import numpy as np from mlp.layers import ConvolutionalLayer import argparse parser = argparse.ArgumentParser(description='Welcome to GAN-Shot-Learning script') parser.add_argument('--student_id', nargs="?", type=str, help='Your student id in the format "sxxxxxxx"') args = parser.parse_args() student_id = args.student_id def generate_inputs(student_id): student_number = student_id tests = np.arange(96).reshape((2, 3, 4, 4)) tests[:, 0, :, :] = float(student_number[1:3]) / 10 - 5 tests[:, :, 1, :] = float(student_number[3:5]) / 10 - 5 tests[:, 2, :, :] = float(student_number[5:7]) / 10 - 5 tests[0, 1, :, :] = float(student_number[7]) / 10 - 5 return tests test_inputs = generate_inputs(student_id) test_grads_wrt_outputs = np.arange(-20, 16).reshape((2, 2, 3, 3)) inputs = np.arange(96).reshape((2, 3, 4, 4)) kernels = np.arange(-12, 12).reshape((2, 3, 2, 2)) biases = np.arange(2) #produce ConvolutionalLayer fprop, bprop and grads_wrt_params activation_layer = ConvolutionalLayer(num_input_channels=3, num_output_channels=2, input_dim_1=4, input_dim_2=4, kernel_dim_1=2, kernel_dim_2=2) activation_layer.params = [kernels, biases] conv_fprop = activation_layer.fprop(test_inputs) conv_bprop = activation_layer.bprop( test_inputs, conv_fprop, test_grads_wrt_outputs) conv_grads_wrt_params = activation_layer.grads_wrt_params(test_inputs, test_grads_wrt_outputs) test_output = "ConvolutionalLayer:\nFprop: {}\nBprop: {}\n" \ "Grads_wrt_params: {}\n".format(conv_fprop, conv_bprop, conv_grads_wrt_params) with open("{}_conv_test_file.txt".format(student_id), "w+") as out_file: out_file.write(test_output)