added introductions to nn
parent
e2df388229
commit
eb18ac33b2
@ -0,0 +1,12 @@
|
|||||||
|
# weird latex files
|
||||||
|
*.log
|
||||||
|
*.aux
|
||||||
|
*.toc
|
||||||
|
*.gz
|
||||||
|
*.xml
|
||||||
|
TeX/auto/*
|
||||||
|
main-blx.bib
|
||||||
|
|
||||||
|
# emacs autosaves
|
||||||
|
*.tex~
|
||||||
|
|
@ -0,0 +1,124 @@
|
|||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "main"
|
||||||
|
%%% End:
|
||||||
|
\section{Introduction to Neural Networks}
|
||||||
|
|
||||||
|
Neural Networks (NN) are a mathematical construct inspired by the
|
||||||
|
connection of neurons in nature. It consists of an input and output
|
||||||
|
layer with an arbitrary amount of hidden layers between them. Each
|
||||||
|
layer consits of a numer of neurons (nodes) with the number of nodes
|
||||||
|
in the in-/output layers corresponding to the dimensions of the
|
||||||
|
in-/output.\par
|
||||||
|
Each neuron recieves the output of all layers in the previous layers,
|
||||||
|
except for the input layer, which recieves the components of the input.
|
||||||
|
|
||||||
|
\tikzset{%
|
||||||
|
every neuron/.style={
|
||||||
|
circle,
|
||||||
|
draw,
|
||||||
|
minimum size=1cm
|
||||||
|
},
|
||||||
|
neuron missing/.style={
|
||||||
|
draw=none,
|
||||||
|
scale=1.5,
|
||||||
|
text height=0.333cm,
|
||||||
|
execute at begin node=\color{black}$\vdots$
|
||||||
|
},
|
||||||
|
}
|
||||||
|
\begin{figure}[h!]
|
||||||
|
\center
|
||||||
|
|
||||||
|
\fbox{
|
||||||
|
|
||||||
|
\resizebox{\textwidth}{!}{%
|
||||||
|
\begin{tikzpicture}[x=1.75cm, y=1.75cm, >=stealth]
|
||||||
|
|
||||||
|
\foreach \m/\l [count=\y] in {1,2,3,missing,4}
|
||||||
|
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,2.5-\y) {};
|
||||||
|
|
||||||
|
\foreach \m [count=\y] in {1,missing,2}
|
||||||
|
\node [every neuron/.try, neuron \m/.try ] (hidden1-\m) at (2,2-\y*1.25) {};
|
||||||
|
|
||||||
|
\foreach \m [count=\y] in {1,missing,2}
|
||||||
|
\node [every neuron/.try, neuron \m/.try ] (hidden2-\m) at (5,2-\y*1.25) {};
|
||||||
|
|
||||||
|
\foreach \m [count=\y] in {1,missing,2}
|
||||||
|
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (7,1.5-\y) {};
|
||||||
|
|
||||||
|
\foreach \l [count=\i] in {1,2,3,d_i}
|
||||||
|
\draw [<-] (input-\i) -- ++(-1,0)
|
||||||
|
node [above, midway] {$x_{\l}$};
|
||||||
|
|
||||||
|
\foreach \l [count=\i] in {1,n_1}
|
||||||
|
\node [above] at (hidden1-\i.north) {$\mathcal{N}_{1,\l}$};
|
||||||
|
|
||||||
|
\foreach \l [count=\i] in {1,n_l}
|
||||||
|
\node [above] at (hidden2-\i.north) {$\mathcal{N}_{l,\l}$};
|
||||||
|
|
||||||
|
\foreach \l [count=\i] in {1,d_o}
|
||||||
|
\draw [->] (output-\i) -- ++(1,0)
|
||||||
|
node [above, midway] {$O_{\l}$};
|
||||||
|
|
||||||
|
\foreach \i in {1,...,4}
|
||||||
|
\foreach \j in {1,...,2}
|
||||||
|
\draw [->] (input-\i) -- (hidden1-\j);
|
||||||
|
|
||||||
|
\foreach \i in {1,...,2}
|
||||||
|
\foreach \j in {1,...,2}
|
||||||
|
\draw [->] (hidden1-\i) -- (hidden2-\j);
|
||||||
|
|
||||||
|
\foreach \i in {1,...,2}
|
||||||
|
\foreach \j in {1,...,2}
|
||||||
|
\draw [->] (hidden2-\i) -- (output-\j);
|
||||||
|
|
||||||
|
\node [align=center, above] at (0,2) {Input\\layer};
|
||||||
|
\node [align=center, above] at (2,2) {Hidden \\layer $1$};
|
||||||
|
\node [align=center, above] at (5,2) {Hidden \\layer $l$};
|
||||||
|
\node [align=center, above] at (7,2) {Output \\layer};
|
||||||
|
|
||||||
|
\node[fill=white,scale=1.5,inner xsep=10pt,inner ysep=10mm] at ($(hidden1-1)!.5!(hidden2-2)$) {$\dots$};
|
||||||
|
|
||||||
|
\end{tikzpicture}}}
|
||||||
|
\caption{test}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{tikzpicture}[x=1.5cm, y=1.5cm, >=stealth]
|
||||||
|
|
||||||
|
\foreach \m/\l [count=\y] in {1}
|
||||||
|
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,0.5-\y) {};
|
||||||
|
|
||||||
|
\foreach \m [count=\y] in {1,2,missing,3,4}
|
||||||
|
\node [every neuron/.try, neuron \m/.try ] (hidden-\m) at (1.25,3.25-\y*1.25) {};
|
||||||
|
|
||||||
|
\foreach \m [count=\y] in {1}
|
||||||
|
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (2.5,0.5-\y) {};
|
||||||
|
|
||||||
|
\foreach \l [count=\i] in {1}
|
||||||
|
\draw [<-] (input-\i) -- ++(-1,0)
|
||||||
|
node [above, midway] {$x$};
|
||||||
|
|
||||||
|
\foreach \l [count=\i] in {1,2,n-1,n}
|
||||||
|
\node [above] at (hidden-\i.north) {$\mathcal{N}_{\l}$};
|
||||||
|
|
||||||
|
\foreach \l [count=\i] in {1,n_l}
|
||||||
|
\node [above] at (output-\i.north) {};
|
||||||
|
|
||||||
|
\foreach \l [count=\i] in {1}
|
||||||
|
\draw [->] (output-\i) -- ++(1,0)
|
||||||
|
node [above, midway] {$y$};
|
||||||
|
|
||||||
|
\foreach \i in {1}
|
||||||
|
\foreach \j in {1,2,...,3,4}
|
||||||
|
\draw [->] (input-\i) -- (hidden-\j);
|
||||||
|
|
||||||
|
\foreach \i in {1,2,...,3,4}
|
||||||
|
\foreach \j in {1}
|
||||||
|
\draw [->] (hidden-\i) -- (output-\j);
|
||||||
|
|
||||||
|
\node [align=center, above] at (0,1) {Input\\layer};
|
||||||
|
\node [align=center, above] at (1.25,3) {Hidden layer};
|
||||||
|
\node [align=center, above] at (2.5,1) {Output\\layer};
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
Binary file not shown.
Loading…
Reference in New Issue