You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

296 lines
9.9 KiB
BibTeX

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

@UNPUBLISHED{heiss2019,
series = {arXiv},
author = {Heiss, Jakob and Teichmann, Josef and Wutte, Hanna},
publisher = {Cornell University},
year = {2019}, copyright = {In Copyright - Non-Commercial Use Permitted},
keywords = {early stopping; implicit regularization; machine learning; neural networks; spline; regression; gradient descent; artificial intelligence},
size = {53 p.},
DOI = {10.3929/ethz-b-000402003},
title = {How Implicit Regularization of Neural Networks Affects the Learned Function Part I},
PAGES = {1911.02903},
}
@article{Dropout,
author = {Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov},
title = {Dropout: A Simple Way to Prevent Neural Networks from Overfitting},
journal = {Journal of Machine Learning Research},
year = 2014,
volume = 15,
number = 56,
pages = {1929-1958},
Comment url = {http://jmlr.org/papers/v15/srivastava14a.html}
}
@article{ADADELTA,
author = {Matthew D. Zeiler},
title = {{ADADELTA:} An Adaptive Learning Rate Method},
journal = {CoRR},
volume = {abs/1212.5701},
year = 2012,
Comment url = {http://arxiv.org/abs/1212.5701},
archivePrefix = {arXiv},
eprint = {1212.5701},
timestamp = {Mon, 13 Aug 2018 16:45:57 +0200},
}
@article{backprop,
author={Rumelhart, David E.
and Hinton, Geoffrey E.
and Williams, Ronald J.},
title={Learning representations by back-propagating errors},
journal={Nature},
year={1986},
month={Oct},
day={01},
volume={323},
number={6088},
pages={533-536},
issn={1476-4687},
doi={10.1038/323533a0},
Comment url={https://doi.org/10.1038/323533a0}
}
@article{MNIST,
added-at = {2010-06-28T21:16:30.000+0200},
author = {LeCun, Yann and Cortes, Corinna},
groups = {public},
howpublished = {http://yann.lecun.com/exdb/mnist/},
keywords = {MSc _checked character_recognition mnist network neural},
lastchecked = {2016-01-14 14:24:11},
timestamp = {2016-07-12T19:25:30.000+0200},
title = {{MNIST} handwritten digit database},
Comment url = {http://yann.lecun.com/exdb/mnist/},
year = 2010
}
@INPROCEEDINGS{resnet,
author={Kaiming {He} and Xiangyu {Zhang} and Shaoqing {Ren} and Jian {Sun}},
booktitle={2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
title={Deep Residual Learning for Image Recognition},
year={2016},
volume={},
number={},
pages={770-778},}
@book{PRML,
title = {Pattern Recognition and Machine Learning},
author = {Christopher M. Bishop},
publisher = {Springer},
isbn = {9780387310732,0387310738},
year = 2006,
series = {Information science and statistics},
edition = {1st ed. 2006. Corr. 2nd printing},
pages = {209}
}
@article{ADAGRAD,
author = {Duchi, John and Hazan, Elad and Singer, Yoram},
title = {Adaptive Subgradient Methods for Online Learning and Stochastic Optimization},
year = {2011},
issue_date = {2/1/2011},
publisher = {JMLR.org},
volume = {12},
number = {null},
issn = {1532-4435},
journal = {J. Mach. Learn. Res.},
month = jul,
pages = {21212159},
numpages = {39}
}
@article{DBLP:journals/corr/DauphinPGCGB14,
author = {Dauphin, Yann and Pascanu, Razvan and Gulcehre, Caglar and Cho, Kyunghyun and Ganguli, Surya and Bengio, Y.},
year = {2014},
month = {06},
pages = {},
title = {Identifying and attacking the saddle point problem in high-dimensional non-convex optimization},
volume = {27},
journal = {NIPS}
}
@article{saddle_point,
author = {Yann N. Dauphin and
Razvan Pascanu and
{\c{C}}aglar G{\"{u}}l{\c{c}}ehre and
Kyunghyun Cho and
Surya Ganguli and
Yoshua Bengio},
title = {Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization},
journal = {CoRR},
volume = {abs/1406.2572},
year = {2014},
Comment url = {http://arxiv.org/abs/1406.2572},
archivePrefix = {arXiv},
eprint = {1406.2572},
timestamp = {Mon, 22 Jul 2019 13:15:46 +0200},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{Dropout1,
author = {Geoffrey E. Hinton and
Nitish Srivastava and
Alex Krizhevsky and
Ilya Sutskever and
Ruslan Salakhutdinov},
title = {Improving neural networks by preventing co-adaptation of feature detectors},
journal = {CoRR},
volume = {abs/1207.0580},
year = {2012},
Comment url = {http://arxiv.org/abs/1207.0580},
archivePrefix = {arXiv},
eprint = {1207.0580},
timestamp = {Mon, 13 Aug 2018 16:46:10 +0200},
}
@inproceedings{
rADAM,
title={On the Variance of the Adaptive Learning Rate and Beyond},
author={Liyuan Liu and Haoming Jiang and Pengcheng He and Weizhu Chen and Xiaodong Liu and Jianfeng Gao and Jiawei Han},
booktitle={International Conference on Learning Representations},
year={2020},
Comment url={https://openreview.net/forum?id=rkgz2aEKDr}
}
@inproceedings{ADAM,
author = {Diederik P. Kingma and
Jimmy Ba},
@Comment editor = {Yoshua Bengio and
@Comment Yann LeCun},
title = {Adam: {A} Method for Stochastic Optimization},
booktitle = {3rd International Conference on Learning Representations, {ICLR} 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings},
year = {2015},
Comment url = {http://arxiv.org/abs/1412.6980},
timestamp = {Thu, 25 Jul 2019 14:25:37 +0200},
}
@article{transfer_learning,
author = {Zhao,Wei},
title = {Research on the deep learning of the small sample data based on transfer learning},
journal = {AIP Conference Proceedings},
volume = {1864},
number = {1},
pages = {020018},
year = {2017},
doi = {10.1063/1.4992835},
eprint = {https://aip.scitation.org/doi/pdf/10.1063/1.4992835}
}
@article{gan,
author = "Maayan Frid-Adar and Idit Diamant and Eyal Klang and Michal Amitai and Jacob Goldberger and Hayit Greenspan",
title = "GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification",
journal = "Neurocomputing",
volume = 321,
pages = "321 - 331",
year = 2018,
issn = "0925-2312",
doi = "https://doi.org/10.1016/j.neucom.2018.09.013",
Comment url = "http://www.sciencedirect.com/science/article/pii/S0925231218310749",
}
@online{fashionMNIST,
author = {Han Xiao and Kashif Rasul and Roland Vollgraf},
title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
date = {2017-08-28},
year = {2017},
eprintclass = {cs.LG},
eprinttype = {arXiv},
eprint = {cs.LG/1708.07747},
}
@inproceedings{10.1145/3206098.3206111,
author = {Kowsari, Kamran and Heidarysafa, Mojtaba and Brown, Donald E. and Meimandi, Kiana Jafari and Barnes, Laura E.},
title = {RMDL: Random Multimodel Deep Learning for Classification},
year = {2018},
isbn = {9781450363549},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
Comment url = {https://doi.org/10.1145/3206098.3206111},
doi = {10.1145/3206098.3206111},
booktitle = {Proceedings of the 2nd International Conference on Information System and Data Mining},
pages = {1928},
numpages = {10},
keywords = {Supervised Learning, Deep Learning, Data Mining, Text Classification, Deep Neural Networks, Image Classification},
location = {Lakeland, FL, USA},
series = {ICISDM '18}
}
@article{random_erasing,
author = {Zhun Zhong and
Liang Zheng and
Guoliang Kang and
Shaozi Li and
Yi Yang},
title = {Random Erasing Data Augmentation},
journal = {CoRR},
volume = {abs/1708.04896},
year = 2017,
Comment url = {http://arxiv.org/abs/1708.04896},
archivePrefix = {arXiv},
eprint = {1708.04896},
timestamp = {Mon, 13 Aug 2018 16:47:52 +0200},
}
@misc{draw_convnet,
title = {Python script for illustrating Convolutional Neural Network (ConvNet)},
howpublished = {\url{https://github.com/gwding/draw_convnet}},
note = {Accessed: 30.08.2020},
author = {Gavin Weiguang Ding},
year = 2018
}
@book{Haykin,
added-at = {2009-06-26T15:25:19.000+0200},
author = {Haykin, Simon},
note = {2nd edition},
publisher = {Prentice Hall},
title = {Neural Networks: {A} Comprehensive Foundation},
year = 1999
}
@book{Goodfellow,
title={Deep Learning},
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
publisher={MIT Press},
note={\url{http://www.deeplearningbook.org}},
year=2016
}
@article{ruder,
author = {Sebastian Ruder},
title = {An overview of gradient descent optimization algorithms},
journal = {CoRR},
volume = {abs/1609.04747},
year = {2016},
url = {http://arxiv.org/abs/1609.04747},
archivePrefix = {arXiv},
eprint = {1609.04747},
timestamp = {Mon, 13 Aug 2018 16:48:10 +0200},
biburl = {https://dblp.org/rec/journals/corr/Ruder16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@incollection{goodfellow_gan,
title = {Generative Adversarial Nets},
author = {Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
booktitle = {Advances in Neural Information Processing Systems 27},
pages = {2672--2680},
year = {2014},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf}
}
@book{hastie01statisticallearning,
added-at = {2008-05-16T16:17:42.000+0200},
address = {New York, NY, USA},
author = {Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome},
biburl = {https://www.bibsonomy.org/bibtex/2f58afc5c9793fcc8ad8389824e57984c/sb3000},
interhash = {d585aea274f2b9b228fc1629bc273644},
intrahash = {f58afc5c9793fcc8ad8389824e57984c},
keywords = {ml statistics},
publisher = {Springer New York Inc.},
series = {Springer Series in Statistics},
timestamp = {2008-05-16T16:17:43.000+0200},
title = {The Elements of Statistical Learning},
year = 2001
}