Lemma Appendix, cleanup to 4.2

master
Tobias Arndt 4 years ago
parent e96331d072
commit a498fb1a8c

@ -1,11 +1,20 @@
\section{Code...}
\begin{itemize}
\item Code for randomized shallow neural network
\item Code for keras
\end{itemize}
\clearpage
\begin{lstfloat}
\section{Code...}
In this ... the implementations of the models used in ... are
given. The randomized shallow neural network used in CHAPTER... are
implemented in Scala from ground up to ensure the model is exactly to
... of Theorem~\ref{theo:main1}.
The neural networks used in CHAPTER are implemented in python using
the Keras framework given in Tensorflow. Tensorflow is a library
containing highly efficient GPU implementations of most important
tensor operations, such as convolution as well as efficient algorithms
for training neural networks (computing derivatives, updating parameters).
\begin{itemize}
\item Code for randomized shallow neural network
\item Code for keras
\end{itemize}
\begin{lstfloat}
\begin{lstlisting}[language=iPython]
import breeze.stats.distributions.Uniform
import breeze.stats.distributions.Gaussian
@ -50,7 +59,7 @@ class RSNN(val n: Int, val gamma: Double = 0.001) {
}
def train(data: Seq[(Double, Double)], iter: Int, lam: Double,
gamma: Double = gamma): (Seq[Double], Double => Double)= {
gamma: Double = gamma): (Seq[Double], Double => Double) = {
val ws = (1 to iter).foldRight((1 to n).map(
_ => 0.0) :Seq[Double])((i, w) => {
@ -62,15 +71,15 @@ class RSNN(val n: Int, val gamma: Double = 0.001) {
}
}
\end{lstlisting}
\caption{Scala code used to build and train the ridge penalized
randomized shallow neural network in .... The parameter \textit{lam}
in the train function represents the $\lambda$ parameter in the error
function. The parameters \textit{n} and \textit{gamma} set the number
of hidden nodes and the stepsize for training.}
\label{lst:rsnn}
\caption{Scala code used to build and train the ridge penalized
randomized shallow neural network in .... The parameter \textit{lam}
in the train function represents the $\lambda$ parameter in the error
function. The parameters \textit{n} and \textit{gamma} set the number
of hidden nodes and the stepsize for training.}
\label{lst:rsnn}
\end{lstfloat}
\clearpage
\begin{lstfloat}
\begin{lstlisting}[language=iPython]
import tensorflow as tf
import numpy as np
@ -117,7 +126,12 @@ validation_data=(x_test, y_test),
steps_per_epoch = x_train.shape[0]//50)
\end{lstlisting}
\caption{Python code for the model used... the MNIST handwritten digits
dataset.}
\label{lst:handwriting}
\end{lstfloat}
\clearpage
\begin{lstfloat}
\begin{lstlisting}[language=iPython]
import tensorflow as tf
import numpy as np
@ -160,13 +174,18 @@ datagen = ImageDataGenerator(
csv_logger = CSVLogger(<Target File>)
history = model.fit(datagen.flow(x_train, y_train, batch_size=30),
steps_per_epoch=2000,
steps_per_epoch=x_train.shape[0]//30,
validation_data=(x_test, y_test),
epochs=125, callbacks=[csv_logger],
shuffle=True)
\end{lstlisting}
\caption{Python code for the model used... the fashion MNIST
dataset.}
\label{lst:fashion}
\end{lstfloat}
\clearpage
\begin{lstfloat}
\begin{lstlisting}[language=iPython]
def get_random_sample(a, b, number_of_samples=10):
x = []
@ -183,6 +202,9 @@ def get_random_sample(a, b, number_of_samples=10):
return (np.asarray(x).reshape(-1, 28, 28, 1),
np.asarray(y).reshape(10*number_of_samples,1))
\end{lstlisting}
\caption{Python code used to generate the datasets containing a
certain amount of random datapoints per class.}
\end{lstfloat}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"

@ -65,7 +65,8 @@ plot coordinates {
\caption{Performance metrics during training}
\end{subfigure}
% \\~\\
\caption[Performance comparison of SDG and GD]{The neural network given in ?? trained with different
\caption[Performance comparison of SDG and GD]{The neural network
given in Figure~\ref{fig:mnist_architecture} trained with different
algorithms on the MNIST handwritten digits data set. For gradient
descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{\cdot}$). For
stochastic gradient descend a batch size of 32 and learning rate

@ -8,286 +8,363 @@
\usepackage{showframe}
\usepackage{graphicx}
\usepackage{titlecaps}
\usepackage{amssymb}
\usepackage{mathtools}%add-on and patches to amsmath
\usetikzlibrary{calc, 3d}
\usepgfplotslibrary{colorbrewer}
\newcommand\Tstrut{\rule{0pt}{2.6ex}} % = `top' strut
\newcommand\Bstrut{\rule[-0.9ex]{0pt}{0pt}} % = `bottom' strut
\DeclareMathOperator*{\plim}{\mathbb{P}\text{-}\lim}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator*{\argmin}{arg\,min}
\DeclareMathOperator*{\po}{\mathbb{P}\text{-}\mathcal{O}}
\DeclareMathOperator*{\equals}{=}
\begin{document}
\pgfplotsset{
compat=1.11,
legend image code/.code={
\draw[mark repeat=2,mark phase=2]
plot coordinates {
(0cm,0cm)
(0.3cm,0cm) %% default is (0.3cm,0cm)
(0.6cm,0cm) %% default is (0.6cm,0cm)
};%
}
}
\begin{figure}
\begin{subfigure}[h]{\textwidth}
\begin{tikzpicture}
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
ylabel = {Test Accuracy}, cycle
list/Dark2, every axis plot/.append style={line width
=1.25pt}]
% \addplot [dashed] table
% [x=epoch, y=accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_full.log};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_1.mean};
% \addplot [dashed] table
% [x=epoch, y=accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_02_full.log};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_datagen_1.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_datagen_dropout_02_1.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_dropout_02_1.mean};
\newcommand{\plimn}[0]{\plim\limits_{n \to \infty}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
% \pgfplotsset{
% compat=1.11,
% legend image code/.code={
% \draw[mark repeat=2,mark phase=2]
% plot coordinates {
% (0cm,0cm)
% (0.3cm,0cm) %% default is (0.3cm,0cm)
% (0.6cm,0cm) %% default is (0.6cm,0cm)
% };%
% }
% }
% \begin{figure}
% \begin{subfigure}[h]{\textwidth}
% \begin{tikzpicture}
% \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
% /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
% height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
% ylabel = {Test Accuracy}, cycle
% list/Dark2, every axis plot/.append style={line width
% =1.25pt}]
% % \addplot [dashed] table
% % [x=epoch, y=accuracy, col sep=comma, mark = none]
% % {Data/adam_datagen_full.log};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_1.mean};
% % \addplot [dashed] table
% % [x=epoch, y=accuracy, col sep=comma, mark = none]
% % {Data/adam_datagen_dropout_02_full.log};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_1.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_02_1.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_02_1.mean};
\addlegendentry{\footnotesize{G.}}
\addlegendentry{\footnotesize{G. + D. 0.2}}
\addlegendentry{\footnotesize{G. + D. 0.4}}
\addlegendentry{\footnotesize{D. 0.2}}
\addlegendentry{\footnotesize{D. 0.4}}
\addlegendentry{\footnotesize{Default}}
\end{axis}
\end{tikzpicture}
\caption{1 sample per class}
\vspace{0.25cm}
\end{subfigure}
\begin{subfigure}[h]{\textwidth}
\begin{tikzpicture}
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
ylabel = {Test Accuracy}, cycle
list/Dark2, every axis plot/.append style={line width
=1.25pt}]
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_dropout_00_10.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_dropout_02_10.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_datagen_dropout_00_10.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_datagen_dropout_02_10.mean};
% \addlegendentry{\footnotesize{G.}}
% \addlegendentry{\footnotesize{G. + D. 0.2}}
% \addlegendentry{\footnotesize{G. + D. 0.4}}
% \addlegendentry{\footnotesize{D. 0.2}}
% \addlegendentry{\footnotesize{D. 0.4}}
% \addlegendentry{\footnotesize{Default}}
% \end{axis}
% \end{tikzpicture}
% \caption{1 sample per class}
% \vspace{0.25cm}
% \end{subfigure}
% \begin{subfigure}[h]{\textwidth}
% \begin{tikzpicture}
% \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
% /pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
% height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
% ylabel = {Test Accuracy}, cycle
% list/Dark2, every axis plot/.append style={line width
% =1.25pt}]
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_00_10.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_02_10.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_00_10.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_02_10.mean};
\addlegendentry{\footnotesize{G.}}
\addlegendentry{\footnotesize{G. + D. 0.2}}
\addlegendentry{\footnotesize{G. + D. 0.4}}
\addlegendentry{\footnotesize{D. 0.2}}
\addlegendentry{\footnotesize{D. 0.4}}
\addlegendentry{\footnotesize{Default}}
\end{axis}
\end{tikzpicture}
\caption{10 samples per class}
\end{subfigure}
\begin{subfigure}[h]{\textwidth}
\begin{tikzpicture}
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
list/Dark2, every axis plot/.append style={line width
=1.25pt}, ymin = {0.92}]
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_dropout_00_100.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_dropout_02_100.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_datagen_dropout_00_100.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Data/adam_datagen_dropout_02_100.mean};
% \addlegendentry{\footnotesize{G.}}
% \addlegendentry{\footnotesize{G. + D. 0.2}}
% \addlegendentry{\footnotesize{G. + D. 0.4}}
% \addlegendentry{\footnotesize{D. 0.2}}
% \addlegendentry{\footnotesize{D. 0.4}}
% \addlegendentry{\footnotesize{Default}}
% \end{axis}
% \end{tikzpicture}
% \caption{10 samples per class}
% \end{subfigure}
% \begin{subfigure}[h]{\textwidth}
% \begin{tikzpicture}
% \begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
% /pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
% height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
% xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
% list/Dark2, every axis plot/.append style={line width
% =1.25pt}, ymin = {0.92}]
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_00_100.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_dropout_02_100.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_00_100.mean};
% \addplot table
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
% {Data/adam_datagen_dropout_02_100.mean};
\addlegendentry{\footnotesize{G.}}
\addlegendentry{\footnotesize{G. + D. 0.2}}
\addlegendentry{\footnotesize{G. + D. 0.4}}
\addlegendentry{\footnotesize{D. 0.2}}
\addlegendentry{\footnotesize{D. 0.4}}
\addlegendentry{\footnotesize{Default}}
\end{axis}
\end{tikzpicture}
\caption{100 samples per class}
\vspace{.25cm}
\end{subfigure}
\caption{Accuracy for the net given in ... with Dropout (D.),
data generation (G.), a combination, or neither (Default) implemented and trained
with \textsc{Adam}. For each epoch the 60.000 training samples
were used, or for data generation 10.000 steps with each using
batches of 60 generated data points. For each configuration the
model was trained 5 times and the average accuracies at each epoch
are given in (a). Mean, maximum and minimum values of accuracy on
the test and training set are given in (b).}
\end{figure}
\begin{table}
\centering
\begin{tabu} to \textwidth {@{}l*4{X[c]}@{}}
\Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\
\cline{2-5}
max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\
min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\
mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\
var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\
\cline{2-5}
max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\
min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\
mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\
var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\
\cline{2-5}
max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\
min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\
mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\
var & 2e-05 & 1e-05 & 1e-05 & 0 \\
\hline
\end{tabu}
\caption{Values of the test accuracy of the model trained 10 times
of random training sets containing 1, 10 and 100 data points per
class.}
\end{table}
% \addlegendentry{\footnotesize{G.}}
% \addlegendentry{\footnotesize{G. + D. 0.2}}
% \addlegendentry{\footnotesize{G. + D. 0.4}}
% \addlegendentry{\footnotesize{D. 0.2}}
% \addlegendentry{\footnotesize{D. 0.4}}
% \addlegendentry{\footnotesize{Default}}
% \end{axis}
% \end{tikzpicture}
% \caption{100 samples per class}
% \vspace{.25cm}
% \end{subfigure}
% \caption{Accuracy for the net given in ... with Dropout (D.),
% data generation (G.), a combination, or neither (Default) implemented and trained
% with \textsc{Adam}. For each epoch the 60.000 training samples
% were used, or for data generation 10.000 steps with each using
% batches of 60 generated data points. For each configuration the
% model was trained 5 times and the average accuracies at each epoch
% are given in (a). Mean, maximum and minimum values of accuracy on
% the test and training set are given in (b).}
% \end{figure}
% \begin{table}
% \centering
% \begin{tabu} to \textwidth {@{}l*4{X[c]}@{}}
% \Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\
% \hline
% &
% \multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\
% \cline{2-5}
% max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\
% min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\
% mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\
% var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\
% \hline
% &
% \multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\
% \cline{2-5}
% max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\
% min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\
% mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\
% var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\
% \hline
% &
% \multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\
% \cline{2-5}
% max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\
% min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\
% mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\
% var & 2e-05 & 1e-05 & 1e-05 & 0 \\
% \hline
% \end{tabu}
% \caption{Values of the test accuracy of the model trained 10 times
% of random training sets containing 1, 10 and 100 data points per
% class.}
% \end{table}
\begin{center}
\begin{figure}[h]
\centering
\begin{subfigure}{\textwidth}
\includegraphics[width=\textwidth]{Data/cnn_fashion_fig.pdf}
\caption{original\\image}
\end{subfigure}
\begin{subfigure}{\textwidth}
\includegraphics[width=\textwidth]{Data/cnn_fashion_fig1.pdf}
\caption{random\\zoom}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Data/mnist_gen_shear.pdf}
\caption{random\\shear}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Data/mnist_gen_rotation.pdf}
\caption{random\\rotation}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Data/mnist_gen_shift.pdf}
\caption{random\\positional shift}
\end{subfigure}\\
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Data/mnist5.pdf}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Data/mnist6.pdf}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Data/mnist7.pdf}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Data/mnist8.pdf}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Data/mnist9.pdf}
\end{subfigure}
\caption{The MNIST data set contains 70.000 images of preprocessed handwritten
digits. Of these images 60.000 are used as training images, while
the rest are used to validate the models trained.}
\end{figure}
\end{center}
% \begin{center}
% \begin{figure}[h]
% \centering
% \begin{subfigure}{\textwidth}
% \includegraphics[width=\textwidth]{Data/cnn_fashion_fig.pdf}
% \caption{original\\image}
% \end{subfigure}
% \begin{subfigure}{\textwidth}
% \includegraphics[width=\textwidth]{Data/cnn_fashion_fig1.pdf}
% \caption{random\\zoom}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist_gen_shear.pdf}
% \caption{random\\shear}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist_gen_rotation.pdf}
% \caption{random\\rotation}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist_gen_shift.pdf}
% \caption{random\\positional shift}
% \end{subfigure}\\
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist5.pdf}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist6.pdf}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist7.pdf}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist8.pdf}
% \end{subfigure}
% \begin{subfigure}{0.19\textwidth}
% \includegraphics[width=\textwidth]{Data/mnist9.pdf}
% \end{subfigure}
% \caption{The MNIST data set contains 70.000 images of preprocessed handwritten
% digits. Of these images 60.000 are used as training images, while
% the rest are used to validate the models trained.}
% \end{figure}
% \end{center}
\begin{figure}
\begin{adjustbox}{width=\textwidth}
\begin{tikzpicture}
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
\node[canvas is xy plane at z=0, transform shape] at (0,0)
{\includegraphics[width=5cm]{Data/klammern_r.jpg}};
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
{\includegraphics[width=5cm]{Data/klammern_g.jpg}};
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
{\includegraphics[width=5cm]{Data/klammern_b.jpg}};
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
{\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
\end{scope}
\end{tikzpicture}
\end{adjustbox}
\caption{On the right the red, green and blue chanels of the picture
are displayed. In order to better visualize the color channes the
black and white picture of each channel has been colored in the
respective color. Combining the layers results in the image on the
left}
\end{figure}
% \begin{figure}
% \begin{adjustbox}{width=\textwidth}
% \begin{tikzpicture}
% \begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
% \node[canvas is xy plane at z=0, transform shape] at (0,0)
% {\includegraphics[width=5cm]{Data/klammern_r.jpg}};
% \node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
% {\includegraphics[width=5cm]{Data/klammern_g.jpg}};
% \node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
% {\includegraphics[width=5cm]{Data/klammern_b.jpg}};
% \node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
% {\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
% \end{scope}
% \end{tikzpicture}
% \end{adjustbox}
% \caption{On the right the red, green and blue chanels of the picture
% are displayed. In order to better visualize the color channes the
% black and white picture of each channel has been colored in the
% respective color. Combining the layers results in the image on the
% left}
% \end{figure}
\begin{figure}
\centering
\begin{subfigure}{\linewidth}
\centering
\includegraphics[width=\textwidth]{Data/convnet_fig.pdf}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth]
\addplot[domain=-5:5, samples=100]{tanh(x)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth,
ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1]
\addplot[domain=-5:5, samples=100]{max(0,x)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1,
ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}]
\addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)};
\end{axis}
\end{tikzpicture}
\end{subfigure}
\end{figure}
% \begin{figure}
% \centering
% \begin{subfigure}{\linewidth}
% \centering
% \includegraphics[width=\textwidth]{Data/convnet_fig.pdf}
% \end{subfigure}
% \begin{subfigure}{.45\linewidth}
% \centering
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false, width=\textwidth]
% \addplot[domain=-5:5, samples=100]{tanh(x)};
% \end{axis}
% \end{tikzpicture}
% \end{subfigure}
% \begin{subfigure}{.45\linewidth}
% \centering
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false, width=\textwidth,
% ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1]
% \addplot[domain=-5:5, samples=100]{max(0,x)};
% \end{axis}
% \end{tikzpicture}
% \end{subfigure}
% \begin{subfigure}{.45\linewidth}
% \centering
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1,
% ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}]
% \addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)};
% \end{axis}
% \end{tikzpicture}
% \end{subfigure}
% \end{figure}
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false]
% \addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
% \addplot[domain=-5:5, samples=100]{tanh(x)};
% \addplot[domain=-5:5, samples=100]{max(0,x)};
% \end{axis}
% \end{tikzpicture}
% \begin{tikzpicture}
% \begin{axis}[enlargelimits=false]
% \addplot[domain=-2*pi:2*pi, samples=100]{cos(deg(x))};
% \end{axis}
% \end{tikzpicture}
\newcommand{\abs}[1]{\ensuremath{\left\vert#1\right\vert}}
\[
\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
h_{k,n} = \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}} \varphi(\xi_k, v_k)
h_{k,n}\right) \approx
\]
\[
\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}} \left(\varphi(\delta l, v_k)
\frac{1}{n g_\xi (\delta l)} \pm \frac{\varepsilon}{n}\right)
\frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}}{\abs{\left\{m \in \kappa : \xi_m
\in [\delta l, \delta(l+1))\right\}}}\right)
\]
\[
\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\frac{\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}}\varphi(\delta l,
v_k)}{\abs{\left\{m \in \kappa : \xi_m
\in [\delta l, \delta(l+1))\right\}}}
\frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}}{n g_\xi (\delta l)}\right) \pm \varepsilon
\]
The amount of kinks in a given interval of length $\delta$ follows a
binomial distribution,
\[
\mathbb{E} \left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}\right] = n \int_{\delta
l}^{\delta(l+1)}g_\xi (x) dx \approx n (\delta g_\xi(\delta l)
\pm \delta \tilde{\varepsilon}),
\]
for any $\delta \leq \delta(\varepsilon, \tilde{\varepsilon})$, since $g_\xi$ is uniformly continuous on its
support by Assumption..
As the distribution of $v$ is continuous as well we get
$\mathcal{L}(v_k) = \mathcal{L} v| \xi = \delta l) \forall k \in
\kappa : \xi_k \in [\delta l, \delta(l+1))$ for $delta \leq
\delta(\varepsilon, \tilde{\varepsilon})$. Thus we get with the law of
large numbers
\begin{align*}
&\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
h_{k,n} \approx\\
&\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
\}]}}\left(\mathbb{E}[\phi(\xi, v)|\xi=\delta l]
\stackrel{\mathbb{P}}{\pm}\right) \delta \left(1 \pm
\frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
\\
&\approx \left(\sum_{\substack{l \in \mathbb{Z} \\ [\delta
l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
\}]}}\mathbb{E}[\phi(\xi, v)|\xi=\delta l] \delta
\stackrel{\mathbb{P}}{\pm}\tilde{\tilde{\varepsilon}}
\abs{C_{g_\xi}^u - C_{g_\xi}^l}
\right)\\
&\phantom{\approx}\cdot \left(1 \pm
\frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
\end{align*}
\newpage
\begin{tikzpicture}
\begin{axis}[enlargelimits=false]
\addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
\addplot[domain=-5:5, samples=100]{tanh(x)};
\addplot[domain=-5:5, samples=100]{max(0,x)};
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}[enlargelimits=false]
\addplot[domain=-2*pi:2*pi, samples=100]{cos(deg(x))};
\end{axis}
\end{tikzpicture}
\end{document}

@ -6,6 +6,9 @@
In the following there will be proofs for some important Lemmata in
Section~\ref{sec:theo38}. Further proofs not discussed here can be
found in \textcite{heiss2019}
The proves in this section are based on \textcite{heiss2019}. Slight
alterations have been made to accommodate for not splitting $f$ into
$f_+$ and $f_-$.
\begin{Theorem}[Proof of Lemma~\ref{theo38}]
\end{Theorem}
@ -21,6 +24,139 @@
\end{Lemma}
\begin{Proof}[Proof of Lemma~\ref{lem:s3}]
\[
\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
h_{k,n} = \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}} \varphi(\xi_k, v_k)
h_{k,n}\right) \approx
\]
\[
\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}} \left(\varphi(\delta l, v_k)
\frac{1}{n g_\xi (\delta l)} \pm \frac{\varepsilon}{n}\right)
\frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}}{\abs{\left\{m \in \kappa : \xi_m
\in [\delta l, \delta(l+1))\right\}}}\right)
\]
\[
\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
\left(\frac{\sum_{\substack{k \in \kappa \\ \xi_k \in
[\delta l , \delta(l+1))}}\varphi(\delta l,
v_k)}{\abs{\left\{m \in \kappa : \xi_m
\in [\delta l, \delta(l+1))\right\}}}
\frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}}{n g_\xi (\delta l)}\right) \pm \varepsilon
\]
The amount of kinks in a given interval of length $\delta$ follows a
binomial distribution,
\[
\mathbb{E} \left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
\delta(l+1))\right\}}\right] = n \int_{\delta
l}^{\delta(l+1)}g_\xi (x) dx \approx n (\delta g_\xi(\delta l)
\pm \delta \tilde{\varepsilon}),
\]
for any $\delta \leq \delta(\varepsilon, \tilde{\varepsilon})$, since $g_\xi$ is uniformly continuous on its
support by Assumption..
As the distribution of $v$ is continuous as well we get that
$\mathcal{L}(v_k) = \mathcal{L} v| \xi = \delta l) \forall k \in
\kappa : \xi_k \in [\delta l, \delta(l+1))$ for $\delta \leq
\delta(\varepsilon, \tilde{\varepsilon})$. Thus we get with the law of
large numbers
\begin{align*}
&\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
h_{k,n} \approx\\
&\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
\}]}}\left(\mathbb{E}[\phi(\xi, v)|\xi=\delta l]
\stackrel{\mathbb{P}}{\pm}\right) \delta \left(1 \pm
\frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
\\
&\approx \left(\sum_{\substack{l \in \mathbb{Z} \\ [\delta
l, \delta
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
\}]}}\mathbb{E}[\phi(\xi, v)|\xi=\delta l] \delta
\stackrel{\mathbb{P}}{\pm}\tilde{\tilde{\varepsilon}}
\abs{C_{g_\xi}^u - C_{g_\xi}^l}
\right)\\
&\phantom{\approx}\cdot \left(1 \pm
\frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
\end{align*}
\end{Proof}
\begin{Lemma}[($L(f_n) \to L(f)$), Heiss, Teichmann, and
Wutte (2019, Lemma A.11)]
For any data $(x_i^{\text{train}}, y_i^{\text{train}}) \in
\mathbb{R}^2, i \in \left\{1,\dots,N\right\}$, let $(f_n)_{n \in
\mathbb{N}}$ be a sequence of functions that converges point-wise
in probability to a function $f : \mathbb{R}\to\mathbb{R}$, then the
loss $L$ of $f_n$ converges is probability to $L(f)$ as $n$ tends to
infinity,
\[
\plimn L(f_n) = L(f).
\]
\proof Vgl. ...
\end{Lemma}
\begin{Proof}[Step 2]
We start by showing that
\[
\plimn \tilde{\lambda} \norm{\tilde{w}}_2^2 = \lambda g(0)
\left(\int \frac{\left(f_g^{*,\lambda''}\right)^2}{g(x)} dx\right)
\]
With the definitions of $\tilde{w}$, $\tilde{\lambda}$ and
$h$ we have
\begin{align*}
\tilde{\lambda} \norm{\tilde{w}}_2^2
&= \tilde{\lambda} \sum_{k \in
\kappa}\left(f_g^{*,\lambda''}(\xi_k) \frac{h_k
v_k}{\mathbb{E}v^2|\xi = \xi_k]}\right)^2\\
&= \tilde{\lambda} \sum_{k \in
\kappa}\left(\left(f_g^{*,\lambda''}\right)^2(\xi_k) \frac{h_k
v_k^2}{\mathbb{E}v^2|\xi = \xi_k]}\right) h_k\\
& = \lambda g(0) \sum_{k \in
\kappa}\left(\left(f_g^{*,\lambda''}\right)^2(\xi_k)\frac{v_k^2}{g_\xi(\xi_k)\mathbb{E}
[v^2|\xi=\xi_k]}\right)h_k.
\end{align*}
By using Lemma~\ref{lem} with $\phi(x,y) =
\left(f_g^{*,\lambda''}\right)^2(x)\frac{y^2}{g_\xi(\xi)\mathbb{E}[v^2|\xi=y]}$
this converges to
\begin{align*}
&\plimn \tilde{\lambda}\norm{\tilde{w}}_2^2 = \\
&=\lambda
g_\xi(0)\mathbb{E}[v^2|\xi=0]\int_{\supp{g_\xi}}\mathbb{E}\left[
\left(f_g^{*,\lambda''}\right)^2(\xi)\frac{v^2}{
g_\xi(\xi)\mathbb{E}[v^2|\xi=x]^2}\Big{|} \xi = x\right]dx\\
&=\lambda g_\xi(0) \mathbb{E}[v^2|\xi=0] \int_{\supp{g_xi}}
\frac{\left(f_g^{*,\lambda''}\right)^2 (x)}{g_\xi(x)
\mathbb{E}[v^2|\xi=x]} dx \\
&=\lambda g(0) \int_{\supp{g_\xi}} \frac{\left(f_g^{*,\lambda''}\right)^2}{g(x)}dx.
\end{align*}
\end{Proof}
\begin{Lemma}[Heiss, Teichmann, and
Wutte (2019, Lemma A.13)]
Using the notation of Definition .. and ... the following statement
holds:
$\forall \varepsilon \in \mathbb{R}_{>0} : \exists \delta \in
\mathbb{R}_{>0} : \forall \omega \in \Omega : \forall l, l' \in
\left\{1,\dots,N\right\} : \forall n \in \mathbb{N}$
\[
\left(\abs{\xi_l(\omega) - \xi_{l'}(\omega)} < \delta \angle
\text{sign}(v_l(\omega)) = \text{sign}(v_{l'}(\omega))\right)
\implies \abs{\frac{w_l^{*, \tilde{\lambda}}(\omega)}{v_l(\omega)}
- \frac{w_{l'}^{*, \tilde{\lambda}}(\omega)}{v_{l'}(\omega)}} <
\frac{\varepsilon}{n},
\]
if we assume that $v_k$ is never zero.
\proof given in ..
\end{Lemma}
\input{Appendix_code.tex}
\end{appendices}

@ -239,7 +239,7 @@ series = {ICISDM '18}
title = {Random Erasing Data Augmentation},
journal = {CoRR},
volume = {abs/1708.04896},
year = {2017},
year = 2017,
url = {http://arxiv.org/abs/1708.04896},
archivePrefix = {arXiv},
eprint = {1708.04896},
@ -247,3 +247,42 @@ series = {ICISDM '18}
biburl = {https://dblp.org/rec/journals/corr/abs-1708-04896.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@misc{draw_convnet,
title = {Python script for illustrating Convolutional Neural Network (ConvNet)},
howpublished = {\url{https://github.com/gwding/draw_convnet}},
note = {Accessed: 30.08.2020},
author = {Gavin Weiguang Ding},
year = {2018}
}
@book{Haykin,
added-at = {2009-06-26T15:25:19.000+0200},
author = {Haykin, Simon},
note = {2nd edition},
publisher = {Prentice Hall},
title = {Neural Networks: {A} Comprehensive Foundation},
year = 1999
}
@book{Goodfellow,
title={Deep Learning},
author={Ian Goodfellow and Yoshua Bengio and Aaron Courville},
publisher={MIT Press},
note={\url{http://www.deeplearningbook.org}},
year=2016
}
@article{ruder,
author = {Sebastian Ruder},
title = {An overview of gradient descent optimization algorithms},
journal = {CoRR},
volume = {abs/1609.04747},
year = {2016},
url = {http://arxiv.org/abs/1609.04747},
archivePrefix = {arXiv},
eprint = {1609.04747},
timestamp = {Mon, 13 Aug 2018 16:48:10 +0200},
biburl = {https://dblp.org/rec/journals/corr/Ruder16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}

@ -1,5 +1,7 @@
\section{Application of NN to higher complexity Problems}
This section is based on \textcite[Chapter~9]{Goodfellow}
As neural networks are applied to problems of higher complexity often
resulting in higher dimensionality of the input the amount of
parameters in the network rises drastically.
@ -7,8 +9,7 @@ For very large inputs such as high resolution image data due to the
fully connected nature of the neural network the amount of parameters
can ... exceed the amount that is feasible for training and storage.
A way to combat this is by using layers which are only sparsely
connected and share parameters between nodes. This can be implemented
using convolution.\todo{Überleitung besser schreiben}
connected and share parameters between nodes.\todo{Überleitung zu conv?}
\subsection{Convolution}
@ -27,13 +28,13 @@ The convolution operation allows plentiful manipulation of data, with
a simple example being smoothing of real-time data. Consider a sensor
measuring the location of an object (e.g. via GPS). We expect the
output of the sensor to be noisy as a result of a number of factors
that will impact the accuracy. In order to get a better estimate of
will impact the accuracy of the measurements. In order to get a better estimate of
the actual location we want to smooth
the data to reduce the noise. Using convolution for this task, we
can control the significance we want to give each data-point. We
might want to give a larger weight to more recent measurements than
older ones. If we assume these measurements are taken on a discrete
timescale, we need to introduce discrete convolution first. \\Let $f$,
timescale, we need to define convolution for discrete functions. \\Let $f$,
$g: \mathbb{Z} \to \mathbb{R}$ then
\[
@ -59,7 +60,7 @@ by each pixel being a mixture of base colors. These base colors define
the color-space in which the image is encoded. Often used are
color-spaces RGB (red,
blue, green) or CMYK (cyan, magenta, yellow, black). An example of an
image split in its red, green and blue channel is given in
image decomposed in its red, green and blue channel is given in
Figure~\ref{fig:rgb}. Using this
encoding of the image we can define a corresponding discrete function
describing the image, by mapping the coordinates $(x,y)$ of an pixel
@ -108,13 +109,14 @@ convolution
(I * g)_{x,y,c} = \sum_{i,j,l \in \mathbb{Z}} I_{x-i,y-j,c-l} g_{i,j,l}.
\]
As images are finite in size for pixels close enough to the border
that the filter ... the convolution is not well defined. In such cases
padding can be used. With padding the image is enlarged beyond .. with
0 entries to
ensure the convolution is well defined for all pixels. If no padding
is used the size of the output is reduced to \textit{size of input -
size of kernel +1} in each dimension.
As images are finite in size for pixels to close to the border the
convolution is not well defined.
Thus the output will be of reduced size, with the now size in each
dimension $d$ being \textit{(size of input in dimension $d$) -
(size of kernel in dimension $d$) +1}.
In order to ensure the output is of the same size as the input the
image can be padded in each dimension with 0 entries which ensures the
convolution is well defined for all pixels of the image.
Simple examples for image manipulation using
convolution are smoothing operations or
@ -147,8 +149,8 @@ output is given by
O = \sqrt{(I * G)^2 + (I*G^T)^2}
\]
where $\sqrt{\cdot}$ and $\cdot^2$ are applied component
wise. Examples of convolution with both kernels are given in Figure~\ref{fig:img_conv}.
\todo{padding}
wise. Examples for convolution of an image with both kernels are given
in Figure~\ref{fig:img_conv}.
\begin{figure}[h]
@ -222,65 +224,114 @@ As seen in the previous section convolution can lend itself to
manipulation of images or other large data which motivates it usage in
neural networks.
This is achieved by implementing convolutional layers where several
filters are applied to the input. Where the values of the filters are
trainable parameters of the model.
trainable filters are applied to the input.
Each node in such a layer corresponds to a pixel of the output of
convolution with one of those filters on which a bias and activation
convolution with one of those filters, on which a bias and activation
function are applied.
Depending on the sizes this can drastically reduce the amount of
variables in a layer compared to fully connected ones.
As the variables of the filters are shared among all nodes a
convolutional layer with input of size $s_i$, output size $s_o$ and
$n$ filters of size $f$ will contain $n f + s_o$ parameters whereas a
fully connected layer has $(s_i + 1) s_o$ trainable weights.
The usage of multiple filters results in multiple outputs of the same
size as the input. These are often called channels. Depending on the
size of the filters this can result in the dimension of the output
being one larger than the input.
However for convolutional layers that are preceded by convolutional layers the
size as the input (or slightly smaller if no padding is used). These
are often called channels.
For convolutional layers that are preceded by convolutional layers the
size of the filter is often chosen to coincide with the amount of channels
of the output of the previous layer without using padding in this
direction in order to prevent gaining additional
of the output of the previous layer and not padded in this
direction.
This results in the channels ``being squashed'' and prevents gaining
additional
dimensions\todo{filter mit ganzer tiefe besser erklären} in the output.
This can also be used to flatten certain less interesting channels of
the input as for example a color channels.
Thus filters used in convolutional networks are usually have the same
amount of dimensions as the input or one more.
The size of the filters and the way they are applied can be tuned
while building the model should be the same for all filters in one
layer in order for the output being of consistent size in all channels.
It is common to reduce the d< by not applying the
filters on each ``pixel'' but rather specify a ``stride'' $s$ at which
the filter $g$ is moved over the input $I$
the input as for example color channels.
% Thus filters used in convolutional networks are usually have the same
% amount of dimensions as the input or one more.
A way additionally reduce the size using convolution is not applying the
convolution on every pixel, but rather specifying a certain ``stride''
$s$ at which the filter $g$ is moved over the input $I$,
\[
O_{x,y,c} = \sum_{i,j,l \in \mathbb{Z}} I_{x-i,y-j,c-l} g_{i,j,l}.
\]
As seen convolution lends itself for image manipulation. In this
chapter we will explore how we can incorporate convolution in neural
networks, and how that might be beneficial.
Convolutional Neural Networks as described by ... are made up of
convolutional layers, pooling layers, and fully connected ones. The
fully connected layers are layers in which each input node is
connected to each output node which is the structure introduced in
chapter ...
In a convolutional layer instead of combining all input nodes for each
output node, the input nodes are interpreted as a tensor on which a
kernel is applied via convolution, resulting in the output. Most often
multiple kernels are used, resulting in multiple output tensors. These
kernels are the variables, which can be altered in order to fit the
model to the data. Using multiple kernels it is possible to extract
different features from the image (e.g. edges -> sobel). As this
increases dimensionality even further which is undesirable as it
increases the amount of variables in later layers of the model, a convolutional layer
is often followed by a pooling one. In a pooling layer the input is
The size and stride for all filters in a layer should be the same in
order to get a uniform tensor as output.
T% he size of the filters and the way they are applied can be tuned
% while building the model should be the same for all filters in one
% layer in order for the output being of consistent size in all channels.
% It is common to reduce the d< by not applying the
% filters on each ``pixel'' but rather specify a ``stride'' $s$ at which
% the filter $g$ is moved over the input $I$
% \[
% O_{x,y,c} = \sum_{i,j,l \in \mathbb{Z}} I_{x-i,y-j,c-l} g_{i,j,l}.
% \]
% As seen convolution lends itself for image manipulation. In this
% chapter we will explore how we can incorporate convolution in neural
% networks, and how that might be beneficial.
% Convolutional Neural Networks as described by ... are made up of
% convolutional layers, pooling layers, and fully connected ones. The
% fully connected layers are layers in which each input node is
% connected to each output node which is the structure introduced in
% chapter ...
% In a convolutional layer instead of combining all input nodes for each
% output node, the input nodes are interpreted as a tensor on which a
% kernel is applied via convolution, resulting in the output. Most often
% multiple kernels are used, resulting in multiple output tensors. These
% kernels are the variables, which can be altered in order to fit the
% model to the data. Using multiple kernels it is possible to extract
% different features from the image (e.g. edges -> sobel).
In order to further reduce the size towards the final layer, convolutional
layers are often followed by a pooling layer.
In a pooling layer the input is
reduced in size by extracting a single value from a
neighborhood \todo{moving...}... . The resulting output size is dependent on
the offset of the neighborhoods used. Popular is max-pooling where the
largest value in a neighborhood is used or.
\todo{kleine grafik}
neighborhood of pixels, often by taking the maximum value in the
neighborhood (max-pooling). The resulting output size is dependent on
the offset of the neighborhoods used, this offset is commonly called
``stride''\todo{zwei mal stride}.
The combination of convolution and pooling layers allows for
extraction of features from the input in the from of feature maps while
using relatively few parameters that need to be trained.
\todo{Beispiel feature maps}
A example of this is given in Figure~\ref{fig:feature_map} where
intermediary outputs of a small convoluninal neural network consisting
of two convolutional and pooling layers each with one filter followed
by two fully connected layers.
\begin{figure}[h]
\centering
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Figures/Data/mnist0bw.pdf}
\caption{input}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Figures/Data/conv2d_6.pdf}
\caption{convolution}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Figures/Data/max_pooling2d_6.pdf}
\caption{max-pool}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Figures/Data/conv2d_7.pdf}
\caption{convolution}
\end{subfigure}
\begin{subfigure}{0.19\textwidth}
\includegraphics[width=\textwidth]{Figures/Data/max_pooling2d_7.pdf}
\caption{max-pool}
\end{subfigure}
\caption[Feature map]{Intermediary outputs of a
convolutional neural network, starting with the input and ending
with the corresponding feature map.}
\label{fig:feature_map}
\end{figure}
\subsubsection{Parallels to the Visual Cortex in Mammals}
@ -295,7 +346,6 @@ arbitrary. ... auge... bla bla
% -Different scale of gradients for vars in different layers -> ADAdelta
\subsection{Stochastic Training Algorithms}
For many applications in which neural networks are used such as
image classification or segmentation, large training data sets become
detrimental to capture the nuances of the
@ -303,20 +353,21 @@ data. However as training sets get larger the memory requirement
during training grows with it.
In order to update the weights with the gradient descent algorithm
derivatives of the network with respect for each
variable need to be calculated for all data points in order to get the
full gradient of the error of the network.
variable need to be computed for all data points.
Thus the amount of memory and computing power available limits the
size of the training data that can be efficiently used in fitting the
network. A class of algorithms that augment the gradient descent
algorithm in order to lessen this problem are stochastic gradient
descent algorithms. Here the premise is that instead of using the whole
dataset a (different) subset of data is chosen to
compute the gradient in each iteration (Algorithm~\ref{alg:sdg}).
The training period until each data point has been considered in
descent algorithms.
Here the full dataset is split into smaller disjoint subsets.
Then in each iteration a (different) subset of data is chosen to
compute the gradient (Algorithm~\ref{alg:sdg}).
The training period until each data point has been considered at least
once in
updating the parameters is commonly called an ``epoch''.
Using subsets reduces the amount of memory and computing power required for
each iteration. This makes it possible to use very large training
sets to fit the model.
Using subsets reduces the amount of memory required for storing the
necessary values for each update, thus making it possible to use very
large training sets to fit the model.
Additionally the noise introduced on the gradient can improve
the accuracy of the fit as stochastic gradient descent algorithms are
less likely to get stuck on local extrema.
@ -353,7 +404,7 @@ mount of training time.
\end{algorithm}
In order to illustrate this behavior we modeled a convolutional neural
network to ... handwritten digits. The data set used for this is the
network to classify handwritten digits. The data set used for this is the
MNIST database of handwritten digits (\textcite{MNIST},
Figure~\ref{fig:MNIST}).
\input{Figures/mnist.tex}
@ -364,15 +415,17 @@ applied with a stride of one.
The first layer consists of 32 filters and the second of 64. Both
pooling layers pool a $2\times 2$ area. The fully connected layer
consists of 256 nodes and the output layer of 10, one for each digit.
All layers except the output layer use RELU as activation function
with the output layer using softmax (\ref{def:softmax}).
As loss function categorical crossentropy is used (\ref{def:...}).
All layers use RELU as activation function, except the output layer
with the output layer which uses softmax (\ref{def:softmax}).
As loss function categorical crossentropy is used (\ref{eq:cross_entropy}).
The architecture of the convolutional neural network is summarized in
Figure~\ref{fig:mnist_architecture}.
\begin{figure}
\includegraphics[width=\textwidth]{Figures/Data/convnet_fig.pdf}
\caption{architecture}
\caption{Convolutional neural network architecture used to model the
MNIST handwritten digits dataset. This figure was created using the
draw\textunderscore convnet Python script by \textcite{draw_convnet}.}
\label{fig:mnist_architecture}
\end{figure}
@ -387,7 +440,7 @@ with gradient descent after 20 epochs.
This is due to the former using a batch size of 32 and thus having
made 1.875 updates to the weights
after the first epoch in comparison to one update. While each of
these updates uses a approximate
these updates only use a approximate
gradient calculated on the subset it performs far better than the
network using true gradients when training for the same mount of time.
\todo{vergleich training time}
@ -395,6 +448,8 @@ network using true gradients when training for the same mount of time.
\input{Figures/SGD_vs_GD.tex}
\clearpage
\subsection{\titlecap{modified stochastic gradient descent}}
This section is based on \textcite{ruder}.
An inherent problem of the stochastic gradient descent algorithm is
its sensitivity to the learning rate $\gamma$. This results in the
problem of having to find a appropriate learning rate for each problem
@ -606,12 +661,6 @@ global learning rate. This results in .. hyperparameters, however the
algorithms seems to be exceptionally stable with the recommended
parameters of ... and is a very reliable algorithm for training
neural networks.
However the \textsc{Adam} algorithm can have problems with high
variance of the adaptive learning rate early in training.
\textcite{rADAM} try to address these issues with the Rectified Adam
algorithm
\todo{will ich das einbauen?}
\begin{algorithm}[H]
\SetAlgoLined
@ -662,7 +711,7 @@ the other algorithms, with AdaGrad and Adelta following... bla bla
% strategies exist. A popular approach in regularizing convolutional neural network
% is \textit{dropout} which has been first introduced in
% \cite{Dropout}
This section is based on ....
Similarly to shallow networks overfitting still can impact the quality of
convolutional neural networks.
Popular ways to combat this problem for a .. of models is averaging
@ -748,7 +797,7 @@ same or else the network will not learn the desired ...
In the case of handwritten digits for example a to high rotation angle
will ... a nine or six.
The most common transformations are rotation, zoom, shear, brightness,
mirroring.
mirroring. Examples of this are given in Figure~\ref{fig:datagen}.
\begin{figure}[h]
\centering
@ -775,6 +824,7 @@ mirroring.
\caption[Image data generation]{Example for the manipuations used in ... As all images are
of the same intensity brightness manipulation does not seem
... Additionally mirroring is not used for ... reasons.}
\label{fig:datagen}
\end{figure}
In order to compare the benefits obtained from implementing these
@ -824,31 +874,31 @@ zalando, a overview is given in Figure~\ref{fig:fashionMNIST}.
\begin{minipage}{\textwidth}
\small
\begin{tabu} to \textwidth {@{}l*4{X[c]}@{}}
\Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\
\Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\
&
\multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\
\cline{2-5}
max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\
min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\
mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\
var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\
max \Tstrut & 0.5633 & 0.5312 & \textbf{0.6704} & 0.6604 \\
min & 0.3230 & 0.4224 & 0.4878 & \textbf{0.5175} \\
mean & 0.4570 & 0.4714 & 0.5862 & \textbf{0.6014} \\
var \Bstrut & 0.0040 & \textbf{0.0012} & 0.0036 & 0.0023 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\
&
\multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\
\cline{2-5}
max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\
min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\
mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\
var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\
max \Tstrut & 0.8585 & 0.9423 & 0.9310 & \textbf{0.9441} \\
min & 0.8148 & \textbf{0.9081} & 0.9018 & 0.9061 \\
mean & 0.8377 & \textbf{0.9270} & 0.9185 & 0.9232 \\
var \Bstrut & 2.7e-04 & 1.3e-04 & 6e-05 & 1.5e-04 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\
&
\multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\
\cline{2-5}
max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\
min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\
mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\
var & 2e-05 & 1e-05 & 1e-05 & 0 \\
max \Tstrut & 0.9637 & 0.9796 & 0.9810 & \textbf{0.9811} \\
min & 0.9506 & 0.9719 & 0.9702 & \textbf{0.9727} \\
mean & 0.9582 & 0.9770 & 0.9769 & \textbf{0.9783} \\
var \Bstrut & 2e-05 & 1e-05 & 1e-05 & 1e-05 \\
\hline
\end{tabu}
\normalsize
@ -857,40 +907,42 @@ zalando, a overview is given in Figure~\ref{fig:fashionMNIST}.
on random MNIST handwriting training sets containing 1, 10 and 100
data points per class after 125 epochs. The mean achieved accuracy
for the full set employing both overfitting measures is }
\label{table:digitsOF}
\small
\centering
\begin{tabu} to \textwidth {@{}l*4{X[c]}@{}}
\Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\
\Tstrut \Bstrut & \textsc{Adam} & D. 0.2 & Gen & Gen.+D. 0.2 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\
&
\multicolumn{4}{c}{\titlecap{test accuracy for 1 sample}}\Bstrut \\
\cline{2-5}
max \Tstrut & 0.5633 & 0.5312 & 0.6704 & 0.6604 \\
min & 0.3230 & 0.4224 & 0.4878 & 0.5175 \\
mean & 0.4570 & 0.4714 & 0.5862 & 0.6014 \\
var & 0.0040 & 0.0012 & 0.0036 & 0.0023 \\
max \Tstrut & 0.4885 & \textbf{0.5613} & 0.5488 & 0.5475 \\
min & 0.3710 & \textbf{0.3858} & 0.3736 & 0.3816 \\
mean \Bstrut & 0.4166 & 0.4838 & 0.4769 & \textbf{0.4957} \\
var & \textbf{0.002} & 0.00294 & 0.00338 & 0.0030 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\
&
\multicolumn{4}{c}{\titlecap{test accuracy for 10 samples}}\Bstrut \\
\cline{2-5}
max \Tstrut & 0.8585 & 0.9423 & 0.9310 & 0.9441 \\
min & 0.8148 & 0.9081 & 0.9018 & 0.9061 \\
mean & 0.8377 & 0.9270 & 0.9185 & 0.9232 \\
var & 2.7e-4 & 1.3e-4 & 6e-05 & 1.5e-4 \\
max \Tstrut & 0.7370 & 0.7340 & 0.7236 & \textbf{0.7502} \\
min & 0.6818 & 0.6673 & 0.6709 & \textbf{0.6799} \\
mean & 0.7130 & \textbf{0.7156} & 0.7031 & 0.7136 \\
var \Bstrut & 3.2e-04 & 3.4e-04 & 3.2e-04 & 4.5e-04 \\
\hline
&
\multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\
&
\multicolumn{4}{c}{\titlecap{test accuracy for 100 samples}}\Bstrut \\
\cline{2-5}
max & 0.9637 & 0.9796 & 0.9810 & 0.9805 \\
min & 0.9506 & 0.9719 & 0.9702 & 0.9727 \\
mean & 0.9582 & 0.9770 & 0.9769 & 0.9783 \\
var & 2e-05 & 1e-05 & 1e-05 & 0 \\
max \Tstrut & 0.8454 & 0.8385 & 0.8456 & \textbf{0.8459} \\
min & 0.8227 & 0.8200 & \textbf{0.8305} & 0.8274 \\
mean & 0.8331 & 0.8289 & 0.8391 & \textbf{0.8409} \\
var \Bstrut & 4e-05 & 4e-05 & 2e-05 & 3e-05 \\
\hline
\end{tabu}
\normalsize
\captionof{table}{Values of the test accuracy of the model trained 10 times
on random fashion MNIST training sets containing 1, 10 and 100 data points per
class. The mean achieved accuracy for the full dataset is: ....}
\label{table:fashionOF}
\end{minipage}
\clearpage % if needed/desired
}
@ -908,26 +960,36 @@ This is done in order to have more ... in order to better ... the data
in the model. A diagram of the architecture is given in
Figure~\ref{fig:fashion_MNIST}.
For both scenarios the model are trained 10 times on randomly
... training sets. Additionally models of the same architecture where
a dropout layer with a ... 20\% is implemented and/or datageneration
is used to augment the data during training. The values for the
datageneration are given in CODE APPENDIX.
The models are trained for 125 epoch to ensure enough random
augmentations of the input images are considered to ensure
convergence. The test accuracies of the models after training for 125
epoch are given in Figure~\ref{...} for the handwriting
and in Figure~\ref{...} for the fashion scenario. Additionally the
average test accuracies of the models are given for each epoch in
Figure ... and Figure...
\afterpage{
\noindent
\begin{figure}[h]
\includegraphics[width=\textwidth]{Figures/Data/cnn_fashion_fig.pdf}
\caption{Convolutional neural network architecture used to model the
fashion MNIST dataset. This figure was created using the
draw\textunderscore convnet Python script by \textcite{draw_convnet}.}
\label{fig:fashion_MNIST}
\end{figure}
}
\begin{figure}
\includegraphics[width=\textwidth]{Figures/Data/cnn_fashion_fig.pdf}
\caption{Convolutional neural network architecture used to model the
fashion MNIST dataset.}
\label{fig:mnist_architecture}
\end{figure}
For both scenarios the models are trained 10 times on randomly
sampled training sets.
For each scenario the models are trained without overfitting measures and combinations
of dropout and datageneration implemented. The Python implementation
of the models and the parameters used for the datageneration are given
in Listing~\ref{lst:handwriting} for the handwriting model and
Listing~\ref{lst:fashion} for the fashion model.
The models are trained for 125 epoch in order
to have enough random
augmentations of the input images present during training
for the networks to fully profit of the additional training data generated.
The test accuracies of the models after
training for 125
epochs are given in Table~\ref{table:digitsOF} for the handwritten digits
and in Table~\ref{table:fashionOF} for the fashion datasets. Additionally the
average test accuracies over the course of learning are given in
Figure~\ref{fig:plotOF_digits} for the handwriting application and Figure~\ref{fig:plotOF_fashion} for the
fashion application.
\begin{figure}[h]
\centering
@ -937,7 +999,7 @@ Figure ... and Figure...
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
ylabel = {Test Accuracy}, cycle
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
list/Dark2, every axis plot/.append style={line width
=1.25pt}]
\addplot table
@ -970,7 +1032,7 @@ Figure ... and Figure...
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
ylabel = {Test Accuracy}, cycle
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
list/Dark2, every axis plot/.append style={line width
=1.25pt}]
\addplot table
@ -1025,18 +1087,143 @@ Figure ... and Figure...
\caption{100 samples per class}
\vspace{.25cm}
\end{subfigure}
\caption{}
\label{fig:MNISTfashion}
\caption{Mean test accuracies of the models fitting the sampled MNIST
handwriting datasets over the 125 epochs of training.}
\label{fig:plotOF_digits}
\end{figure}
\begin{figure}[h]
\centering
\missingfigure{datagen fashion}
\caption{Sample pictures of the mnist fashion dataset, one per
class.}
\label{mnist fashion}
\small
\begin{subfigure}[h]{\textwidth}
\begin{tikzpicture}
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
/pgf/number format/precision=3},tick style =
{draw = none}, width = \textwidth,
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
list/Dark2, every axis plot/.append style={line width
=1.25pt}]
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_dropout_0_1.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_dropout_2_1.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_datagen_dropout_0_1.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_datagen_dropout_2_1.mean};
\addlegendentry{\footnotesize{Default}}
\addlegendentry{\footnotesize{D. 0.2}}
\addlegendentry{\footnotesize{G.}}
\addlegendentry{\footnotesize{G. + D. 0.2}}
\addlegendentry{\footnotesize{D. 0.4}}
\end{axis}
\end{tikzpicture}
\caption{1 sample per class}
\vspace{0.25cm}
\end{subfigure}
\begin{subfigure}[h]{\textwidth}
\begin{tikzpicture}
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
list/Dark2, every axis plot/.append style={line width
=1.25pt}, ymin = {0.62}]
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_dropout_0_10.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_dropout_2_10.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_datagen_dropout_0_10.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_datagen_dropout_2_10.mean};
\addlegendentry{\footnotesize{Default.}}
\addlegendentry{\footnotesize{D. 0.2}}
\addlegendentry{\footnotesize{G.}}
\addlegendentry{\footnotesize{G + D. 0.2}}
\end{axis}
\end{tikzpicture}
\caption{10 samples per class}
\end{subfigure}
\begin{subfigure}[h]{\textwidth}
\begin{tikzpicture}
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
height = 0.35\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
list/Dark2, every axis plot/.append style={line width
=1.25pt}, ymin = {0.762}]
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_dropout_0_100.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_dropout_2_100.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_datagen_dropout_0_100.mean};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
{Figures/Data/fashion_datagen_dropout_2_100.mean};
\addlegendentry{\footnotesize{Default.}}
\addlegendentry{\footnotesize{D. 0.2}}
\addlegendentry{\footnotesize{G.}}
\addlegendentry{\footnotesize{G + D. 0.2}}
\end{axis}
\end{tikzpicture}
\caption{100 samples per class}
\vspace{.25cm}
\end{subfigure}
\caption{Mean test accuracies of the models fitting the sampled MNIST
handwriting datasets over the 125 epochs of training.}
\label{fig:plotOF_fashion}
\end{figure}
It can be seen in ... and ... that the usage of .. overfitting
measures greatly improves the accuracy for small datasets. However for
the smallest size of one datapoint per class generating more data
... outperforms dropout with only a ... improvment being seen by the
implementation of dropout whereas datageneration improves the accuracy
by... . On the other hand the implementation of dropout seems to
reduce the variance in the model accuracy, as the variance in accuracy
for the dropout model is less than .. while the variance of the
datagen .. model is nearly the same. The model with datageneration
... a reduction in variance with the addition of dropout.
For the slightly larger training sets of ten samples per class the
difference between the two measures seems smaller. Here the
improvement in accuracy
seen by dropout is slightly larger than the one of
datageneration. However for the larger sized training set the variance
in test accuracies is lower for the model with datageneration than the
one with dropout.
The results for the training sets with 100 samples per class resemble
the ones for the sets with 10 per class.
Overall the models ... both measures to combat overfitting seem to
perform considerably well compared to the ones without. The usage of
these measures has great potential in improving models used for
applications with limited training data. Additional tables and figures
visualizing the effects on the logarithmic corssentropy rather than
loss are given in the appendix\todo{figs für appendix}
\clearpage
\section{Schluss}
@ -1044,7 +1231,12 @@ Figure ... and Figure...
\item generate more data, GAN etc \textcite{gan}
\item Transfer learning, use network trained on different task and
repurpose it / train it with the training data \textcite{transfer_learning}
\item random erasing fashion mnist 96.35\% accuracy \textcite{random_erasing}
\item random erasing fashion mnist 96.35\% accuracy
\textcite{random_erasing}
\item However the \textsc{Adam} algorithm can have problems with high
variance of the adaptive learning rate early in training.
\textcite{rADAM} try to address these issues with the Rectified Adam
algorithm
\end{itemize}

@ -1,19 +1,23 @@
\section{Introduction to Neural Networks}
This chapter is based on \textcite[Chapter~6]{Goodfellow} and \textcite{Haykin}.
Neural Networks (NN) are a mathematical construct inspired by the
... of brains in mammals. It consists of an array of neurons that
receive inputs and compute a accumulated output. These neurons are
arranged in layers, with one input and output layer and a arbirtary
structure of brains in mammals. It consists of an array of neurons that
receive inputs and compute an accumulated output. These neurons are
arranged in layers, with one input and output layer
and a arbirtary
amount of hidden layer between them.
The amount of neurons in the in- and output layers correspond to the
desired dimensions of in- and outputs of the model.
In conventional neural networks the information is passed ... from the
In conventional neural networks the information is fed forward from the
input layer towards the output layer hence they are often called feed
forward networks. Each neuron in a layer has the outputs of all
neurons in the preceding layer as input (fully connected). A
illustration of a example neuronal network is given in
Figure~\ref{fig:nn} and one of a neuron in Figure~\ref{fig:neuron}
neurons in the preceding layer as input and computes a accumulated
value from these (fully connected). A
illustration of an example neuronal network is given in
Figure~\ref{fig:nn} and one of a neuron in Figure~\ref{fig:neuron}.
\tikzset{%
every neuron/.style={
@ -39,16 +43,16 @@ Figure~\ref{fig:nn} and one of a neuron in Figure~\ref{fig:neuron}
{\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
\foreach \m/\l [count=\y] in {1,2,3,missing,4}
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,2.5-\y) {};
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,2.55-\y*0.85) {};
\foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (hidden1-\m) at (2,2-\y*1.25) {};
\node [every neuron/.try, neuron \m/.try ] (hidden1-\m) at (2.5,2.5-\y*1.25) {};
\foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (hidden2-\m) at (5,2-\y*1.25) {};
\node [every neuron/.try, neuron \m/.try ] (hidden2-\m) at (5,2.5-\y*1.25) {};
\foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (7,1.5-\y) {};
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (7,1.5-\y*0.75) {};
\foreach \l [count=\i] in {1,2,3,d_i}
\draw [myptr] (input-\i)+(-1,0) -- (input-\i)
@ -96,20 +100,20 @@ Figure~\ref{fig:nn} and one of a neuron in Figure~\ref{fig:neuron}
The arguably most important feature of neural networks that sets them
apart from linear models is the activation function implemented in the
neurons. As seen in Figure~\ref{fig:neuron} on the weighted sum of the
inputs a activation function $\sigma$ is applied in order to obtain
the output resulting in the output of the $k$-th. neuron in a layer
inputs a activation function $\sigma$ is applied resulting in the
output of the $k$-th neuron in a layer $l$
being given by
\[
o_k = \sigma\left(b_k + \sum_{j=1}^m w_{k,j} i_j\right)
o_{l,k} = \sigma\left(b_{l,k} + \sum_{j=1}^m w_{l,k,j} o_{l-1,j}\right)
\]
for weights $w_{k,j}$ and biases $b_k$.
for weights $w_{l,k,j}$ and biases $b_{l,k}$.
The activation function is usually chosen nonlinear (a linear one
would result in the entire model collapsing into a linear one\todo{beweis?}) which
allows it to better model data where the relation of in- and output is
of nonlinear nature.
There are two types of activation functions, saturating and not
saturating ones. Popular examples for the former are sigmoid
functions where most commonly the standard logisitc function or tangen
functions where most commonly the standard logisitc function or tangens
hyperbolicus are used
as they have easy to compute derivatives which is desirable for gradient
based optimization algorithms. The standard logistic function (often
@ -119,25 +123,26 @@ referred to simply as sigmoid function) is given by
\]
and has a realm of $[0,1]$. Its usage as an activation function is
motivated by modeling neurons which
are close to deactive until a certain threshold where they grow in
are close to deactive until a certain threshold is hit and then grow in
intensity until they are fully
active, which is similar to the behavior of neurons in
active. This is similar to the behavior of neurons in
brains\todo{besser schreiben}. The tangens hyperbolicus is given by
\[
\tanh(x) = \frac{2}{e^{2x}+1}
\]
and has a realm of $[-1,1]$.
The downside of these saturating activation functions is that given
their saturating nature their derivatives are close to zero for large or small
input values which can slow or hinder the progress of gradient based methods.
input values. This can slow or hinder the progress of gradient based methods.
The nonsaturating activation functions commonly used are the recified
linear using (ReLU) or the leaky RelU. The ReLU is given by
linear unit (ReLU) or the leaky ReLU. The ReLU is given by
\[
r(x) = \max\left\{0, x\right\}.
\]
This has the benefit of having a constant derivative for values larger
than zero. However the derivative being zero has the same downside for
than zero. However the derivative being zero for negative values has
the same downside for
fitting the model with gradient based methods. The leaky ReLU is
an attempt to counteract this problem by assigning a small constant
derivative to all values smaller than zero and for scalar $\alpha$ is given by
@ -146,50 +151,6 @@ derivative to all values smaller than zero and for scalar $\alpha$ is given by
\]
In order to illustrate these functions plots of them are given in Figure~\ref{fig:activation}.
\begin{figure}
\centering
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, ymin=0, ymax = 1, width=\textwidth]
\addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
\end{axis}
\end{tikzpicture}
\caption{\titlecap{standard logistic function}}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth]
\addplot[domain=-5:5, samples=100]{tanh(x)};
\end{axis}
\end{tikzpicture}
\caption{\titlecap{tangens hyperbolicus}}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth,
ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1]
\addplot[domain=-5:5, samples=100]{max(0,x)};
\end{axis}
\end{tikzpicture}
\caption{ReLU}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1,
ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}]
\addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)};
\end{axis}
\end{tikzpicture}
\caption{Leaky ReLU, $\alpha = 0.1$}
\end{subfigure}
\caption{Plots of the activation functions}
\label{fig:activation}
\end{figure}
\begin{figure}
\begin{tikzpicture}[x=1.5cm, y=1.5cm, >=stealth]
@ -278,11 +239,56 @@ In order to illustrate these functions plots of them are given in Figure~\ref{fi
\label{fig:neuron}
\end{figure}
\begin{figure}
\centering
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, ymin=0, ymax = 1, width=\textwidth]
\addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
\end{axis}
\end{tikzpicture}
\caption{\titlecap{standard logistic function}}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth]
\addplot[domain=-5:5, samples=100]{tanh(x)};
\end{axis}
\end{tikzpicture}
\caption{\titlecap{tangens hyperbolicus}}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth,
ytick={0,2,4},yticklabels={\hphantom{4.}0,2,4}, ymin=-1]
\addplot[domain=-5:5, samples=100]{max(0,x)};
\end{axis}
\end{tikzpicture}
\caption{ReLU}
\end{subfigure}
\begin{subfigure}{.45\linewidth}
\centering
\begin{tikzpicture}
\begin{axis}[enlargelimits=false, width=\textwidth, ymin=-1,
ytick={0,2,4},yticklabels={$\hphantom{-5.}0$,2,4}]
\addplot[domain=-5:5, samples=100]{max(0,x)+ 0.1*min(0,x)};
\end{axis}
\end{tikzpicture}
\caption{Leaky ReLU, $\alpha = 0.1$}
\end{subfigure}
\caption{Plots of the activation functions}
\label{fig:activation}
\end{figure}
\clearpage
\subsection{Training Neural Networks}
As neural networks are a PARAMETRIC model we need to fit it to input
data in order to get meaningfull OUTPUT from the network in order to
As neural networks are a parametric model we need to fit the
parameters to the input
data in order to get meaningful results from the network. To be able
do this we first need to discuss how we interpret the output of the
neural network.
@ -304,7 +310,7 @@ neural network.
\subsubsection{\titlecap{nonliniarity in last layer}}
Given the nature of the neural net the output of the last layer are
Given the nature of the neural net the outputs of the last layer are
real numbers. For regression tasks this is desirable, for
classification problems however some transformations might be
necessary.
@ -382,8 +388,9 @@ the first class and $1-f(x)$ for the second class.
\subsubsection{Error Measurement}
In order to make assessment about the quality of a network $\mathcal{NN}$ and train
it we need to discuss how we measure error. The choice of the error
In order to train the network we need to be able to make an assessment
about the quality of predictions using some error measure.
The choice of the error
function is highly dependent on the type of the problem. For
regression problems a commonly used error measure is the mean squared
error (MSE)
@ -391,10 +398,9 @@ which for a function $f$ and data $(x_i,y_i), i=1,\dots,n$ is given by
\[
MSE(f) = \frac{1}{n} \sum_i^n \left(f(x_i) - y_i\right)^2.
\]
However depending on the problem error measures with differnt
However depending on the problem error measures with different
properties might be needed, for example in some contexts it is
required to consider a proportional rather than absolute error as is
common in time series models. \todo{komisch}
required to consider a proportional rather than absolute error.
As discussed above the output of a neural network for a classification
problem can be interpreted as a probability distribution over the classes
@ -405,14 +411,15 @@ which for two discrete distributions $p, q$ with the same realm $C$ is given by
\[
H(p, q) = \sum_{c \in C} p(c) \ln\left(\frac{1}{q(c)}\right),
\]
which compares a $q$ to a true underlying distribution $p$.
comparing $q$ to a target density $p$.
For a data set $(x_i,y_i), i = 1,\dots,n$ where each $y_{i,c}$
corresponds to the probability of class $c$ given $x_i$ and predictor
$f$ we get the loss function
\[
Bla = \sum_{i=1}^n H(y_i, f(x_i)).
CE(f) = \sum_{i=1}^n H(y_i, f(x_i)).
\]
\todo{Den satz einbauen}
-Maximum Likelihood
-Ableitung mit softmax pseudo linear -> fast improvemtns possible
@ -422,9 +429,10 @@ Trying to find the optimal parameter for fitting the model to the data
can be a hard problem. Given the complex nature of a neural network
with many layers and neurons it is hard to predict the impact of
single parameters on the accuracy of the output.
Thus applying numeric optimization algorithms is the only
Thus using numeric optimization algorithms is the only
feasible way to fit the model. A attractive algorithm for training
neural networks is gradient descent where each parameter $\theta_i$ is
neural networks is gradient descent where each parameter
$\theta_i$\todo{parameter name?} is
iterative changed according to the gradient regarding the error
measure and a step size $\gamma$. For this all parameters are
initialized (often random or close to zero) and then iteratively
@ -452,16 +460,18 @@ number of iterations or a desired upper limit for the error measure.
The algorithm for gradient descent is given in
Algorithm~\ref{alg:gd}. In the context of fitting a neural network
$f_\theta$ corresponds to the error measurement of the network
$L\left(\mathcal{NN}_{\theta}\right)$ where $\theta$ is a vector
$f_\theta$ corresponds to a error measurement of a neural network
$\mathcal{NN}_{\theta}$ where $\theta$ is a vector
containing all the weights and biases of the network.
As ca be seen this requires computing the derivative of the network
As can be seen this requires computing the derivative of the network
with regard to each variable. With the number of variables getting
large in networks with multiple layers of high neuron count naively
computing these can get quite memory and computational expensive. But
by using the chain rule and exploiting the layered structure we can
compute the gradient much more efficiently by using backpropagation
introduced by \textcite{backprop}.
computing the derivatives can get quite memory and computational
expensive.
By using the chain rule and exploiting the layered structure we can
compute the parameter update much more efficiently, this practice is
called backpropagation and was introduced by
\textcite{backprop}\todo{nachsehen ob richtige quelle}.
% \subsubsection{Backpropagation}
@ -478,6 +488,7 @@ introduced by \textcite{backprop}.
\[
\frac{\partial L(...)}{}
\]
Backprop noch aufschreiben
\todo{Backprop richtig aufschreiben}
%%% Local Variables:

@ -0,0 +1,8 @@
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
\babel@toc {english}{}
\defcounter {refsection}{0}\relax
\contentsline {table}{\numberline {4.1}{\ignorespaces Performance metrics of the networks trained in Figure~\ref {fig:sgd_vs_gd} after 20 training epochs.\relax }}{30}{table.caption.34}%
\defcounter {refsection}{0}\relax
\contentsline {table}{\numberline {4.2}{\ignorespaces Values of the test accuracy of the model trained 10 times on random MNIST handwriting training sets containing 1, 10 and 100 data points per class after 125 epochs. The mean achieved accuracy for the full set employing both overfitting measures is \relax }}{41}{table.4.2}%
\defcounter {refsection}{0}\relax
\contentsline {table}{\numberline {4.3}{\ignorespaces Values of the test accuracy of the model trained 10 times on random fashion MNIST training sets containing 1, 10 and 100 data points per class. The mean achieved accuracy for the full dataset is: ....\relax }}{41}{table.4.3}%

@ -41,6 +41,10 @@
\usepackage{afterpage}
\usepackage{xcolor}
\usepackage{chngcntr}
\usepackage{hyperref}
\hypersetup{
linktoc=all, %set to all if you want both sections and subsections linked
}
\captionsetup[sub]{justification=centering}
@ -192,6 +196,7 @@
\newtheorem{Algorithm}[Theorem]{Algorithm}
\newtheorem{Example}[Theorem]{Example}
\newtheorem{Assumption}[Theorem]{Assumption}
\newtheorem{Proof}[Theorem]{Proof}
\DeclareMathOperator*{\plim}{\mathbb{P}\text{-}\lim}
@ -238,7 +243,8 @@
\begin{center}
\vspace{1cm}
\huge \textbf{TITLE Neural Network bla blub langer Titel}\\
\huge \textbf{\titlecap{neural networks and their application on
higher complexity problems}}\\
\vspace{1cm}
\huge \textbf{Tim Tobias Arndt}\\
\vspace{1cm}
@ -251,6 +257,7 @@
\tableofcontents
\clearpage
\listoffigures
\listoftables
\listoftodos
\newpage
\pagenumbering{arabic}

@ -15,7 +15,8 @@ In order to get some understanding of the behavior of neural networks
we examine a simple class of networks in this chapter. We consider
networks that contain only one hidden layer and have a single output
node. We call these networks shallow neural networks.
\begin{Definition}[Shallow neural network]
\begin{Definition}[Shallow neural network, Heiss, Teichmann, and
Wutte (2019, Definition 1.4)]
For a input dimension $d$ and a Lipschitz continuous activation function $\sigma:
\mathbb{R} \to \mathbb{R}$ we define a shallow neural network with
$n$ hidden nodes as
@ -156,9 +157,9 @@ However this behavior is often not desired as over fit models generally
have bad generalization properties especially if noise is present in
the data. This effect is illustrated in
Figure~\ref{fig:overfit}. Here a shallow neural network that perfectly fits the
training data regarding MSE is \todo{Formulierung}
training data is
constructed according to the proof of Theorem~\ref{theo:overfit} and
compared to a regression spline
compared to a cubic smoothing spline
(Definition~\ref{def:wrs}). While the neural network
fits the data better than the spline, the spline represents the
underlying mechanism that was used to generate the data more accurately. The better
@ -213,7 +214,7 @@ plot coordinates {
(\textcolor{blue}{blue dots}) the neural network constructed
according to the proof of Theorem~\ref{theo:overfit} (black) and the
underlying signal (\textcolor{red}{red}). While the network has no
bias a regression spline (black dashed) fits the data much
bias a cubic smoothing spline (black dashed) fits the data much
better. For a test set of size 20 with uniformly distributed $x$
values and responses of the same fashion as the training data the MSE of the neural network is
0.30, while the MSE of the spline is only 0.14 thus generalizing
@ -227,26 +228,35 @@ plot coordinates {
Networks}
This section is based on \textcite{heiss2019}. We will analyze the
connection between randomized shallow
Neural Networks with one dimensional input with a ReLU as activation
function for all neurons and regression splines.
% \[
% \sigma(x) = \max\left\{0,x\right\}.
% \]
We will see that the punishment of the size of the weights in training
the randomized shallow
Neural Network will result in a learned function that minimizes the second
derivative as the amount of hidden nodes is grown to infinity. In order
to properly formulate this relation we will first need to introduce
some definitions, all neural networks introduced in the following will
use a ReLU as activation at all neurons.
A randomized shallow network is characterized by only the weight
parameter of the output layer being trainable, whereas the other
parameters are random numbers.
\begin{Definition}[Randomized shallow neural network]
This section is based on \textcite{heiss2019}.
... shallow neural networks with a one dimensional input where the parameters in the
hidden layer are randomized resulting in only the weights is the
output layer being trainable.
Additionally we assume all neurons use a ReLU as activation function
and call such networks randomized shallow neural networks.
% We will analyze the
% connection between randomized shallow
% Neural Networks with one dimensional input with a ReLU as activation
% function for all neurons and cubic smoothing splines.
% % \[
% % \sigma(x) = \max\left\{0,x\right\}.
% % \]
% We will see that the punishment of the size of the weights in training
% the randomized shallow
% Neural Network will result in a learned function that minimizes the second
% derivative as the amount of hidden nodes is grown to infinity. In order
% to properly formulate this relation we will first need to introduce
% some definitions, all neural networks introduced in the following will
% use a ReLU as activation at all neurons.
% A randomized shallow network is characterized by only the weight
% parameter of the output layer being trainable, whereas the other
% parameters are random numbers.
\begin{Definition}[Randomized shallow neural network, Heiss, Teichmann, and
Wutte (2019, Definition 2.1)]
For an input dimension $d$, let $n \in \mathbb{N}$ be the number of
hidden nodes and $v(\omega) \in \mathbb{R}^{i \times n}, b(\omega)
\in \mathbb{R}^n$ randomly drawn weights. Then for a weight vector
@ -257,15 +267,29 @@ parameters are random numbers.
\]
\label{def:rsnn}
\end{Definition}
We call a one dimensional randomized shallow neural network were the
$L^2$ norm of the trainable weights $w$ are penalized in the loss
function ridge penalized neural networks.
% We call a one dimensional randomized shallow neural network were the
% are penalized in the loss
% function ridge penalized neural networks.
We will prove that ... nodes .. a randomized shallow neural network will
converge to a function that minimizes the distance to the training
data with .. to its second derivative,
if the $L^2$ norm of the trainable weights $w$ is
penalized in the loss function.
We call such a network that is fitted according to MSE and a penalty term for
the amount of the weights a ridge penalized neural network.
% $\lam$
% We call a randomized shallow neural network trained on MSE and
% punished for the amount of the weights $w$ according to a
% ... $\lambda$ ridge penalized neural networks.
% We call a randomized shallow neural network where the size of the trainable
% weights is punished in the error function a ridge penalized
% neural network. For a tuning parameter $\tilde{\lambda}$ .. the extent
% of penalization we get:
\begin{Definition}[Ridge penalized Neural Network]
\begin{Definition}[Ridge penalized Neural Network, Heiss, Teichmann, and
Wutte (2019, Definition 3.2)]
\label{def:rpnn}
Let $\mathcal{RN}_{w, \omega}$ be a randomized shallow neural
network, as introduced in Definition~\ref{def:rsnn} and tuning
@ -309,13 +333,13 @@ $\omega$ used to express the realised random parameters will no longer
be explicitly mentioned.
We call a function that minimizes the cubic distance between training points
and the function with respect\todo{richtiges wort} to the second
derivative of the function a regression spline.
and the function with regard to the second
derivative of the function a cubic smoothing spline.
\begin{Definition}[Regression Spline]
\begin{Definition}[Cubic Smoothing Spline]
Let $x_i^{\text{train}}, y_i^{\text{train}} \in \mathbb{R}, i \in
\left\{1,\dots,N\right\}$ be trainig data. for a given $\lambda \in
\mathbb{R}$ the regression spline is given by
\mathbb{R}$ the cubic smoothing spline is given by
\[
f^{*,\lambda} :\in \argmin_{f \in
\mathcal{C}^2}\left\{\sum_{i=1}^N
@ -326,10 +350,10 @@ derivative of the function a regression spline.
We will show that for specific hyper parameters the ridge penalized
shallow neural networks converge to a slightly modified variant of the
regression spline. We will need to incorporate the densities of the
cubic smoothing spline. We will need to incorporate the densities of the
random parameters in the loss function of the spline to ensure
convergence. Thus we define
the adapted weighted regression spline where the loss for the second
the adapted weighted cubic smoothing spline where the loss for the second
derivative is weighted by a function $g$ and the support of the second
derivative of $f$ has to be a subset the support of $g$. The formal
definition is given in Definition~\ref{def:wrs}.
@ -340,19 +364,19 @@ definition is given in Definition~\ref{def:wrs}.
% spline that allows for weighting the penalty term for the second
% derivative with a weight function $g$. This is needed to ...the
% distributions of the random parameters ... We call this the adapted
% weighted regression spline.
% weighted cubic smoothing spline.
% Now we take a look at weighted regression splines. Later we will prove
% Now we take a look at weighted cubic smoothing splines. Later we will prove
% that the ridge penalized neural network as defined in
% Definition~\ref{def:rpnn} converges a weighted regression spline, as
% Definition~\ref{def:rpnn} converges a weighted cubic smoothing spline, as
% the amount of hidden nodes is grown to inifity.
\begin{Definition}[Adapted Weighted regression spline]
\begin{Definition}[Adapted weighted cubic smoothing spline]
\label{def:wrs}
Let $x_i^{\text{train}}, y_i^{\text{train}} \in \mathbb{R}, i \in
\left\{1,\dots,N\right\}$ be trainig data. For a given $\lambda \in \mathbb{R}_{>0}$
and a function $g: \mathbb{R} \to \mathbb{R}_{>0}$ the weighted
regression spline $f^{*, \lambda}_g$ is given by
cubic smoothing spline $f^{*, \lambda}_g$ is given by
\[
f^{*, \lambda}_g :\in \argmin_{\substack{f \in \mathcal{C}^2(\mathbb{R})
@ -370,14 +394,13 @@ and smoothness or low second dreivative. For $g \equiv 1$ and $\lambda \to 0$ th
resulting function $f^{*, 0+}$ will interpolate the training data while minimizing
the second derivative. Such a function is known as cubic spline
interpolation.
\todo{cite cubic spline}
\[
f^{*, 0+} \text{ smooth spline interpolation: }
\]
\[
f^{*, 0+} \coloneqq \lim_{\lambda \to 0+} f^{*, \lambda}_1 \in
\argmin_{\substack{f \in \mathcal{C}^2\mathbb{R}, \\ f(x_i^{\text{train}}) =
\argmin_{\substack{f \in \mathcal{C}^2(\mathbb{R}), \\ f(x_i^{\text{train}}) =
y_i^{\text{train}}}} = \left( \int _{\mathbb{R}} (f''(x))^2dx\right).
\]
@ -385,16 +408,17 @@ For $\lambda \to \infty$ on the other hand $f_g^{*\lambda}$ converges
to linear regression of the data.
We use two intermediary functions in order to show the convergence of
the ridge penalized shallow neural network to adapted regression splines.
the ridge penalized shallow neural network to adapted cubic smoothing splines.
% In order to show that ridge penalized shallow neural networks converge
% to adapted regression splines for a growing amount of hidden nodes we
% to adapted cubic smoothing splines for a growing amount of hidden nodes we
% define two intermediary functions.
One being a smooth approximation of
the neural network, and a randomized shallow neural network designed
to approximate a spline.
In order to properly BUILD these functions we need to take the points
of the network into consideration where the TRAJECTORY changes or
their points of discontinuity
of the network into consideration where the TRAJECTORY of the learned
function changes
(or their points of discontinuity).
As we use the ReLU activation the function learned by the
network will possess points of discontinuity where a neuron in the hidden
layer gets activated (goes from 0 -> x>0). We formalize these points
@ -452,8 +476,8 @@ satisfies $\int_{\mathbb{R}}\kappa_x dx = 1$. While $f^w$ looks highly
similar to a convolution, it differs slightly as the kernel $\kappa_x(s)$
is dependent on $x$. Therefore only $f^w = (\mathcal{RN}_w *
\kappa_x)(x)$ is well defined, while $\mathcal{RN}_w * \kappa$ is not.
We use $f^{w^{*,\tilde{\lambda}}}$ do describe the spline
approximating the ... ridge penalized network
We use $f^{w^{*,\tilde{\lambda}}}$ to describe the spline
approximating the ridge penalized network
$\mathrm{RN}^{*,\tilde{\lambda}}$.
Next we construct a randomized shallow neural network which
@ -465,7 +489,7 @@ parameters. In order to achieve this we ...
\label{def:sann}
Let $\mathcal{RN}$ be a randomised shallow Neural Network according
to Definition~\ref{def:rsnn} and $f^{*, \lambda}_g$ be the weighted
regression spline as introduced in Definition~\ref{def:wrs}. Then
cubic smoothing spline as introduced in Definition~\ref{def:wrs}. Then
the randomised shallow neural network approximating $f^{*,
\lambda}_g$ is given by
\[
@ -538,7 +562,6 @@ introduce it and the corresponding induced norm.
\[
\norm{u^{(\alpha)}}_{L^p} < \infty.
\]
\todo{feritg machen}
\label{def:sobonorm}
The natural norm of the sobolev space is given by
\[
@ -556,10 +579,10 @@ introduce it and the corresponding induced norm.
With the important definitions and assumptions in place we can now
formulate the main theorem ... the convergence of ridge penalized
random neural networks to adapted regression splines when the
random neural networks to adapted cubic smoothing splines when the
parameters are chosen accordingly.
\begin{Theorem}[Ridge weight penaltiy corresponds to weighted regression spline]
\begin{Theorem}[Ridge weight penaltiy corresponds to weighted cubic smoothing spline]
\label{theo:main1}
For $N \in \mathbb{N}$ arbitrary training data
\(\left(x_i^{\text{train}}, y_i^{\text{train}}
@ -725,12 +748,12 @@ provided in the appendix.
% \end{align*}
\end{Lemma}
\begin{Lemma}[Step 0]
\begin{Lemma}
For any $\lambda > 0$, training data $(x_i^{\text{train}}
y_i^{\text{train}}) \in \mathbb{R}^2$, with $ i \in
\left\{1,\dots,N\right\}$ and subset $K \subset \mathbb{R}$ the spline approximating randomized
shallow neural network $\mathcal{RN}_{\tilde{w}}$ converges to the
regression spline $f^{*, \lambda}_g$ in
cubic smoothing spline $f^{*, \lambda}_g$ in
$\norm{.}_{W^{1,\infty}(K)}$ as the node count $n$ increases,
\begin{equation}
\label{eq:s0}
@ -767,11 +790,12 @@ provided in the appendix.
\end{align*}
By the fundamental theorem of calculus and $\supp(f') \subset
\supp(f)$, (\ref{eq:s0}) follows with Lemma~\ref{lem:pieq}.
\todo{ist die 0 wichtig?}
\qed
\label{lem:s0}
\end{Lemma}
\begin{Lemma}[Step 2]
\begin{Lemma}
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, we have
@ -784,7 +808,7 @@ provided in the appendix.
\label{lem:s2}
\end{Lemma}
\begin{Lemma}[Step 3]
\begin{Lemma}
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, with $w^*$ as
@ -798,7 +822,7 @@ provided in the appendix.
\label{lem:s3}
\end{Lemma}
\begin{Lemma}[Step 4]
\begin{Lemma}
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, with $w^*$ and $\tilde{\lambda}$ as
@ -812,7 +836,7 @@ provided in the appendix.
\label{lem:s4}
\end{Lemma}
\begin{Lemma}[Step 7]
\begin{Lemma}
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, for any sequence of functions $f^n \in
@ -876,10 +900,10 @@ We can now use Lemma~\ref{lem:s7} to follow that
\begin{equation}
\plimn \norm{f^{w^{*,\tilde{\lambda}}} - f^{*,\lambda}_g}
_{W^{1,\infty}} = 0.
\label{eq:main2}
\label{eq:main4}
\end{equation}
Now by using the triangle inequality with Lemma~\ref{lem:s3} and
(\ref{eq:main2}) we get
(\ref{eq:main4}) we get
\begin{align*}
\plimn \norm{\mathcal{RN}^{*, \tilde{\lambda}} - f_g^{*,\lambda}}
\leq& \plimn \bigg(\norm{\mathcal{RN}^{*, \tilde{\lambda}} -
@ -892,13 +916,16 @@ We now know that randomized shallow neural networks behave similar to
spline regression if we regularize the size of the weights during
training.
\textcite{heiss2019} further explore a connection between ridge penalized
networks and randomized shallow neural networks which are trained
which are only trained for a certain amount of epoch using gradient
networks and randomized shallow neural networks trained using gradient
descent.
And ... that the effect of weight regularization can be achieved by
training for a certain amount of iterations this ... between adapted
weighted regression splines and randomized shallow neural networks
where training is stopped early.
They come to the conclusion that the effect of weight regularization
can be achieved by stopping the training of the randomized shallow
neural network early, with the amount of epochs being proportional to
the punishment for weight size.
This ... that randomized shallow neural networks trained for a certain
amount of iterations converge for a increasing amount of nodes to
cubic smoothing splines with appropriate weights.
\todo{nochmal nachlesen wie es genau war}
\newpage
\subsection{Simulations}
@ -936,7 +963,7 @@ would equate to $g(x) = \frac{\mathbb{E}[v_k^2|\xi_k = x]}{10}$. In
order to utilize the
smoothing spline implemented in Mathlab, $g$ has been simplified to $g
\equiv \frac{1}{10}$ instead. For all figures $f_1^{*, \lambda}$ has
been calculated with Matlab's ..... As ... minimizes
been calculated with Matlab's 'smoothingspline', as this minimizes
\[
\bar{\lambda} \sum_{i=1}^N(y_i^{train} - f(x_i^{train}))^2 + (1 -
\bar{\lambda}) \int (f''(x))^2 dx
@ -946,7 +973,7 @@ the smoothing parameter used for fittment is $\bar{\lambda} =
the networks is chosen as defined in Theorem~\ref{theo:main1} and each
one is trained on the full training data for 5000 epoch using
gradient descent. The
results are given in Figure~\ref{fig:rs_vs_rs}, here it can be seen that in
results are given in Figure~\ref{fig:rn_vs_rs}, here it can be seen that in
the intervall of the traing data $[-\pi, \pi]$ the neural network and
smoothing spline are nearly identical, coinciding with the proposition.

Loading…
Cancel
Save