import tensorflow as tf import numpy as np from tensorflow.keras.callbacks import CSVLogger from tensorflow.keras.preprocessing.image import ImageDataGenerator mnist = tf.keras.datasets.fashion_mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) x_train, x_test = x_train / 255.0, x_test / 255.0 #y_train = tf.keras.utils.to_categorical(y_train) y_test = tf.keras.utils.to_categorical(y_test) def get_random_sample(a, b, number_of_samples=10): x = [] y = [] for category_number in range(0,10): # get all samples of a category train_data_category = a[b==category_number] # pick a number of random samples from the category train_data_category = train_data_category[np.random.randint(train_data_category.shape[0], size=number_of_samples), :] x.extend(train_data_category) y.append([category_number]*number_of_samples) return np.asarray(x).reshape(-1, 28, 28, 1), np.asarray(y).reshape(10*number_of_samples,1) for i in ['1']: model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (3, 3), activation='relu', input_shape = (28, 28, 1), padding='same')) model.add(tf.keras.layers.Conv2D(filters = 32, kernel_size = (2, 2), activation='relu', padding = 'same')) model.add(tf.keras.layers.MaxPool2D(strides=(2,2))) model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same')) model.add(tf.keras.layers.Conv2D(filters = 64, kernel_size = (3, 3), activation='relu', padding='same')) model.add(tf.keras.layers.MaxPool2D(strides=(2,2))) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(256, activation='relu')) model.add(tf.keras.layers.Dropout(0.2)) model.add(tf.keras.layers.Dense(10, activation='softmax')) model.compile(optimizer=tf.keras.optimizers.Adam(lr = 1e-3), loss="categorical_crossentropy", metrics=["accuracy"]) x_train_, y_train_ = get_random_sample(x_train, y_train, number_of_samples=100) y_train_ = tf.keras.utils.to_categorical(y_train_) print(np.shape(y_train.shape)) datagen = ImageDataGenerator( rotation_range = 15, zoom_range = 0.1, width_shift_range=2, height_shift_range=2, shear_range = 0.5, fill_mode = 'constant', cval = 0) print(model.summary()) #x_test_ = np.append(x_train[300:],x_test).reshape(x_train[300:].shape[0]+x_test.shape[0],28,28,1) #y_test_ = np.append(y_train[300:],y_test).reshape(y_train[300:].shape[0]+y_test.shape[0],10) # csv_logger = CSVLogger('output/fashion_exacly_like_novatec__'+i+'.log') # history = model.fit(datagen.flow(x_train, tf.keras.utils.to_categorical(y_train), batch_size=20), validation_data=(x_test, y_test), epochs=125, steps_per_epoch = x_train_.shape[0]//20, callbacks=[csv_logger]) # history = model.fit(datagen.flow(x_train, tf.keras.utils.to_categorical(y_train), batch_size=30),steps_per_epoch=2000, # validation_data=(x_test, y_test), # epochs=125, callbacks=[csv_logger], # shuffle=True)