\documentclass[a4paper, 12pt, draft=true]{article} \usepackage{pgfplots} \usepackage{filecontents} \usepackage{subcaption} \usepackage{adjustbox} \usepackage{xcolor} \usepackage{tabu} \usepackage{showframe} \usepackage{graphicx} \usepackage{titlecaps} \usepackage{amssymb} \usepackage{mathtools}%add-on and patches to amsmath \usetikzlibrary{calc, 3d} \usepgfplotslibrary{colorbrewer} \newcommand\Tstrut{\rule{0pt}{2.6ex}} % = `top' strut \newcommand\Bstrut{\rule[-0.9ex]{0pt}{0pt}} % = `bottom' strut \DeclareMathOperator*{\plim}{\mathbb{P}\text{-}\lim} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\po}{\mathbb{P}\text{-}\mathcal{O}} \DeclareMathOperator*{\equals}{=} \begin{document} \newcommand{\plimn}[0]{\plim\limits_{n \to \infty}} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} % \pgfplotsset{ % compat=1.11, % legend image code/.code={ % \draw[mark repeat=2,mark phase=2] % plot coordinates { % (0cm,0cm) % (0.3cm,0cm) %% default is (0.3cm,0cm) % (0.6cm,0cm) %% default is (0.6cm,0cm) % };% % } % } % \begin{figure} % \begin{subfigure}[h]{\textwidth} % \begin{tikzpicture} % \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed, % /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth, % height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east}, % ylabel = {Test Accuracy}, cycle % list/Dark2, every axis plot/.append style={line width % =1.25pt}] % % \addplot [dashed] table % % [x=epoch, y=accuracy, col sep=comma, mark = none] % % {Data/adam_datagen_full.log}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_1.mean}; % % \addplot [dashed] table % % [x=epoch, y=accuracy, col sep=comma, mark = none] % % {Data/adam_datagen_dropout_02_full.log}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_datagen_1.mean}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_datagen_dropout_02_1.mean}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_dropout_02_1.mean}; % \addlegendentry{\footnotesize{G.}} % \addlegendentry{\footnotesize{G. + D. 0.2}} % \addlegendentry{\footnotesize{G. + D. 0.4}} % \addlegendentry{\footnotesize{D. 0.2}} % \addlegendentry{\footnotesize{D. 0.4}} % \addlegendentry{\footnotesize{Default}} % \end{axis} % \end{tikzpicture} % \caption{1 sample per class} % \vspace{0.25cm} % \end{subfigure} % \begin{subfigure}[h]{\textwidth} % \begin{tikzpicture} % \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed, % /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth, % height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east}, % ylabel = {Test Accuracy}, cycle % list/Dark2, every axis plot/.append style={line width % =1.25pt}] % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_dropout_00_10.mean}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_dropout_02_10.mean}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_datagen_dropout_00_10.mean}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_datagen_dropout_02_10.mean}; % \addlegendentry{\footnotesize{G.}} % \addlegendentry{\footnotesize{G. + D. 0.2}} % \addlegendentry{\footnotesize{G. + D. 0.4}} % \addlegendentry{\footnotesize{D. 0.2}} % \addlegendentry{\footnotesize{D. 0.4}} % \addlegendentry{\footnotesize{Default}} % \end{axis} % \end{tikzpicture} % \caption{10 samples per class} % \end{subfigure} % \begin{subfigure}[h]{\textwidth} % \begin{tikzpicture} % \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed, % /pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth, % height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east}, % xlabel = {epoch}, ylabel = {Test Accuracy}, cycle % list/Dark2, every axis plot/.append style={line width % =1.25pt}, ymin = {0.92}] % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_dropout_00_100.mean}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_dropout_02_100.mean}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_datagen_dropout_00_100.mean}; % \addplot table % [x=epoch, y=val_accuracy, col sep=comma, mark = none] % {Data/adam_datagen_dropout_02_100.mean}; % \addlegendentry{\footnotesize{G.}} % \addlegendentry{\footnotesize{G. + D. 0.2}} % \addlegendentry{\footnotesize{G. + D. 0.4}} % \addlegendentry{\footnotesize{D. 0.2}} % \addlegendentry{\footnotesize{D. 0.4}} % \addlegendentry{\footnotesize{Default}} % \end{axis} % \end{tikzpicture} % \caption{100 samples per class} % \vspace{.25cm} % \end{subfigure} % \caption{Accuracy for the net given in ... with Dropout (D.), % data generation (G.), a combination, or neither (Default) implemented and trained % with \textsc{Adam}. For each epoch the 60.000 training samples % were used, or for data generation 10.000 steps with each using % batches of 60 generated data points. For each configuration the % model was trained 5 times and the average accuracies at each epoch % are given in (a). Mean, maximum and minimum values of accuracy on % the test and training set are given in (b).} % \end{figure} % \begin{table} % \centering % \begin{tabu} to \textwidth {@{}l*4{X[c]}@{}} % \Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\ % \hline % & % \multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\ % \cline{2-5} % max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\ % min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\ % mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\ % var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\ % \hline % & % \multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\ % \cline{2-5} % max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\ % min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\ % mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\ % var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\ % \hline % & % \multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\ % \cline{2-5} % max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\ % min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\ % mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\ % var & 2e-05 & 1e-05 & 1e-05 & 0 \\ % \hline % \end{tabu} % \caption{Values of the test accuracy of the model trained 10 times % of random training sets containing 1, 10 and 100 data points per % class.} % \end{table} % \begin{center} % \begin{figure}[h] % \centering % \begin{subfigure}{\textwidth} % \includegraphics[width=\textwidth]{Data/cnn_fashion_fig.pdf} % \caption{original\\image} % \end{subfigure} % \begin{subfigure}{\textwidth} % \includegraphics[width=\textwidth]{Data/cnn_fashion_fig1.pdf} % \caption{random\\zoom} % \end{subfigure} % \begin{subfigure}{0.19\textwidth} % \includegraphics[width=\textwidth]{Data/mnist_gen_shear.pdf} % \caption{random\\shear} % \end{subfigure} % \begin{subfigure}{0.19\textwidth} % \includegraphics[width=\textwidth]{Data/mnist_gen_rotation.pdf} % \caption{random\\rotation} % \end{subfigure} % \begin{subfigure}{0.19\textwidth} % \includegraphics[width=\textwidth]{Data/mnist_gen_shift.pdf} % \caption{random\\positional shift} % \end{subfigure}\\ % \begin{subfigure}{0.19\textwidth} % \includegraphics[width=\textwidth]{Data/mnist5.pdf} % \end{subfigure} % \begin{subfigure}{0.19\textwidth} % \includegraphics[width=\textwidth]{Data/mnist6.pdf} % \end{subfigure} % \begin{subfigure}{0.19\textwidth} % \includegraphics[width=\textwidth]{Data/mnist7.pdf} % \end{subfigure} % \begin{subfigure}{0.19\textwidth} % \includegraphics[width=\textwidth]{Data/mnist8.pdf} % \end{subfigure} % \begin{subfigure}{0.19\textwidth} % \includegraphics[width=\textwidth]{Data/mnist9.pdf} % \end{subfigure} % \caption{The MNIST data set contains 70.000 images of preprocessed handwritten % digits. Of these images 60.000 are used as training images, while % the rest are used to validate the models trained.} % \end{figure} % \end{center} % \begin{figure} % \begin{adjustbox}{width=\textwidth} % \begin{tikzpicture} % \begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)] % \node[canvas is xy plane at z=0, transform shape] at (0,0) % {\includegraphics[width=5cm]{Data/klammern_r.jpg}}; % \node[canvas is xy plane at z=2, transform shape] at (0,-0.2) % {\includegraphics[width=5cm]{Data/klammern_g.jpg}}; % \node[canvas is xy plane at z=4, transform shape] at (0,-0.4) % {\includegraphics[width=5cm]{Data/klammern_b.jpg}}; % \node[canvas is xy plane at z=4, transform shape] at (-8,-0.2) % {\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}}; % \end{scope} % \end{tikzpicture} % \end{adjustbox} % \caption{On the right the red, green and blue chanels of the picture % are displayed. In order to better visualize the color channes the % black and white picture of each channel has been colored in the % respective color. Combining the layers results in the image on the % left} % \end{figure} % \begin{figure} % \centering % \begin{subfigure}{\linewidth} % \centering % \includegraphics[width=\textwidth]{Data/convnet_fig.pdf} % \end{subfigure} % \begin{subfigure}{.45\linewidth} % \centering % \begin{tikzpicture} % \begin{axis}[enlargelimits=false, width=\textwidth] % \addplot[domain=-5:5, samples=100]{tanh(x)}; % \end{axis} % \end{tikzpicture} % \end{subfigure} % \begin{subfigure}{.45\linewidth} % \centering % \begin{tikzpicture} % \begin{axis}[enlargelimits=false, width=\textwidth, % ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1] % \addplot[domain=-5:5, samples=100]{max(0,x)}; % \end{axis} % \end{tikzpicture} % \end{subfigure} % \begin{subfigure}{.45\linewidth} % \centering % \begin{tikzpicture} % \begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1, % ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}] % \addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)}; % \end{axis} % \end{tikzpicture} % \end{subfigure} % \end{figure} % \begin{tikzpicture} % \begin{axis}[enlargelimits=false] % \addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)}; % \addplot[domain=-5:5, samples=100]{tanh(x)}; % \addplot[domain=-5:5, samples=100]{max(0,x)}; % \end{axis} % \end{tikzpicture} % \begin{tikzpicture} % \begin{axis}[enlargelimits=false] % \addplot[domain=-2*pi:2*pi, samples=100]{cos(deg(x))}; % \end{axis} % \end{tikzpicture} \newcommand{\abs}[1]{\ensuremath{\left\vert#1\right\vert}} \[ \sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k) h_{k,n} = \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}} \left(\sum_{\substack{k \in \kappa \\ \xi_k \in [\delta l , \delta(l+1))}} \varphi(\xi_k, v_k) h_{k,n}\right) \approx \] \[ \approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}} \left(\sum_{\substack{k \in \kappa \\ \xi_k \in [\delta l , \delta(l+1))}} \left(\varphi(\delta l, v_k) \frac{1}{n g_\xi (\delta l)} \pm \frac{\varepsilon}{n}\right) \frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l, \delta(l+1))\right\}}}{\abs{\left\{m \in \kappa : \xi_m \in [\delta l, \delta(l+1))\right\}}}\right) \] \[ \approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}} \left(\frac{\sum_{\substack{k \in \kappa \\ \xi_k \in [\delta l , \delta(l+1))}}\varphi(\delta l, v_k)}{\abs{\left\{m \in \kappa : \xi_m \in [\delta l, \delta(l+1))\right\}}} \frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l, \delta(l+1))\right\}}}{n g_\xi (\delta l)}\right) \pm \varepsilon \] The amount of kinks in a given interval of length $\delta$ follows a binomial distribution, \[ \mathbb{E} \left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l, \delta(l+1))\right\}}\right] = n \int_{\delta l}^{\delta(l+1)}g_\xi (x) dx \approx n (\delta g_\xi(\delta l) \pm \delta \tilde{\varepsilon}), \] for any $\delta \leq \delta(\varepsilon, \tilde{\varepsilon})$, since $g_\xi$ is uniformly continuous on its support by Assumption.. As the distribution of $v$ is continuous as well we get $\mathcal{L}(v_k) = \mathcal{L} v| \xi = \delta l) \forall k \in \kappa : \xi_k \in [\delta l, \delta(l+1))$ for $delta \leq \delta(\varepsilon, \tilde{\varepsilon})$. Thus we get with the law of large numbers \begin{align*} &\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k) h_{k,n} \approx\\ &\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}\left(\mathbb{E}[\phi(\xi, v)|\xi=\delta l] \stackrel{\mathbb{P}}{\pm}\right) \delta \left(1 \pm \frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon \\ &\approx \left(\sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}\mathbb{E}[\phi(\xi, v)|\xi=\delta l] \delta \stackrel{\mathbb{P}}{\pm}\tilde{\tilde{\varepsilon}} \abs{C_{g_\xi}^u - C_{g_\xi}^l} \right)\\ &\phantom{\approx}\cdot \left(1 \pm \frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon \end{align*} \newpage \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: