created file fot theo3.8
parent
4426d68ec5
commit
e2df388229
@ -0,0 +1,31 @@
|
||||
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "main"
|
||||
%%% End:
|
||||
|
||||
With the following Theorem we will have an explicit desrctiption for the
|
||||
limes of RN as the amount of nodes is increased.
|
||||
|
||||
\begin{Theorem}[Ridge weight penaltiy corresponds to adapted spline]
|
||||
\label{theo:main1}
|
||||
For arbitrary training data \(\left(x_i^{train}, y_i^{train}\right)\) it holds
|
||||
\[
|
||||
\plimn \norm{\mathcal{RN^{*, \tilde{\lambda}}} - f^{*,
|
||||
\tilde{\lambda}}_{g, \pm}}_{W^{1,\infty}(K)} = 0.
|
||||
\]
|
||||
|
||||
With
|
||||
\begin{align*}
|
||||
\label{eq:1}
|
||||
\tilde{\lambda} &\coloneqq \lambda n g(0), \\
|
||||
g(x) &\coloneqq
|
||||
g_{\xi}(x)\mathbb{E}\left[ v_k^2 \vert \xi_k = x \right], \forall x
|
||||
\in \mathbb{R}
|
||||
\end{align*}
|
||||
and \(RN^{*, \tilde{\lambda}}}\), \(f^{*,\tilde{\lambda}}_{g, \pm}\)
|
||||
as defined in ??? and ??? respectively.
|
||||
\end{Theorem}
|
||||
In order to proof Theo~\ref{theo:main1} we need to proof a number of
|
||||
auxilary Lemmata first.
|
Loading…
Reference in New Issue