\begin{figure} \centering \begin{subfigure}[b]{0.49\textwidth} \centering \begin{adjustbox}{width=\textwidth, height=0.25\textheight} \begin{tikzpicture} \begin{axis}[tick style = {draw = none}, xticklabel = \empty, yticklabel=\empty] \addplot [mark options={scale = 0.7}, mark = o] table [x=x_d,y=y_d, col sep = comma] {Figures/Data/sin_conv.csv}; \addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Figures/Data/sin_conv.csv}; \end{axis} \end{tikzpicture} \end{adjustbox} \caption{True position (\textcolor{red}{red}), distorted position data (black)} \end{subfigure} \hfill \begin{subfigure}[b]{0.49\textwidth} \centering \begin{adjustbox}{width=\textwidth, height=0.25\textheight} \begin{tikzpicture} \begin{axis}[tick style = {draw = none}, xticklabel = \empty, yticklabel=\empty] \addplot [mark options={scale = 0.7}, mark = o] table [x=x,y=y, col sep = comma] {Figures/Data/sin_conv.csv}; \addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Figures/Data/sin_conv.csv}; \end{axis} \end{tikzpicture} \end{adjustbox} \caption{True position (\textcolor{red}{red}), filtered position data (black)} \end{subfigure} \caption[Signal Smoothing Using Convolution]{Example for noise reduction using convolution with simulated positional data. As filter $g(i)=\left(\nicefrac{1}{3},\nicefrac{1}{4},\nicefrac{1}{5},\nicefrac{1}{6},\nicefrac{1}{20}\right)_{(i-1)}$ is chosen and applied to the $x$ and $y$ coordinate data seperately. The convolution of both signals with $g$ improves the MSE of the positions from 0.196 to 0.170 and visibly smoothes the data. } \label{fig:sin_conv} \end{figure} %%% Local Variables: %%% mode: latex %%% TeX-master: "../main" %%% End: