%%% Local Variables: %%% mode: latex %%% TeX-master: "main" %%% End: With the following Theorem we will have an explicit desrctiption for the limes of RN as the amount of nodes is increased. \begin{Theorem}[Ridge weight penaltiy corresponds to adapted spline] \label{theo:main1} For arbitrary training data \(\left(x_i^{train}, y_i^{train}\right)\) it holds \[ \plimn \norm{\mathcal{RN^{*, \tilde{\lambda}}} - f^{*, \tilde{\lambda}}_{g, \pm}}_{W^{1,\infty}(K)} = 0. \] With \begin{align*} \label{eq:1} \tilde{\lambda} &\coloneqq \lambda n g(0), \\ g(x) &\coloneqq g_{\xi}(x)\mathbb{E}\left[ v_k^2 \vert \xi_k = x \right], \forall x \in \mathbb{R} \end{align*} and \(RN^{*, \tilde{\lambda}}\), \(f^{*,\tilde{\lambda}}_{g, \pm}\) as defined in ??? and ??? respectively. \end{Theorem} In order to proof Theo~\ref{theo:main1} we need to proof a number of auxilary Lemmata first. \begin{Definition}[Sobolev Norm] \label{def:sobonorm} The natural norm of the sobolev space is given by \[ \norm{f}_{W^{k,p}(K)} = \begin{cases} \left(\sum_{\abs{\alpha} \leq k} \norm{f^{(\alpha)}}^p_{L^p}\right)^{\nicefrac{1}{p}},& \text{for } 1 \leq p < \infty \\ max_{\abs{\alpha} \leq k}\left\{f^{(\alpha)}\right\},& \text{for } p = \infty \end{cases} . \] \end{Definition} \begin{Lemma}[Poincar\'e typed inequality] Let \(f:\mathbb{R} \to \mathbb{R}\) differentiable with \(f' : \mathbb{R} \to \mathbb{R}\) Lesbeque integrable. Then for \(K=[a,b] \subset \mathbb{R}\) with \(f(a)=0\) it holds that \begin{equation} \label{eq:pti1} \exists C_K^{\infty} \in \mathbb{R}_{>0} : \norm{f}_{w^{1,\infty}(K)} \leq C_K^{\infty} \norm{f'}_{L^{\infty}(K)}. \end{equation} If additionaly \(f'\) is differentiable with \(f'': \mathbb{R} \to \mathbb{R}\) Lesbeque integrable then additionally \begin{equation} \label{eq:pti2} \exists C_K^2 \in \mathbb{R}_{>0} : \norm{f}_{W^{1,\infty}(K)} \leq C_K^2 \norm{f''}_{L^2(K)}. \end{equation} \proof With the fundamental theorem of calculus, if \(\norm{f}_{L^{\infty}(K)}<\infty\) we get \begin{equation} \label{eq:f_f'} \norm{f}_{L^{\infty}(K)} = \sup_{x \in K}\abs{\int_a^x f'(s) ds} \leq \sup_{x \in K}\abs{\int_a^x \sup_{y \in K} \abs{f'(y)} ds} \leq \abs{b-a} \sup_{y \in K}\abs{f'(y)}. \end{equation} Using this we can bound \(\norm{f}_{w^{1,\infty}(K)}\) by \[ \norm{f}_{w^{1,\infty}(K)} \stackrel{\text{Def~\ref{def:sobonorm}}}{=} \max\left\{\norm{f}_{L^{\infty}(K)}, \norm{f'}_{L^{\infty}(K)}\right\} \stackrel{(\ref{eq:f_f'})}{\leq} max\left\{\abs{b-a}, 1\right\}\norm{f'}_{L^{\infty}(K)}. \] With \(C_k^{\infty} \coloneqq max\left\{\abs{b-a}, 1\right\}\) we get (\ref{eq:pti1}). By using the Hölder inequality, we can proof the second claim. \begin{align*} \norm{f'}_{L^{\infty}(K)} &= \sup_{x \in K} \abs{\int_a^bf''(y) \mathds{1}_{[a,x]}(y)dy} \leq \sup_{x \in K}\norm{f''\mathds{1}_{[a,x]}}_{L^1(K)}\\ &\hspace{-6pt} \stackrel{\text{Hölder}}{\leq} sup_{x \in K}\norm{f''}_{L^2(K)}\norm{\mathds{1}_{[a,x]}}_{L^2(K)} = \abs{b-a}\norm{f''}_{L^2(K)}. \end{align*} Thus (\ref{eq:pti2}) follows with \(C_K^2 \coloneqq \abs{b-a}C_K^{\infty}\). \qed \end{Lemma}