progress
parent
1a45e7d596
commit
bad8e42630
@ -0,0 +1,53 @@
|
|||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist0.pdf}
|
||||||
|
\caption{T-shirt/top}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist1.pdf}
|
||||||
|
\caption{Trousers}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist2.pdf}
|
||||||
|
\caption{Pullover}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist3.pdf}
|
||||||
|
\caption{Dress}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist4.pdf}
|
||||||
|
\caption{Coat}
|
||||||
|
\end{subfigure}\\
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist5.pdf}
|
||||||
|
\caption{Sandal}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist6.pdf}
|
||||||
|
\caption{Shirt}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist7.pdf}
|
||||||
|
\caption{Sneaker}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist8.pdf}
|
||||||
|
\caption{Bag}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.19\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/fashion_mnist9.pdf}
|
||||||
|
\caption{Ankle boot}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{The fashtion MNIST data set contains 70.000 images of
|
||||||
|
preprocessed product images from Zalando, which are categorized as
|
||||||
|
T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
|
||||||
|
Sneaker, Bag, Ankle boot. Of these images 60.000 are used as training images, while
|
||||||
|
the rest are used to validate the models trained.}
|
||||||
|
\label{fig:MNIST}
|
||||||
|
\end{figure}
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "../main"
|
||||||
|
%%% End:
|
@ -0,0 +1,79 @@
|
|||||||
|
\pgfplotsset{
|
||||||
|
compat=1.11,
|
||||||
|
legend image code/.code={
|
||||||
|
\draw[mark repeat=2,mark phase=2]
|
||||||
|
plot coordinates {
|
||||||
|
(0cm,0cm)
|
||||||
|
(0.3cm,0cm) %% default is (0.3cm,0cm)
|
||||||
|
(0.6cm,0cm) %% default is (0.6cm,0cm)
|
||||||
|
};%
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\begin{figure}
|
||||||
|
\begin{subfigure}[h]{\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||||
|
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||||
|
height = 0.6\textwidth, ymin = 0.988, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||||
|
xlabel = {epoch}, ylabel = {Classification Accuracy}, cycle list/Dark2]
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||||
|
{Plots/Data/adam_datagen_full_mean.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||||
|
{Plots/Data/adam_datagen_dropout_02_full_mean.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||||
|
{Plots/Data/adam_datagen_dropout_04_full_mean.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||||
|
{Plots/Data/adam_dropout_02_full_mean.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||||
|
{Plots/Data/adam_dropout_04_full_mean.log};
|
||||||
|
\addplot [dashed] table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||||
|
{Plots/Data/adam_full_mean.log};
|
||||||
|
|
||||||
|
\addlegendentry{\footnotesize{G.}}
|
||||||
|
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||||
|
\addlegendentry{\footnotesize{G. + D. 0.4}}
|
||||||
|
\addlegendentry{\footnotesize{D. 0.2}}
|
||||||
|
\addlegendentry{\footnotesize{D. 0.4}}
|
||||||
|
\addlegendentry{\footnotesize{Default}}
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\caption{Classification accuracy}
|
||||||
|
\vspace{.25cm}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}[h]{1.0\linewidth}
|
||||||
|
\begin{tabu} to \textwidth {@{} l *6{X[c]} @{}}
|
||||||
|
\multicolumn{7}{c}{Classification Accuracy}\Bstrut
|
||||||
|
\\\hline
|
||||||
|
&\textsc{Adam}&D. 0.2&D. 0.4&G.&G.+D.~0.2&G.+D.~0.4 \Tstrut \Bstrut
|
||||||
|
\\\hline
|
||||||
|
mean&0.9914&0.9918&0.9928&0.9937&0.9938&0.9940 \Tstrut \\
|
||||||
|
max& \\
|
||||||
|
min& \\
|
||||||
|
\multicolumn{7}{c}{Training Accuracy}\Bstrut
|
||||||
|
\\\hline
|
||||||
|
mean&0.9994&0.9990&0.9989&0.9967&0.9954&0.9926 \Tstrut \\
|
||||||
|
max& \\
|
||||||
|
min& \\
|
||||||
|
|
||||||
|
\end{tabu}
|
||||||
|
\caption{Mean and maximum accuracy after 48 epochs of training.}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{Accuracy for the net given in ... with Dropout (D.),
|
||||||
|
data generation (G.), a combination, or neither (Default) implemented and trained
|
||||||
|
with \textsc{Adam}. For each epoch the 60.000 training samples
|
||||||
|
were used, or for data generation 10.000 steps with each using
|
||||||
|
batches of 60 generated data points. For each configuration the
|
||||||
|
model was trained 5 times and the average accuracies at each epoch
|
||||||
|
are given in (a). Mean, maximum and minimum values of accuracy on
|
||||||
|
the test and training set are given in (b).}
|
||||||
|
\end{figure}
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "../main"
|
||||||
|
%%% End:
|
Loading…
Reference in New Issue