import torch import torch.nn as nn import torch.nn.functional as F class FCCNetwork(nn.Module): def __init__(self, input_shape, num_output_classes, num_filters, num_layers, use_bias=False): """ Initializes a fully connected network similar to the ones implemented previously in the MLP package. :param input_shape: The shape of the inputs going in to the network. :param num_output_classes: The number of outputs the network should have (for classification those would be the number of classes) :param num_filters: Number of filters used in every fcc layer. :param num_layers: Number of fcc layers (excluding dim reduction stages) :param use_bias: Whether our fcc layers will use a bias. """ super(FCCNetwork, self).__init__() # set up class attributes useful in building the network and inference self.input_shape = input_shape self.num_filters = num_filters self.num_output_classes = num_output_classes self.use_bias = use_bias self.num_layers = num_layers # initialize a module dict, which is effectively a dictionary that can collect layers and integrate them into pytorch self.layer_dict = nn.ModuleDict() # build the network self.build_module() def build_module(self): print("Building basic block of FCCNetwork using input shape", self.input_shape) x = torch.zeros((self.input_shape)) out = x out = out.view(out.shape[0], -1) # flatten inputs to shape (b, -1) where -1 is the dim resulting from multiplying the # shapes of all dimensions after the 0th dim for i in range(self.num_layers): self.layer_dict['fcc_{}'.format(i)] = nn.Linear(in_features=out.shape[1], # initialize a fcc layer out_features=self.num_filters, bias=self.use_bias) out = self.layer_dict['fcc_{}'.format(i)](out) # apply ith fcc layer to the previous layers outputs out = F.relu(out) # apply a ReLU on the outputs self.logits_linear_layer = nn.Linear(in_features=out.shape[1], # initialize the prediction output linear layer out_features=self.num_output_classes, bias=self.use_bias) out = self.logits_linear_layer(out) # apply the layer to the previous layer's outputs print("Block is built, output volume is", out.shape) return out def forward(self, x): """ Forward prop data through the network and return the preds :param x: Input batch x a batch of shape batch number of samples, each of any dimensionality. :return: preds of shape (b, num_classes) """ out = x out = out.view(out.shape[0], -1) # flatten inputs to shape (b, -1) where -1 is the dim resulting from multiplying the # shapes of all dimensions after the 0th dim for i in range(self.num_layers): out = self.layer_dict['fcc_{}'.format(i)](out) # apply ith fcc layer to the previous layers outputs out = F.relu(out) # apply a ReLU on the outputs out = self.logits_linear_layer(out) # apply the layer to the previous layer's outputs return out def reset_parameters(self): """ Re-initializes the networks parameters """ for item in self.layer_dict.children(): item.reset_parameters() self.logits_linear_layer.reset_parameters() class EmptyBlock(nn.Module): def __init__(self, input_shape=None, num_filters=None, kernel_size=None, padding=None, bias=None, dilation=None, reduction_factor=None): super(EmptyBlock, self).__init__() self.num_filters = num_filters self.kernel_size = kernel_size self.input_shape = input_shape self.padding = padding self.bias = bias self.dilation = dilation self.build_module() def build_module(self): self.layer_dict = nn.ModuleDict() x = torch.zeros(self.input_shape) self.layer_dict['Identity'] = nn.Identity() def forward(self, x): out = x out = self.layer_dict['Identity'].forward(out) return out class EntryConvolutionalBlock(nn.Module): def __init__(self, input_shape, num_filters, kernel_size, padding, bias, dilation): super(EntryConvolutionalBlock, self).__init__() self.num_filters = num_filters self.kernel_size = kernel_size self.input_shape = input_shape self.padding = padding self.bias = bias self.dilation = dilation self.build_module() def build_module(self): self.layer_dict = nn.ModuleDict() x = torch.zeros(self.input_shape) out = x self.layer_dict['conv_0'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias, kernel_size=self.kernel_size, dilation=self.dilation, padding=self.padding, stride=1) out = self.layer_dict['conv_0'].forward(out) self.layer_dict['bn_0'] = nn.BatchNorm2d(num_features=out.shape[1]) out = F.leaky_relu(self.layer_dict['bn_0'].forward(out)) print(out.shape) def forward(self, x): out = x out = self.layer_dict['conv_0'].forward(out) out = F.leaky_relu(self.layer_dict['bn_0'].forward(out)) return out class ConvolutionalProcessingBlock(nn.Module): def __init__(self, input_shape, num_filters, kernel_size, padding, bias, dilation): super(ConvolutionalProcessingBlock, self).__init__() self.num_filters = num_filters self.kernel_size = kernel_size self.input_shape = input_shape self.padding = padding self.bias = bias self.dilation = dilation self.build_module() def build_module(self): self.layer_dict = nn.ModuleDict() x = torch.zeros(self.input_shape) out = x self.layer_dict['conv_0'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias, kernel_size=self.kernel_size, dilation=self.dilation, padding=self.padding, stride=1) out = self.layer_dict['conv_0'].forward(out) out = F.leaky_relu(out) self.layer_dict['conv_1'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias, kernel_size=self.kernel_size, dilation=self.dilation, padding=self.padding, stride=1) out = self.layer_dict['conv_1'].forward(out) out = F.leaky_relu(out) print(out.shape) def forward(self, x): out = x out = self.layer_dict['conv_0'].forward(out) out = F.leaky_relu(out) out = self.layer_dict['conv_1'].forward(out) out = F.leaky_relu(out) return out class ConvolutionalDimensionalityReductionBlock(nn.Module): def __init__(self, input_shape, num_filters, kernel_size, padding, bias, dilation, reduction_factor): super(ConvolutionalDimensionalityReductionBlock, self).