You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Masterarbeit/TeX/introduction_nn.tex

487 lines
19 KiB
TeX

\section{Introduction to Neural Networks}
Neural Networks (NN) are a mathematical construct inspired by the
... of brains in mammals. It consists of an array of neurons that
receive inputs and compute a accumulated output. These neurons are
arranged in layers, with one input and output layer and a arbirtary
amount of hidden layer between them.
The amount of neurons in the in- and output layers correspond to the
desired dimensions of in- and outputs of the model.
In conventional neural networks the information is passed ... from the
input layer towards the output layer hence they are often called feed
forward networks. Each neuron in a layer has the outputs of all
neurons in the preceding layer as input (fully connected). A
illustration of a example neuronal network is given in
Figure~\ref{fig:nn} and one of a neuron in Figure~\ref{fig:neuron}
\tikzset{%
every neuron/.style={
circle,
draw,
minimum size=1cm
},
neuron missing/.style={
draw=none,
scale=1.5,
text height=0.333cm,
execute at begin node=\color{black}$\vdots$
},
}
\begin{figure}[h!]
\center
% \fbox{
\resizebox{\textwidth}{!}{%
\begin{tikzpicture}[x=1.75cm, y=1.75cm, >=stealth]
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
{\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
\foreach \m/\l [count=\y] in {1,2,3,missing,4}
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,2.5-\y) {};
\foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (hidden1-\m) at (2,2-\y*1.25) {};
\foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (hidden2-\m) at (5,2-\y*1.25) {};
\foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (7,1.5-\y) {};
\foreach \l [count=\i] in {1,2,3,d_i}
\draw [myptr] (input-\i)+(-1,0) -- (input-\i)
node [above, midway] {$x_{\l}$};
\foreach \l [count=\i] in {1,n_1}
\node [above] at (hidden1-\i.north) {$\mathcal{N}_{1,\l}$};
\foreach \l [count=\i] in {1,n_l}
\node [above] at (hidden2-\i.north) {$\mathcal{N}_{l,\l}$};
\foreach \l [count=\i] in {1,d_o}
\draw [myptr] (output-\i) -- ++(1,0)
node [above, midway] {$O_{\l}$};
\foreach \i in {1,...,4}
\foreach \j in {1,...,2}
\draw [myptr] (input-\i) -- (hidden1-\j);
\foreach \i in {1,...,2}
\foreach \j in {1,...,2}
\draw [myptr] (hidden1-\i) -- (hidden2-\j);
\foreach \i in {1,...,2}
\foreach \j in {1,...,2}
\draw [myptr] (hidden2-\i) -- (output-\j);
\node [align=center, above] at (0,2) {Input\\layer};
\node [align=center, above] at (2,2) {Hidden \\layer $1$};
\node [align=center, above] at (5,2) {Hidden \\layer $l$};
\node [align=center, above] at (7,2) {Output \\layer};
\node[fill=white,scale=1.5,inner xsep=10pt,inner ysep=10mm] at ($(hidden1-1)!.5!(hidden2-2)$) {$\dots$};
\end{tikzpicture}}%}
\caption[Illustration of a neural network]{Illustration of a neural network with $d_i$ inputs, $l$
hidden layers with $n_{\cdot}$ nodes in each layer, as well as
$d_o$ outputs.
}
\label{fig:nn}
\end{figure}
\subsection{Nonlinearity of Neural Networks}
The arguably most important feature of neural networks that sets them
apart from linear models is the activation function implemented in the
neurons. As seen in Figure~\ref{fig:neuron} on the weighted sum of the
inputs a activation function $\sigma$ is applied in order to obtain
the output resulting in the output of the $k$-th. neuron in a layer
being given by
\[
o_k = \sigma\left(b_k + \sum_{j=1}^m w_{k,j} i_j\right)
\]
for weights $w_{k,j}$ and biases $b_k$.
The activation function is usually chosen nonlinear (a linear one
would result in the entire model collapsing into a linear one\todo{beweis?}) which
allows it to better model data where the relation of in- and output is
of nonlinear nature.
There are two types of activation functions, saturating and not
saturating ones. Popular examples for the former are sigmoid
functions where most commonly the standard logisitc function or tangen
hyperbolicus are used
as they have easy to compute derivatives which is desirable for gradient
based optimization algorithms. The standard logistic function (often
referred to simply as sigmoid function) is given by
\[
f(x) = \frac{1}{1+e^{-x}}
\]
and has a realm of $[0,1]$. Its usage as an activation function is
motivated by modeling neurons which
are close to deactive until a certain threshold where they grow in
intensity until they are fully
active, which is similar to the behavior of neurons in
brains\todo{besser schreiben}. The tangens hyperbolicus is given by
\[
\tanh(x) = \frac{2}{e^{2x}+1}
\]
The downside of these saturating activation functions is that given
their saturating nature their derivatives are close to zero for large or small
input values which can slow or hinder the progress of gradient based methods.
The nonsaturating activation functions commonly used are the recified
linear using (ReLU) or the leaky RelU. The ReLU is given by
\[
r(x) = \max\left\{0, x\right\}.
\]
This has the benefit of having a constant derivative for values larger
than zero. However the derivative being zero has the same downside for
fitting the model with gradient based methods. The leaky ReLU is
an attempt to counteract this problem by assigning a small constant
derivative to all values smaller than zero and for scalar $\alpha$ is given by
\[
l(x) = \max\left\{0, x\right\} + \alpha \min \left\{0, x\right\}.
\]
In order to illustrate these functions plots of them are given in Figure~\ref{fig:activation}.
\begin{figure}
\centering
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, ymin=0, ymax = 1, width=\textwidth]
\addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
\end{axis}
\end{tikzpicture}
\caption{\titlecap{standard logistic function}}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth]
\addplot[domain=-5:5, samples=100]{tanh(x)};
\end{axis}
\end{tikzpicture}
\caption{\titlecap{tangens hyperbolicus}}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth,
ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1]
\addplot[domain=-5:5, samples=100]{max(0,x)};
\end{axis}
\end{tikzpicture}
\caption{ReLU}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1,
ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}]
\addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)};
\end{axis}
\end{tikzpicture}
\caption{Leaky ReLU, $\alpha = 0.1$}
\end{subfigure}
\caption{Plots of the activation functions}
\label{fig:activation}
\end{figure}
\begin{figure}
\begin{tikzpicture}[x=1.5cm, y=1.5cm, >=stealth]
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
{\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
\node [circle, draw, fill=black, inner sep = 0pt, minimum size =
1.5mm, left] (i_1) at (0, 2.5) {};
\node [align=left, left] at (-0.125, 2.5) {\(i_1\)};
\node [circle, draw, fill=black, inner sep = 0pt, minimum size =
1.5mm] (i_2) at (0, 1.25) {};
\node [align=left, left] at (-0.125, 1.25) {\(i_2\)};
\node [neuron missing] (i_3) at (0, 0) {};
\node [circle, draw, fill=black, inner sep = 0pt, minimum size =
1.5mm] (i_4) at (0, -1.25) {};
\node [align=left, left] at (-0.125, -1.25) {\(i_m\)};
\draw[decoration={calligraphic brace,amplitude=5pt, mirror}, decorate, line width=1.25pt]
(-0.6,2.7) -- (-0.6,-1.45) node [black, midway, xshift=-0.6cm, left] {Inputs};
\node [align = center, above] at (1.25, 3) {Synaptic\\weights};
\node [every neuron] (w_1) at (1.25, 2.5) {\(w_{k, 1}\)};
\node [every neuron] (w_2) at (1.25, 1.25) {\(w_{k, 2}\)};
\node [neuron missing] (w_3) at (1.25, 0) {};
\node [every neuron] (w_4) at (1.25, -1.25) {\(w_{k, m}\)};
\node [circle, draw] (sig) at (3, 0.625) {\Large\(\sum\)};
\node [align = center, below] at (3, 0) {Summing \\junction};
\node [draw, minimum size = 1.25cm] (act) at (4.5, 0.625)
{\(\sigma(.)\)};
\node [align = center, above] at (4.5, 1.25) {Activation \\function};
\node [circle, draw, fill=black, inner sep = 0pt, minimum size =
1.5mm] (b) at (3, 2.5) {};
\node [align = center, above] at (3, 2.75) {Bias \\\(b_k\)};
\node [align = center] (out) at (6, 0.625) {Output \\\(o_k\)};
\draw [myptr] (i_1) -- (w_1);
\draw [myptr] (i_2) -- (w_2);
\draw [myptr] (i_4) -- (w_4);
\draw [myptr] (w_1) -- (sig);
\draw [myptr] (w_2) -- (sig);
\draw [myptr] (w_4) -- (sig);
\draw [myptr] (b) -- (sig);
\draw [myptr] (sig) -- (act);
\draw [myptr] (act) -- (out);
% \foreach \m [count=\y] in {1,2,missing,3,4}
% \node [every neuron/.try, neuron \m/.try ] (hidden-\m) at (1.25,3.25-\y*1.25) {\(w_{k,\y}\)};
% \foreach \m [count=\y] in {1}
% \node [every neuron/.try, neuron \m/.try ] (output-\m) at (2.5,0.5-\y) {};
% \foreach \l [count=\i] in {1}
% \draw [<-] (input-\i) -- ++(-1,0)
% node [above, midway] {$x$};
% \foreach \l [count=\i] in {1,2,n-1,n}
% \node [above] at (hidden-\i.north) {$\mathcal{N}_{\l}$};
% \foreach \l [count=\i] in {1,n_l}
% \node [above] at (output-\i.north) {};
% \foreach \l [count=\i] in {1}
% \draw [->] (output-\i) -- ++(1,0)
% node [above, midway] {$y$};
% \foreach \i in {1}
% \foreach \j in {1,2,...,3,4}
% \draw [->] (input-\i) -- (hidden-\j);
% \foreach \i in {1,2,...,3,4}
% \foreach \j in {1}
% \draw [->] (hidden-\i) -- (output-\j);
\end{tikzpicture}
\caption{Structure of a single neuron}
\label{fig:neuron}
\end{figure}
\clearpage
\subsection{Training Neural Networks}
As neural networks are a PARAMETRIC model we need to fit it to input
data in order to get meaningfull OUTPUT from the network in order to
do this we first need to discuss how we interpret the output of the
neural network.
