\newpage \begin{appendices} \counterwithin{lstfloat}{section} \section{Proofs for sone Lemmata in ...} In the following there will be proofs for some important Lemmata in Section~\ref{sec:theo38}. Further proofs not discussed here can be found in \textcite{heiss2019} \begin{Theorem}[Proof of Lemma~\ref{theo38}] \end{Theorem} \begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}_k}{v_k}\approx\mathcal{O}(\frac{1}{n})$] For any $\lambda > 0$ and training data $(x_i^{\text{train}}, y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in \left\{1,\dots,N\right\}$, we have \[ \max_{k \in \left\{1,\dots,n\right\}} \frac{w^{*, \tilde{\lambda}}_k}{v_k} = \po_{n\to\infty} \] \end{Lemma} \input{Appendix_code.tex} \end{appendices} %%% Local Variables: %%% mode: latex %%% TeX-master: "main" %%% End: