\pgfplotsset{ compat=1.11, legend image code/.code={ \draw[mark repeat=2,mark phase=2] plot coordinates { (0cm,0cm) (0.075cm,0cm) %% default is (0.3cm,0cm) (0.15cm,0cm) %% default is (0.6cm,0cm) };% } } \begin{figure} \begin{subfigure}[b]{0.48\textwidth} \begin{subfigure}[b]{\textwidth} \begin{adjustbox}{width=\textwidth, height=0.25\textheight} \begin{tikzpicture} \begin{axis}[ ytick = {-1, 0, 1, 2}, yticklabels = {$-1$, $\phantom{-0.}0$, $1$, $2$}, restrict x to domain=-4:4, enlarge x limits = {0.1}] \addplot table [x=x, y=y, col sep=comma, only marks, forget plot] {Figures/Data/sin_6.csv}; \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_0.csv}; \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.0, y=y_n_5000_tl_0.0, col sep=comma, mark=none] {Figures/Data/scala_out_sin.csv}; \addlegendentry{$f_1^{*, 0.1}$}; \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; \end{axis} \end{tikzpicture} \end{adjustbox} \caption{$\lambda = 0.1$} \end{subfigure}\\ \begin{subfigure}[b]{\textwidth} \begin{adjustbox}{width=\textwidth, height=0.25\textheight} \begin{tikzpicture} \begin{axis}[restrict x to domain=-4:4, enlarge x limits = {0.1}] \addplot table [x=x, y=y, col sep=comma, only marks, forget plot] {Figures/Data/sin_6.csv}; \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_1.csv}; \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0, y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Figures/Data/scala_out_sin.csv}; \addlegendentry{$f_1^{*, 1.0}$}; \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; \end{axis} \end{tikzpicture} \end{adjustbox} \caption{$\lambda = 1.0$} \end{subfigure}\\ \begin{subfigure}[b]{\textwidth} \begin{adjustbox}{width=\textwidth, height=0.25\textheight} \begin{tikzpicture} \begin{axis}[restrict x to domain=-4:4, enlarge x limits = {0.1}] \addplot table [x=x, y=y, col sep=comma, only marks, forget plot] {Figures/Data/sin_6.csv}; \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_3.csv}; \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0, y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Figures/Data/scala_out_sin.csv}; \addlegendentry{$f_1^{*, 3.0}$}; \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; \end{axis} \end{tikzpicture} \end{adjustbox} \caption{$\lambda = 3.0$} \end{subfigure} \end{subfigure} \begin{subfigure}[b]{0.48\textwidth} \begin{subfigure}[b]{\textwidth} \begin{adjustbox}{width=\textwidth, height=0.245\textheight} \begin{tikzpicture} \begin{axis}[ ytick = {-2,-1, 0, 1, 2}, yticklabels = {$-2$,$-1$, $\phantom{-0.}0$, $1$, $2$}, restrict x to domain=-4:4, enlarge x limits = {0.1}] \addplot table [x=x, y=y, col sep=comma, only marks, forget plot] {Figures/Data/data_sin_d_t.csv}; \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_sin_d_01.csv}; \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.1, y=y_n_5000_tl_0.1, col sep=comma, mark=none] {Figures/Data/scala_out_d_1_t.csv}; \addlegendentry{$f_1^{*, 0.1}$}; \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; \end{axis} \end{tikzpicture} \end{adjustbox} \caption{$\lambda = 0.1$} \end{subfigure}\\ \begin{subfigure}[b]{\textwidth} \begin{adjustbox}{width=\textwidth, height=0.25\textheight} \begin{tikzpicture} \begin{axis}[restrict x to domain=-4:4, enlarge x limits = {0.1}] \addplot table [x=x, y=y, col sep=comma, only marks, forget plot] {Figures/Data/data_sin_d_t.csv}; \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_sin_d_1.csv}; \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0, y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Figures/Data/scala_out_d_1_t.csv}; \addlegendentry{$f_1^{*, 1.0}$}; \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda},*}$}; \end{axis} \end{tikzpicture} \end{adjustbox} \caption{$\lambda = 1.0$} \end{subfigure}\\ \begin{subfigure}[b]{\textwidth} \begin{adjustbox}{width=\textwidth, height=0.25\textheight} \begin{tikzpicture} \begin{axis}[restrict x to domain=-4:4, enlarge x limits = {0.1}] \addplot table [x=x, y=y, col sep=comma, only marks, forget plot] {Figures/Data/data_sin_d_t.csv}; \addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_sin_d_3.csv}; \addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0, y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Figures/Data/scala_out_d_1_t.csv}; \addlegendentry{$f_1^{*, 3.0}$}; \addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$}; \end{axis} \end{tikzpicture} \end{adjustbox} \caption{$\lambda = 3.0$} \end{subfigure} \end{subfigure} \caption[Comparison of Shallow Neural Networks and Regression Splines] {% In these Figures the behaviour stated in ... is % visualized % in two exaples. For $(a), (b), (c)$ six values of sinus equidistantly % spaced on $[-\pi, \pi]$ have been used as training data. For % $(d),(e),(f)$ 15 equidistand values have been used, where % $y_i^{train} = \sin(x_i^{train}) + \varepsilon_i$ and % $\varepsilon_i \sim \mathcal{N}(0, 0.3)$. For % $\mathcal{RN}_w^{\tilde{\lambda, *}}$ the random weights are % distributed as follows % \begin{align*} % \xi_k &\sim % \end{align*} Ridge Penalized Neural Network compared to Regression Spline, with them being trained on $\text{data}_A$ in a), b), c) and on $\text{data}_B$ in d), e), f). The Parameters of each are given above. The implementation of the network in Scala is given in Listing~\ref{lst:rsnn} } \label{fig:rn_vs_rs} \end{figure} %%% Local Variables: %%% mode: latex %%% TeX-master: "main" %%% End: