341 lines
14 KiB
Python
341 lines
14 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
class FCCNetwork(nn.Module):
|
||
|
def __init__(self, input_shape, num_output_classes, num_filters, num_layers, use_bias=False):
|
||
|
"""
|
||
|
Initializes a fully connected network similar to the ones implemented previously in the MLP package.
|
||
|
:param input_shape: The shape of the inputs going in to the network.
|
||
|
:param num_output_classes: The number of outputs the network should have (for classification those would be the number of classes)
|
||
|
:param num_filters: Number of filters used in every fcc layer.
|
||
|
:param num_layers: Number of fcc layers (excluding dim reduction stages)
|
||
|
:param use_bias: Whether our fcc layers will use a bias.
|
||
|
"""
|
||
|
super(FCCNetwork, self).__init__()
|
||
|
# set up class attributes useful in building the network and inference
|
||
|
self.input_shape = input_shape
|
||
|
self.num_filters = num_filters
|
||
|
self.num_output_classes = num_output_classes
|
||
|
self.use_bias = use_bias
|
||
|
self.num_layers = num_layers
|
||
|
# initialize a module dict, which is effectively a dictionary that can collect layers and integrate them into pytorch
|
||
|
self.layer_dict = nn.ModuleDict()
|
||
|
# build the network
|
||
|
self.build_module()
|
||
|
|
||
|
def build_module(self):
|
||
|
print("Building basic block of FCCNetwork using input shape", self.input_shape)
|
||
|
x = torch.zeros((self.input_shape))
|
||
|
|
||
|
out = x
|
||
|
out = out.view(out.shape[0], -1)
|
||
|
# flatten inputs to shape (b, -1) where -1 is the dim resulting from multiplying the
|
||
|
# shapes of all dimensions after the 0th dim
|
||
|
|
||
|
for i in range(self.num_layers):
|
||
|
self.layer_dict['fcc_{}'.format(i)] = nn.Linear(in_features=out.shape[1], # initialize a fcc layer
|
||
|
out_features=self.num_filters,
|
||
|
bias=self.use_bias)
|
||
|
|
||
|
out = self.layer_dict['fcc_{}'.format(i)](out) # apply ith fcc layer to the previous layers outputs
|
||
|
out = F.relu(out) # apply a ReLU on the outputs
|
||
|
|
||
|
self.logits_linear_layer = nn.Linear(in_features=out.shape[1], # initialize the prediction output linear layer
|
||
|
out_features=self.num_output_classes,
|
||
|
bias=self.use_bias)
|
||
|
out = self.logits_linear_layer(out) # apply the layer to the previous layer's outputs
|
||
|
print("Block is built, output volume is", out.shape)
|
||
|
return out
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Forward prop data through the network and return the preds
|
||
|
:param x: Input batch x a batch of shape batch number of samples, each of any dimensionality.
