You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

375 lines
15 KiB
TeX

\documentclass[a4paper, 12pt, draft=true]{article}
\usepackage{pgfplots}
\usepackage{filecontents}
\usepackage{subcaption}
\usepackage{adjustbox}
\usepackage{xcolor}
\usepackage{tabu}
\usepackage{showframe}
\usepackage{graphicx}
\usepackage{titlecaps}
\usepackage{amssymb}
\usepackage{mathtools}%add-on and patches to amsmath
\usetikzlibrary{calc, 3d}
\usepgfplotslibrary{colorbrewer}
\newcommand\Tstrut{\rule{0pt}{2.6ex}} % = `top' strut
\newcommand\Bstrut{\rule[-0.9ex]{0pt}{0pt}} % = `bottom' strut
\DeclareMathOperator*{\plim}{\mathbb{P}\text{-}\lim}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator*{\argmin}{arg\,min}
\DeclareMathOperator*{\po}{\mathbb{P}\text{-}\mathcal{O}}
\DeclareMathOperator*{\equals}{=}
\begin{document}
\newcommand{\plimn}[0]{\plim\limits_{n \to \infty}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
% \pgfplotsset{
% compat=1.11,
% legend image code/.code={
% \draw[mark repeat=2,mark phase=2]
% plot coordinates {
% (0cm,0cm)
% (0.3cm,0cm) %% default is (0.3cm,0cm)
% (0.6cm,0cm) %% default is (0.6cm,0cm)
% };%
% }
% }
% \begin{figure}
% \begin{subfigure}[h]{\textwidth}
% \begin{tikzpicture}
% \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
% /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
% height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
% ylabel = {Test Accuracy}, cycle
% list/Dark2, every axis plot/.append style={line width
% =1.25pt}]
% % \addplot [dashed] table
% % [x=epoch, y=accuracy, col sep=comma, mark = none]
% % {Data/adam_datagen_full.log};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_1.mean};
% % \addplot [dashed] table
% % [x=epoch, y=accuracy, col sep=comma, mark = none]
% % {Data/adam_datagen_dropout_02_full.log};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_1.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_02_1.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_02_1.mean};
% \addlegendentry{\footnotesize{G.}}
% \addlegendentry{\footnotesize{G. + D. 0.2}}
% \addlegendentry{\footnotesize{G. + D. 0.4}}
% \addlegendentry{\footnotesize{D. 0.2}}
% \addlegendentry{\footnotesize{D. 0.4}}
% \addlegendentry{\footnotesize{Default}}
% \end{axis}
% \end{tikzpicture}
% \caption{1 sample per class}
% \vspace{0.25cm}
% \end{subfigure}
% \begin{subfigure}[h]{\textwidth}
% \begin{tikzpicture}
% \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
% /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
% height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
% ylabel = {Test Accuracy}, cycle
% list/Dark2, every axis plot/.append style={line width
% =1.25pt}]
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_00_10.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_02_10.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_00_10.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_02_10.mean};
% \addlegendentry{\footnotesize{G.}}
% \addlegendentry{\footnotesize{G. + D. 0.2}}
% \addlegendentry{\footnotesize{G. + D. 0.4}}
% \addlegendentry{\footnotesize{D. 0.2}}
% \addlegendentry{\footnotesize{D. 0.4}}
% \addlegendentry{\footnotesize{Default}}
% \end{axis}
% \end{tikzpicture}
% \caption{10 samples per class}
% \end{subfigure}
% \begin{subfigure}[h]{\textwidth}
% \begin{tikzpicture}
% \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
% /pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
% height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
% xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
% list/Dark2, every axis plot/.append style={line width
% =1.25pt}, ymin = {0.92}]
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_00_100.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_02_100.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_00_100.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_02_100.mean};
% \addlegendentry{\footnotesize{G.}}
% \addlegendentry{\footnotesize{G. + D. 0.2}}
% \addlegendentry{\footnotesize{G. + D. 0.4}}
% \addlegendentry{\footnotesize{D. 0.2}}
% \addlegendentry{\footnotesize{D. 0.4}}
% \addlegendentry{\footnotesize{Default}}
% \end{axis}
% \end{tikzpicture}
% \caption{100 samples per class}
% \vspace{.25cm}
% \end{subfigure}
% \caption{Accuracy for the net given in ... with Dropout (D.),
% data generation (G.), a combination, or neither (Default) implemented and trained
% with \textsc{Adam}. For each epoch the 60.000 training samples
% were used, or for data generation 10.000 steps with each using
% batches of 60 generated data points. For each configuration the
% model was trained 5 times and the average accuracies at each epoch
% are given in (a). Mean, maximum and minimum values of accuracy on
% the test and training set are given in (b).}
% \end{figure}
% \begin{table}
% \centering
% \begin{tabu} to \textwidth {@{}l*4{X[c]}@{}}
% \Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\
% \hline
% &
% \multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\
% \cline{2-5}
% max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\
% min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\
% mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\
% var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\
% \hline
% &
% \multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\
% \cline{2-5}
% max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\
% min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\
% mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\
% var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\
% \hline
% &
% \multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\
% \cline{2-5}
% max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\
% min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\
% mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\
% var & 2e-05 & 1e-05 & 1e-05 & 0 \\
% \hline
% \end{tabu}
% \caption{Values of the test accuracy of the model trained 10 times
% of random training sets containing 1, 10 and 100 data points per
% class.}
% \end{table}
% \begin{center}
% \begin{figure}[h]
% \centering
% \begin{subfigure}{\textwidth}
% \includegraphics[width=\textwidth]{Data/cnn_fashion_fig.pdf}
% \caption{original\\image}
% \end{subfigure}
% \begin{subfigure}{\textwidth}
% \includegraphics[width=\textwidth]{Data/cnn_fashion_fig1.pdf}
% \caption{random\\zoom}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist_gen_shear.pdf}
% \caption{random\\shear}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist_gen_rotation.pdf}
% \caption{random\\rotation}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist_gen_shift.pdf}
% \caption{random\\positional shift}
% \end{subfigure}\\
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist5.pdf}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist6.pdf}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist7.pdf}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist8.pdf}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist9.pdf}
% \end{subfigure}
% \caption{The MNIST data set contains 70.000 images of preprocessed handwritten
% digits. Of these images 60.000 are used as training images, while
% the rest are used to validate the models trained.}
% \end{figure}
% \end{center}
% \begin{figure}
% \begin{adjustbox}{width=\textwidth}
% \begin{tikzpicture}
% \begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
% \node[canvas is xy plane at z=0, transform shape] at (0,0)
% {\includegraphics[width=5cm]{Data/klammern_r.jpg}};
% \node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
% {\includegraphics[width=5cm]{Data/klammern_g.jpg}};
% \node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
% {\includegraphics[width=5cm]{Data/klammern_b.jpg}};
% \node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
% {\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
% \end{scope}
% \end{tikzpicture}
% \end{adjustbox}
% \caption{On the right the red, green and blue chanels of the picture
% are displayed. In order to better visualize the color channes the
% black and white picture of each channel has been colored in the
% respective color. Combining the layers results in the image on the
% left}
% \end{figure}
% \begin{figure}
% \centering
% \begin{subfigure}{\linewidth}
% \centering
% \includegraphics[width=\textwidth]{Data/convnet_fig.pdf}
% \end{subfigure}
% \begin{subfigure}{.45\linewidth}
% \centering
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false, width=\textwidth]
% \addplot[domain=-5:5, samples=100]{tanh(x)};
% \end{axis}
% \end{tikzpicture}
% \end{subfigure}
% \begin{subfigure}{.45\linewidth}
% \centering
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false, width=\textwidth,
% ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1]
% \addplot[domain=-5:5, samples=100]{max(0,x)};
% \end{axis}
% \end{tikzpicture}
% \end{subfigure}
% \begin{subfigure}{.45\linewidth}
% \centering
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1,
% ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}]
% \addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)};
% \end{axis}
% \end{tikzpicture}
% \end{subfigure}
% \end{figure}
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false]
% \addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
% \addplot[domain=-5:5, samples=100]{tanh(x)};
% \addplot[domain=-5:5, samples=100]{max(0,x)};
% \end{axis}
% \end{tikzpicture}
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false]
% \addplot[domain=-2*pi:2*pi, samples=100]{cos(deg(x))};
% \end{axis}
% \end{tikzpicture}
\newcommand{\abs}[1]{\ensuremath{\left\vert#1\right\vert}}
\[
\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
h_{k,n} = \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}} \varphi(\xi_k, v_k)
h_{k,n}\right) \approx
\]
\[
\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}} \left(\varphi(\delta l, v_k)
\frac{1}{n g_\xi (\delta l)} \pm \frac{\varepsilon}{n}\right)
\frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}}{\abs{\left\{m \in \kappa : \xi_m
\in [\delta l, \delta(l+1))\right\}}}\right)
\]
\[
\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\frac{\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}}\varphi(\delta l,
v_k)}{\abs{\left\{m \in \kappa : \xi_m
\in [\delta l, \delta(l+1))\right\}}}
\frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}}{n g_\xi (\delta l)}\right) \pm \varepsilon
\]
The amount of kinks in a given interval of length $\delta$ follows a
binomial distribution,
\[
\mathbb{E} \left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}\right] = n \int_{\delta
l}^{\delta(l+1)}g_\xi (x) dx \approx n (\delta g_\xi(\delta l)
\pm \delta \tilde{\varepsilon}),
\]
for any $\delta \leq \delta(\varepsilon, \tilde{\varepsilon})$, since $g_\xi$ is uniformly continuous on its
support by Assumption..
As the distribution of $v$ is continuous as well we get
$\mathcal{L}(v_k) = \mathcal{L} v| \xi = \delta l) \forall k \in
\kappa : \xi_k \in [\delta l, \delta(l+1))$ for $delta \leq
\delta(\varepsilon, \tilde{\varepsilon})$. Thus we get with the law of
large numbers
\begin{align*}
&\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
h_{k,n} \approx\\
&\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
\}]}}\left(\mathbb{E}[\phi(\xi, v)|\xi=\delta l]
\stackrel{\mathbb{P}}{\pm}\right) \delta \left(1 \pm
\frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
\\
&\approx \left(\sum_{\substack{l \in \mathbb{Z} \\ [\delta
l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
\}]}}\mathbb{E}[\phi(\xi, v)|\xi=\delta l] \delta
\stackrel{\mathbb{P}}{\pm}\tilde{\tilde{\varepsilon}}
\abs{C_{g_\xi}^u - C_{g_\xi}^l}
\right)\\
&\phantom{\approx}\cdot \left(1 \pm
\frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
\end{align*}
\newpage
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: