|
|
inputs = np.arange(96).reshape((2, 3, 4, 4))
|
|
kernels = np.arange(-12, 12).reshape((2, 3, 2, 2))
|
|
biases = np.arange(2)
|
|
|
|
#produce ConvolutionalLayer fprop, bprop and grads_wrt_params
|
|
activation_layer = ConvolutionalLayer(num_input_channels=3, num_output_channels=2, input_dim_1=4, input_dim_2=4,
|
|
kernel_dim_1=2, kernel_dim_2=2)
|
|
activation_layer.params = [kernels, biases]
|
|
conv_fprop = activation_layer.fprop(test_inputs)
|
|
conv_bprop = activation_layer.bprop(
|
|
test_inputs, conv_fprop, test_grads_wrt_outputs)
|
|
conv_grads_wrt_params = activation_layer.grads_wrt_params(test_inputs,
|
|
test_grads_wrt_outputs)
|
|
|
|
test_output = "ConvolutionalLayer:\nFprop: {}\nBprop: {}\n" \
|
|
"Grads_wrt_params: {}\n".format(conv_fprop,
|
|
conv_bprop,
|
|
conv_grads_wrt_params)
|
|
|
|
with open("{}_conv_test_file.txt".format(student_id), "w+") as out_file:
|
|
out_file.write(test_output) |