|
||
|
:return: preds of shape (b, num_classes)
|
||
|
"""
|
||
|
out = x
|
||
|
out = out.view(out.shape[0], -1)
|
||
|
# flatten inputs to shape (b, -1) where -1 is the dim resulting from multiplying the
|
||
|
# shapes of all dimensions after the 0th dim
|
||
|
|
||
|
for i in range(self.num_layers):
|
||
|
out = self.layer_dict['fcc_{}'.format(i)](out) # apply ith fcc layer to the previous layers outputs
|
||
|
out = F.relu(out) # apply a ReLU on the outputs
|
||
|
|
||
|
out = self.logits_linear_layer(out) # apply the layer to the previous layer's outputs
|
||
|
return out
|
||
|
|
||
|
def reset_parameters(self):
|
||
|
"""
|
||
|
Re-initializes the networks parameters
|
||
|
"""
|
||
|
for item in self.layer_dict.children():
|
||
|
item.reset_parameters()
|
||
|
|
||
|
self.logits_linear_layer.reset_parameters()
|
||
|
|
||
|
|
||
|
class EmptyBlock(nn.Module):
|
||
|
def __init__(self, input_shape=None, num_filters=None, kernel_size=None, padding=None, bias=None, dilation=None,
|
||
|
reduction_factor=None):
|
||
|
super(EmptyBlock, self).__init__()
|
||
|
|
||
|
self.num_filters = num_filters
|
||
|
self.kernel_size = kernel_size
|
||
|
self.input_shape = input_shape
|
||
|
self.padding = padding
|
||
|
self.bias = bias
|
||
|
self.dilation = dilation
|
||
|
|
||
|
self.build_module()
|
||
|
|
||
|
def build_module(self):
|
||
|
self.layer_dict = nn.ModuleDict()
|
||
|
x = torch.zeros(self.input_shape)
|
||
|
self.layer_dict['Identity'] = nn.Identity()
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = x
|
||
|
|
||
|
out = self.layer_dict['Identity'].forward(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class EntryConvolutionalBlock(nn.Module):
|
||
|
def __init__(self, input_shape, num_filters, kernel_size, padding, bias, dilation):
|
||
|
super(EntryConvolutionalBlock, self).__init__()
|
||
|
|
||
|
self.num_filters = num_filters
|
||
|
self.kernel_size = kernel_size
|
||
|
self.input_shape = input_shape
|
||
|
self.padding = padding
|
||
|
self.bias = bias
|
||
|
self.dilation = dilation
|
||
|
|
||
|
self.build_module()
|
||
|
|
||
|
def build_module(self):
|
||
|
self.layer_dict = nn.ModuleDict()
|
||
|
x = torch.zeros(self.input_shape)
|
||
|
out = x
|
||
|
|
||
|
self.layer_dict['conv_0'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias,
|
||
|
kernel_size=self.kernel_size, dilation=self.dilation,
|
||
|
padding=self.padding, stride=1)
|
||
|
|
||
|
out = self.layer_dict['conv_0'].forward(out)
|
||
|
self.layer_dict['bn_0'] = nn.BatchNorm2d(num_features=out.shape[1])
|
||
|
out = F.leaky_relu(self.layer_dict['bn_0'].forward(out))
|
||
|
|
||
|
print(out.shape)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = x
|
||
|
|
||
|
out = self.layer_dict['conv_0'].forward(out)
|
||
|
out = F.leaky_relu(self.layer_dict['bn_0'].forward(out))
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ConvolutionalProcessingBlock(nn.Module):
|
||
|
def __init__(self, input_shape, num_filters, kernel_size, padding, bias, dilation):
|
||
|
super(ConvolutionalProcessingBlock, self).__init__()
|
||
|
|
||
|
self.num_filters = num_filters
|
||
|
self.kernel_size = kernel_size
|
||
|
self.input_shape = input_shape
|
||
|
self.padding = padding
|
||
|
self.bias = bias
|
||
|
self.dilation = dilation
|
||
|
|
||
|
self.build_module()
|
||
|
|
||
|
def build_module(self):
|
||
|
self.layer_dict = nn.ModuleDict()
|
||
|
x = torch.zeros(self.input_shape)
|
||
|
out = x
|
||
|
|
||
|
self.layer_dict['conv_0'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias,
|
||
|
kernel_size=self.kernel_size, dilation=self.dilation,
|
||
|
padding=self.padding, stride=1)
|
||
|
|
||
|
out = self.layer_dict['conv_0'].forward(out)
|
||
|
out = F.leaky_relu(out)
|
||
|
|
||
|
self.layer_dict['conv_1'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias,
|
||
|
kernel_size=self.kernel_size, dilation=self.dilation,
|
||
|
padding=self.padding, stride=1)
|
||
|
|
||
|
out = self.layer_dict['conv_1'].forward(out)
|
||
|
out = F.leaky_relu(out)
|
||
|
|
||
|
print(out.shape)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = x
|
||
|
|
||
|
out = self.layer_dict['conv_0'].forward(out)
|
||
|
out = F.leaky_relu(out)
|
||
|
|
||
|
out = self.layer_dict['conv_1'].forward(out)
|
||
|
out = F.leaky_relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ConvolutionalDimensionalityReductionBlock(nn.Module):
|
||
|
def __init__(self, input_shape, num_filters, kernel_size, padding, bias, dilation, reduction_factor):
|
||
|
super(ConvolutionalDimensionalityReductionBlock, self).__init__()
|
||
|
|
||
|
self.num_filters = num_filters
|
||
|
self.kernel_size = kernel_size
|
||
|
self.input_shape = input_shape
|
||
|
self.padding = padding
|
||
|
self.bias = bias
|
||
|
self.dilation = dilation
|
||
|
self.reduction_factor = reduction_factor
|
||
|
self.build_module()
|
||
|
|
||
|
def build_module(self):
|
||
|
self.layer_dict = nn.ModuleDict()
|
||
|
x = torch.zeros(self.input_shape)
|
||
|
out = x
|
||
|
|
||
|
self.layer_dict['conv_0'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias,
|
||
|
kernel_size=self.kernel_size, dilation=self.dilation,
|
||
|
padding=self.padding, stride=1)
|
||
|
|
||
|
out = self.layer_dict['conv_0'].forward(out)
|
||
|
out = F.leaky_relu(out)
|
||
|
|
||
|
out = F.avg_pool2d(out, self.reduction_factor)
|
||
|
|
||
|
self.layer_dict['conv_1'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias,
|
||
|
kernel_size=self.kernel_size, dilation=self.dilation,
|
||
|
padding=self.padding, stride=1)
|
||
|
|
||
|
out = self.layer_dict['conv_1'].forward(out)
|
||
|
out = F.leaky_relu(out)
|
||
|
|
||
|
print(out.shape)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = x
|
||
|
|
||
|
out = self.layer_dict['conv_0'].forward(out)
|
||
|
out = F.leaky_relu(out)
|
||
|
|
||
|
out = F.avg_pool2d(out, self.reduction_factor)
|
||
|
|
||
|
out = self.layer_dict['conv_1'].forward(out)
|
||
|
out = F.leaky_relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ConvolutionalNetwork(nn.Module):
|
||
|
def __init__(self, input_shape, num_output_classes, num_filters,
|
||
|
num_blocks_per_stage, num_stages, use_bias=False, processing_block_type=ConvolutionalProcessingBlock,
|
||
|
dimensionality_reduction_block_type=ConvolutionalDimensionalityReductionBlock):
|
||
|
"""
|
||
|
Initializes a convolutional network module
|
||
|
:param input_shape: The shape of the tensor to be passed into this network
|
||
|
:param num_output_classes: Number of output classes
|
||
|
:param num_filters: Number of filters per convolutional layer
|
||
|
:param num_blocks_per_stage: Number of blocks per "stage". Each block is composed of 2 convolutional layers.
|
||
|
:param num_stages: Number of stages in a network. A stage is defined as a sequence of layers within which the
|
||
|
data dimensionality remains constant in the spacial axis (h, w) and can change in the channel axis. After each stage
|
||
|
there exists a dimensionality reduction stage, composed of two convolutional layers and an avg pooling layer.
|
||
|
:param use_bias: Whether to use biases in our convolutional layers
|
||
|
:param processing_block_type: Type of processing block to use within our stages
|
||
|
:param dimensionality_reduction_block_type: Type of dimensionality reduction block to use after each stage in our network
|
||
|
"""
|
||
|
super(ConvolutionalNetwork, self).__init__()
|
||
|
# set up class attributes useful in building the network and inference
|
||
|
self.input_shape = input_shape
|
||
|
self.num_filters = num_filters
|
||
|
self.num_output_classes = num_output_classes
|
||
|
self.use_bias = use_bias
|
||
|
self.num_blocks_per_stage = num_blocks_per_stage
|
||
|
self.num_stages = num_stages
|
||
|
self.processing_block_type = processing_block_type
|
||
|
self.dimensionality_reduction_block_type = dimensionality_reduction_block_type
|
||
|
|
||
|
# build the network
|
||
|
self.build_module()
|
||
|
|
||
|
def build_module(self):
|
||
|
"""
|
||
|
Builds network whilst automatically inferring shapes of layers.
|
||
|
"""
|
||
|
self.layer_dict = nn.ModuleDict()
|
||
|
# initialize a module dict, which is effectively a dictionary that can collect layers and integrate them into pytorch
|
||
|
print("Building basic block of ConvolutionalNetwork using input shape", self.input_shape)
|
||
|
x = torch.zeros((self.input_shape)) # create dummy inputs to be used to infer shapes of layers
|
||
|
|
||
|
out = x
|
||
|
self.layer_dict['input_conv'] = EntryConvolutionalBlock(input_shape=out.shape, num_filters=self.num_filters,
|
||
|
kernel_size=3, padding=1, bias=self.use_bias,
|
||
|
dilation=1)
|
||
|
out = self.layer_dict['input_conv'].forward(out)
|
||
|
# torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
|
||
|
for i in range(self.num_stages): # for number of layers times
|
||
|
for j in range(self.num_blocks_per_stage):
|
||
|
self.layer_dict['block_{}_{}'.format(i, j)] = self.processing_block_type(input_shape=out.shape,
|
||
|
num_filters=self.num_filters,
|
||
|
bias=self.use_bias,
|
||
|
kernel_size=3, dilation=1,
|
||
|
padding=1)
|
||
|
out = self.layer_dict['block_{}_{}'.format(i, j)].forward(out)
|
||
|
self.layer_dict['reduction_block_{}'.format(i)] = self.dimensionality_reduction_block_type(
|
||
|
input_shape=out.shape,
|
||
|
num_filters=self.num_filters, bias=True,
|
||
|
kernel_size=3, dilation=1,
|
||
|
padding=1,
|
||
|
reduction_factor=2)
|
||
|
out = self.layer_dict['reduction_block_{}'.format(i)].forward(out)
|
||
|
|
||
|
out = F.avg_pool2d(out, out.shape[-1])
|
||
|
print('shape before final linear layer', out.shape)
|
||
|
out = out.view(out.shape[0], -1)
|
||
|
self.logit_linear_layer = nn.Linear(in_features=out.shape[1], # add a linear layer
|
||
|
out_features=self.num_output_classes,
|
||
|
bias=True)
|
||
|
out = self.logit_linear_layer(out) # apply linear layer on flattened inputs
|
||
|
print("Block is built, output volume is", out.shape)
|
||
|
return out
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Forward propages the network given an input batch
|
||
|
:param x: Inputs x (b, c, h, w)
|
||
|
:return: preds (b, num_classes)
|
||
|
"""
|
||
|
out = x
|
||
|
out = self.layer_dict['input_conv'].forward(out)
|
||
|
for i in range(self.num_stages): # for number of layers times
|
||
|
for j in range(self.num_blocks_per_stage):
|
||
|
out = self.layer_dict['block_{}_{}'.format(i, j)].forward(out)
|
||
|
out = self.layer_dict['reduction_block_{}'.format(i)].forward(out)
|
||
|
|
||
|
out = F.avg_pool2d(out, out.shape[-1])
|
||
|
out = out.view(out.shape[0], -1) # flatten outputs from (b, c, h, w) to (b, c*h*w)
|
||
|
out = self.logit_linear_layer(out) # pass through a linear layer to get logits/preds
|
||
|
return out
|
||
|
|
||
|
def reset_parameters(self):
|
||
|
"""
|
||
|
Re-initialize the network parameters.
|
||
|
"""
|
||
|
for item in self.layer_dict.children():
|
||
|
try:
|
||
|
item.reset_parameters()
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
self.logit_linear_layer.reset_parameters()
|