__init__() self.num_filters = num_filters self.kernel_size = kernel_size self.input_shape = input_shape self.padding = padding self.bias = bias self.dilation = dilation self.reduction_factor = reduction_factor self.build_module() def build_module(self): self.layer_dict = nn.ModuleDict() x = torch.zeros(self.input_shape) out = x self.layer_dict['conv_0'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias, kernel_size=self.kernel_size, dilation=self.dilation, padding=self.padding, stride=1) out = self.layer_dict['conv_0'].forward(out) out = F.leaky_relu(out) out = F.avg_pool2d(out, self.reduction_factor) self.layer_dict['conv_1'] = nn.Conv2d(in_channels=out.shape[1], out_channels=self.num_filters, bias=self.bias, kernel_size=self.kernel_size, dilation=self.dilation, padding=self.padding, stride=1) out = self.layer_dict['conv_1'].forward(out) out = F.leaky_relu(out) print(out.shape) def forward(self, x): out = x out = self.layer_dict['conv_0'].forward(out) out = F.leaky_relu(out) out = F.avg_pool2d(out, self.reduction_factor) out = self.layer_dict['conv_1'].forward(out) out = F.leaky_relu(out) return out class ConvolutionalNetwork(nn.Module): def __init__(self, input_shape, num_output_classes, num_filters, num_blocks_per_stage, num_stages, use_bias=False, processing_block_type=ConvolutionalProcessingBlock, dimensionality_reduction_block_type=ConvolutionalDimensionalityReductionBlock): """ Initializes a convolutional network module :param input_shape: The shape of the tensor to be passed into this network :param num_output_classes: Number of output classes :param num_filters: Number of filters per convolutional layer :param num_blocks_per_stage: Number of blocks per "stage". Each block is composed of 2 convolutional layers. :param num_stages: Number of stages in a network. A stage is defined as a sequence of layers within which the data dimensionality remains constant in the spacial axis (h, w) and can change in the channel axis. After each stage there exists a dimensionality reduction stage, composed of two convolutional layers and an avg pooling layer. :param use_bias: Whether to use biases in our convolutional layers :param processing_block_type: Type of processing block to use within our stages :param dimensionality_reduction_block_type: Type of dimensionality reduction block to use after each stage in our network """ super(ConvolutionalNetwork, self).__init__() # set up class attributes useful in building the network and inference self.input_shape = input_shape self.num_filters = num_filters self.num_output_classes = num_output_classes self.use_bias = use_bias self.num_blocks_per_stage = num_blocks_per_stage self.num_stages = num_stages self.processing_block_type = processing_block_type self.dimensionality_reduction_block_type = dimensionality_reduction_block_type # build the network self.build_module() def build_module(self): """ Builds network whilst automatically inferring shapes of layers. """ self.layer_dict = nn.ModuleDict() # initialize a module dict, which is effectively a dictionary that can collect layers and integrate them into pytorch print("Building basic block of ConvolutionalNetwork using input shape", self.input_shape) x = torch.zeros((self.input_shape)) # create dummy inputs to be used to infer shapes of layers out = x self.layer_dict['input_conv'] = EntryConvolutionalBlock(input_shape=out.shape, num_filters=self.num_filters, kernel_size=3, padding=1, bias=self.use_bias, dilation=1) out = self.layer_dict['input_conv'].forward(out) # torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) for i in range(self.num_stages): # for number of layers times for j in range(self.num_blocks_per_stage): self.layer_dict['block_{}_{}'.format(i, j)] = self.processing_block_type(input_shape=out.shape, num_filters=self.num_filters, bias=self.use_bias, kernel_size=3, dilation=1, padding=1) out = self.layer_dict['block_{}_{}'.format(i, j)].forward(out) self.layer_dict['reduction_block_{}'.format(i)] = self.dimensionality_reduction_block_type( input_shape=out.shape, num_filters=self.num_filters, bias=True, kernel_size=3, dilation=1, padding=1, reduction_factor=2) out = self.layer_dict['reduction_block_{}'.format(i)].forward(out) out = F.avg_pool2d(out, out.shape[-1]) print('shape before final linear layer', out.shape) out = out.view(out.shape[0], -1) self.logit_linear_layer = nn.Linear(in_features=out.shape[1], # add a linear layer out_features=self.num_output_classes, bias=True) out = self.logit_linear_layer(out) # apply linear layer on flattened inputs print("Block is built, output volume is", out.shape) return out def forward(self, x): """ Forward propages the network given an input batch :param x: Inputs x (b, c, h, w) :return: preds (b, num_classes) """ out = x out = self.layer_dict['input_conv'].forward(out) for i in range(self.num_stages): # for number of layers times for j in range(self.num_blocks_per_stage): out = self.layer_dict['block_{}_{}'.format(i, j)].forward(out) out = self.layer_dict['reduction_block_{}'.format(i)].forward(out) out = F.avg_pool2d(out, out.shape[-1]) out = out.view(out.shape[0], -1) # flatten outputs from (b, c, h, w) to (b, c*h*w) out = self.logit_linear_layer(out) # pass through a linear layer to get logits/preds return out def reset_parameters(self): """ Re-initialize the network parameters. """ for item in self.layer_dict.children(): try: item.reset_parameters() except: pass self.logit_linear_layer.reset_parameters()