% After a neural network model is designed, like most statistical models
% it has to be fit to the data. In the machine learning context this is
% often called ``training'' as due to the complexity and amount of
% variables in these models they are fitted iteratively to the data,
% ``learing'' the properties of the data better with each iteration.
% There are two main categories of machine learning models, being
% supervised and unsupervised learners. Unsupervised learners learn
% structure in the data without guidance form outside (as labeling data
% beforehand for training) popular examples of this are clustering
% algorithms\todo{quelle}. Supervised learners on the other hand are as
% the name suggest supervised during learning. This generally amounts to
% using data with the expected response (label) attached to each
% data-point in fitting the model, where usually some distance between
% the model output and the labels is minimized.
\subsubsection{\titlecap{nonliniarity in last layer}}
Given the nature of the neural net the output of the last layer are
real numbers. For regression tasks this is desirable, for
classification problems however some transformations might be
necessary.
As the goal in the latter is to predict a certain class or classes for
an object the output needs to be of a form that allows this
interpretation.
Commonly the nodes in the output layer each correspond to a class and
the class chosen as prediction is the one with the highest value at
the corresponding output node.
This corresponds to a transformation of the output
vector $o$ into a one-hot vector
\[
\text{pred}_i =
\begin{cases}
1,& \text{if } o_i = \max_j o_j \\
0,& \text{else}.
\end{cases}
\]
This however makes training the model with gradient based methods impossible, as the derivative of
the transformation is either zero or undefined.
A continuous transformation that is close to the argmax one is given by
softmax
\[
\text{softmax}(o)_i = \frac{e^{o_i}}{\sum_j e^{o_j}}.
\]
The softmax function transforms the realm of the output to the interval $[0,1]$
and the individual values sum to one, thus the output can be interpreted as
a probability for each class given the input.
Additionally to being differentiable this allows for evaluataing the
cetainiy of a prediction, rather than just whether it is accurate.
A similar effect is obtained when for a binary or two class problem the
sigmoid function
\[
f(x) = \frac{1}{1 + e^{-x}}
\]
is used and the output $f(x)$ is interpreted as the probability for
the first class and $1-f(x)$ for the second class.
\todo{vielleicht additiv invarianz}
% Another property that makes softmax attractive is the invariance to addition
% \[
% \text{sofmax}(o) = \text{softmax}(o + c
% \]
% In order to properly interpret the output of a neural network and
% training it, depending on the problem it might be advantageous to
% transform the output form the last layer. Given the nature of the
% neural network the value at each output node is a real number. This is
% desirable for applications where the desired output is a real numbered
% vector (e.g. steering inputs for a autonomous car), however for
% classification problems it is desirable to transform this
% output. Often classification problems are modeled in such a way that
% each output node corresponds to a class. Then the output vector needs
% to be normalized in order to give a prediction. The naive approach is
% to transform the output vector $o$ into a one-hot vector $p$
% corresponding to a $0$
% entry for all classes except one, which is the predicted class.
% \[
% p_i =
% \begin{cases}
% 1,& i < j, \forall i,j \in \text{arg}\max o_i, \\
% 0,& \text{else.}
% \end{cases}
% \]\todo{besser formulieren}
% However this imposes difficulties in training the network as with this
% addition the model is no longer differentiable which imitates the
% ways the model can be trained. Additionally information about the
% ``certainty'' for each class in the prediction gets lost. A popular
% way to circumvent this problem is to normalize the output vector is
% such a way that the entries add up to one, this allows for the
% interpretation of probabilities assigned to each class.
\subsubsection{Error Measurement}
In order to make assessment about the quality of a network $\mathcal{NN}$ and train
it we need to discuss how we measure error. The choice of the error
function is highly dependent on the type of the problem. For
regression problems a commonly used error measure is the mean squared
error (MSE)
which for a function $f$ and data $(x_i,y_i), i=1,\dots,n$ is given by
\[
MSE(f) = \frac{1}{n} \sum_i^n \left(f(x_i) - y_i\right)^2.
\]
However depending on the problem error measures with differnt
properties might be needed, for example in some contexts it is
required to consider a proportional rather than absolute error as is
common in time series models. \todo{komisch}
As discussed above the output of a neural network for a classification
problem can be interpreted as a probability distribution over the classes
conditioned on the input. In this case it is desirable to
use error functions designed to compare probability distributions. A
widespread error function for this use case is the cross entropy (\textcite{PRML}),
which for two discrete distributions $p, q$ with the same realm $C$ is given by
\[
H(p, q) = \sum_{c \in C} p(c) \ln\left(\frac{1}{q(c)}\right),
\]
which compares a $q$ to a true underlying distribution $p$.
For a data set $(x_i,y_i), i = 1,\dots,n$ where each $y_{i,c}$
corresponds to the probability of class $c$ given $x_i$ and predictor
$f$ we get the loss function
\[
Bla = \sum_{i=1}^n H(y_i, f(x_i)).
\]
-Maximum Likelihood
-Ableitung mit softmax pseudo linear -> fast improvemtns possible
\subsubsection{Gradient Descent Algorithm}
Trying to find the optimal parameter for fitting the model to the data
can be a hard problem. Given the complex nature of a neural network
with many layers and neurons it is hard to predict the impact of
single parameters on the accuracy of the output.
Thus applying numeric optimization algorithms is the only
feasible way to fit the model. A attractive algorithm for training
neural networks is gradient descent where each parameter $\theta_i$ is
iterative changed according to the gradient regarding the error
measure and a step size $\gamma$. For this all parameters are
initialized (often random or close to zero) and then iteratively
updated until a certain stopping criterion is hit, mostly either being a fixed
number of iterations or a desired upper limit for the error measure.
% For a function $f_\theta$ with parameters $\theta \in \mathbb{R}^n$
% and a error function $L(f_\theta)$ the gradient descent algorithm is
% given in \ref{alg:gd}.
\begin{algorithm}[H]
\SetAlgoLined
\KwInput{function $f_\theta$ with parameters $\theta \in
\mathbb{R}^n$ \newline step size $\gamma$}
initialize $\theta^0$\;
$i \leftarrow 1$\;
\While{While termination condition is not met}{
$\nabla \leftarrow \frac{\mathrm{d}f_\theta}{\mathrm{d} \theta}\vert_{\theta^{i-1}}$\;
$\theta^i \leftarrow \theta^{i-1} - \gamma \nabla $\;
$i \leftarrow i +1$\;
}
\caption{Gradient Descent}
\label{alg:gd}
\end{algorithm}
The algorithm for gradient descent is given in
Algorithm~\ref{alg:gd}. In the context of fitting a neural network
$f_\theta$ corresponds to the error measurement of the network
$L\left(\mathcal{NN}_{\theta}\right)$ where $\theta$ is a vector
containing all the weights and biases of the network.
As ca be seen this requires computing the derivative of the network
with regard to each variable. With the number of variables getting
large in networks with multiple layers of high neuron count naively
computing these can get quite memory and computational expensive. But
by using the chain rule and exploiting the layered structure we can
compute the gradient much more efficiently by using backpropagation
introduced by \textcite{backprop}.
% \subsubsection{Backpropagation}
% As with an increasing amount of layers the derivative of a loss
% function with respect to a certain variable becomes more intensive to
% compute there have been efforts in increasing the efficiency of
% computing these derivatives. Today the BACKPROPAGATION algorithm is
% widely used to compute the derivatives needed for the optimization
% algorithms. Here instead of naively calculating the derivative for
% each variable, the chain rule is used in order to compute derivatives
% for each layer from output layer towards the first layer while only
% needing to ....
\[
\frac{\partial L(...)}{}
\]
\todo{Backprop richtig aufschreiben}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: