added poincare type inequality and neuron diagram
This commit is contained in:
parent
a18b06f98d
commit
5a33ed3c8e
@ -1,8 +1,4 @@
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "main"
|
||||
%%% End:
|
||||
\section{Introduction to Neural Networks}
|
||||
|
||||
Neural Networks (NN) are a mathematical construct inspired by the
|
||||
@ -34,7 +30,9 @@ except for the input layer, which recieves the components of the input.
|
||||
|
||||
\resizebox{\textwidth}{!}{%
|
||||
\begin{tikzpicture}[x=1.75cm, y=1.75cm, >=stealth]
|
||||
|
||||
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
|
||||
{\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
|
||||
|
||||
\foreach \m/\l [count=\y] in {1,2,3,missing,4}
|
||||
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,2.5-\y) {};
|
||||
|
||||
@ -48,7 +46,7 @@ except for the input layer, which recieves the components of the input.
|
||||
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (7,1.5-\y) {};
|
||||
|
||||
\foreach \l [count=\i] in {1,2,3,d_i}
|
||||
\draw [<-] (input-\i) -- ++(-1,0)
|
||||
\draw [myptr] (input-\i)+(-1,0) -- (input-\i)
|
||||
node [above, midway] {$x_{\l}$};
|
||||
|
||||
\foreach \l [count=\i] in {1,n_1}
|
||||
@ -58,20 +56,20 @@ except for the input layer, which recieves the components of the input.
|
||||
\node [above] at (hidden2-\i.north) {$\mathcal{N}_{l,\l}$};
|
||||
|
||||
\foreach \l [count=\i] in {1,d_o}
|
||||
\draw [->] (output-\i) -- ++(1,0)
|
||||
\draw [myptr] (output-\i) -- ++(1,0)
|
||||
node [above, midway] {$O_{\l}$};
|
||||
|
||||
\foreach \i in {1,...,4}
|
||||
\foreach \j in {1,...,2}
|
||||
\draw [->] (input-\i) -- (hidden1-\j);
|
||||
\draw [myptr] (input-\i) -- (hidden1-\j);
|
||||
|
||||
\foreach \i in {1,...,2}
|
||||
\foreach \j in {1,...,2}
|
||||
\draw [->] (hidden1-\i) -- (hidden2-\j);
|
||||
\draw [myptr] (hidden1-\i) -- (hidden2-\j);
|
||||
|
||||
\foreach \i in {1,...,2}
|
||||
\foreach \j in {1,...,2}
|
||||
\draw [->] (hidden2-\i) -- (output-\j);
|
||||
\draw [myptr] (hidden2-\i) -- (output-\j);
|
||||
|
||||
\node [align=center, above] at (0,2) {Input\\layer};
|
||||
\node [align=center, above] at (2,2) {Hidden \\layer $1$};
|
||||
@ -79,46 +77,157 @@ except for the input layer, which recieves the components of the input.
|
||||
\node [align=center, above] at (7,2) {Output \\layer};
|
||||
|
||||
\node[fill=white,scale=1.5,inner xsep=10pt,inner ysep=10mm] at ($(hidden1-1)!.5!(hidden2-2)$) {$\dots$};
|
||||
|
||||
|
||||
\end{tikzpicture}}}
|
||||
\caption{test}
|
||||
\end{figure}
|
||||
|
||||
\begin{tikzpicture}[x=1.5cm, y=1.5cm, >=stealth]
|
||||
\begin{figure}
|
||||
\begin{tikzpicture}[x=1.5cm, y=1.5cm]
|
||||
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
|
||||
{\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
|
||||
|
||||
\foreach \m/\l [count=\y] in {1}
|
||||
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,0.5-\y) {};
|
||||
|
||||
\foreach \m/\l [count=\y] in {1}
|
||||
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,0.5-\y) {};
|
||||
\foreach \m [count=\y] in {1,2,missing,3,4}
|
||||
\node [every neuron/.try, neuron \m/.try ] (hidden-\m) at (1.25,3.25-\y*1.25) {};
|
||||
|
||||
\foreach \m [count=\y] in {1,2,missing,3,4}
|
||||
\node [every neuron/.try, neuron \m/.try ] (hidden-\m) at (1.25,3.25-\y*1.25) {};
|
||||
\foreach \m [count=\y] in {1}
|
||||
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (2.5,0.5-\y) {};
|
||||
|
||||
\foreach \m [count=\y] in {1}
|
||||
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (2.5,0.5-\y) {};
|
||||
|
||||
\foreach \l [count=\i] in {1}
|
||||
\draw [<-] (input-\i) -- ++(-1,0)
|
||||
\foreach \l [count=\i] in {1}
|
||||
\draw [myptr] (input-\i)+(-1,0) -- (input-\i)
|
||||
node [above, midway] {$x$};
|
||||
|
||||
\foreach \l [count=\i] in {1,2,n-1,n}
|
||||
\node [above] at (hidden-\i.north) {$\mathcal{N}_{\l}$};
|
||||
\foreach \l [count=\i] in {1,2,n-1,n}
|
||||
\node [above] at (hidden-\i.north) {$\mathcal{N}_{\l}$};
|
||||
|
||||
\foreach \l [count=\i] in {1,n_l}
|
||||
\node [above] at (output-\i.north) {};
|
||||
\foreach \l [count=\i] in {1,n_l}
|
||||
\node [above] at (output-\i.north) {};
|
||||
|
||||
\foreach \l [count=\i] in {1}
|
||||
\draw [->] (output-\i) -- ++(1,0)
|
||||
\foreach \l [count=\i] in {1}
|
||||
\draw [myptr, >=stealth] (output-\i) -- ++(1,0)
|
||||
node [above, midway] {$y$};
|
||||
|
||||
|
||||
\foreach \i in {1}
|
||||
\foreach \j in {1,2,...,3,4}
|
||||
\draw [->] (input-\i) -- (hidden-\j);
|
||||
\foreach \i in {1}
|
||||
\foreach \j in {1,2,...,3,4}
|
||||
\draw [myptr, >=stealth] (input-\i) -- (hidden-\j);
|
||||
|
||||
\foreach \i in {1,2,...,3,4}
|
||||
\foreach \j in {1}
|
||||
\draw [->] (hidden-\i) -- (output-\j);
|
||||
\foreach \i in {1,2,...,3,4}
|
||||
\foreach \j in {1}
|
||||
\draw [myptr, >=stealth] (hidden-\i) -- (output-\j);
|
||||
|
||||
\node [align=center, above] at (0,1) {Input\\layer};
|
||||
\node [align=center, above] at (1.25,3) {Hidden layer};
|
||||
\node [align=center, above] at (2.5,1) {Output\\layer};
|
||||
\node [align=center, above] at (0,1) {Input \\layer};
|
||||
\node [align=center, above] at (1.25,3) {Hidden layer};
|
||||
\node [align=center, above] at (2.5,1) {Output \\layer};
|
||||
|
||||
\end{tikzpicture}
|
||||
\caption{Shallow Neural Network with input- and output-dimension of \(d
|
||||
= 1\)}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\begin{tikzpicture}[x=1.5cm, y=1.5cm, >=stealth]
|
||||
|
||||
|
||||
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
|
||||
{\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
|
||||
|
||||
\node [circle, draw, fill=black, inner sep = 0pt, minimum size =
|
||||
1.5mm, left] (i_1) at (0, 2.5) {};
|
||||
\node [align=left, left] at (-0.125, 2.5) {\(i_1\)};
|
||||
\node [circle, draw, fill=black, inner sep = 0pt, minimum size =
|
||||
1.5mm] (i_2) at (0, 1.25) {};
|
||||
\node [align=left, left] at (-0.125, 1.25) {\(i_2\)};
|
||||
\node [neuron missing] (i_3) at (0, 0) {};
|
||||
\node [circle, draw, fill=black, inner sep = 0pt, minimum size =
|
||||
1.5mm] (i_4) at (0, -1.25) {};
|
||||
\node [align=left, left] at (-0.125, -1.25) {\(i_m\)};
|
||||
\draw[decoration={calligraphic brace,amplitude=5pt, mirror}, decorate, line width=1.25pt]
|
||||
(-0.6,2.7) -- (-0.6,-1.45) node [black, midway, xshift=-0.6cm, left] {Input};
|
||||
|
||||
\node [align = center, above] at (1.25, 3) {Synaptic\\weights};
|
||||
\node [every neuron] (w_1) at (1.25, 2.5) {\(w_{k, 1}\)};
|
||||
\node [every neuron] (w_2) at (1.25, 1.25) {\(w_{k, 2}\)};
|
||||
\node [neuron missing] (w_3) at (1.25, 0) {};
|
||||
\node [every neuron] (w_4) at (1.25, -1.25) {\(w_{k, m}\)};
|
||||
|
||||
\node [circle, draw] (sig) at (3, 0.625) {\Large\(\sum\)};
|
||||
\node [align = center, below] at (3, 0) {Summing \\junction};
|
||||
|
||||
\node [draw, minimum size = 1.25cm] (act) at (4.5, 0.625)
|
||||
{\(\psi(.)\)};
|
||||
\node [align = center, above] at (4.5, 1.25) {Activation \\function};
|
||||
|
||||
\node [circle, draw, fill=black, inner sep = 0pt, minimum size =
|
||||
1.5mm] (b) at (3, 2.5) {};
|
||||
\node [align = center, above] at (3, 2.75) {Bias \\\(b_k\)};
|
||||
|
||||
\node [align = center] (out) at (6, 0.625) {Output \\\(o_k\)};
|
||||
|
||||
|
||||
\draw [myptr] (i_1) -- (w_1);
|
||||
\draw [myptr] (i_2) -- (w_2);
|
||||
\draw [myptr] (i_4) -- (w_4);
|
||||
|
||||
\draw [myptr] (w_1) -- (sig);
|
||||
\draw [myptr] (w_2) -- (sig);
|
||||
\draw [myptr] (w_4) -- (sig);
|
||||
|
||||
\draw [myptr] (b) -- (sig);
|
||||
|
||||
\draw [myptr] (sig) -- (act);
|
||||
|
||||
\draw [myptr] (act) -- (out);
|
||||
|
||||
% \foreach \m [count=\y] in {1,2,missing,3,4}
|
||||
% \node [every neuron/.try, neuron \m/.try ] (hidden-\m) at (1.25,3.25-\y*1.25) {\(w_{k,\y}\)};
|
||||
|
||||
% \foreach \m [count=\y] in {1}
|
||||
% \node [every neuron/.try, neuron \m/.try ] (output-\m) at (2.5,0.5-\y) {};
|
||||
|
||||
% \foreach \l [count=\i] in {1}
|
||||
% \draw [<-] (input-\i) -- ++(-1,0)
|
||||
% node [above, midway] {$x$};
|
||||
|
||||
% \foreach \l [count=\i] in {1,2,n-1,n}
|
||||
% \node [above] at (hidden-\i.north) {$\mathcal{N}_{\l}$};
|
||||
|
||||
% \foreach \l [count=\i] in {1,n_l}
|
||||
% \node [above] at (output-\i.north) {};
|
||||
|
||||
% \foreach \l [count=\i] in {1}
|
||||
% \draw [->] (output-\i) -- ++(1,0)
|
||||
% node [above, midway] {$y$};
|
||||
|
||||
% \foreach \i in {1}
|
||||
% \foreach \j in {1,2,...,3,4}
|
||||
% \draw [->] (input-\i) -- (hidden-\j);
|
||||
|
||||
% \foreach \i in {1,2,...,3,4}
|
||||
% \foreach \j in {1}
|
||||
% \draw [->] (hidden-\i) -- (output-\j);
|
||||
|
||||
\end{tikzpicture}
|
||||
\caption{Structure of a single neuron}
|
||||
\end{figure}
|
||||
|
||||
\begin{tikzpicture}
|
||||
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
|
||||
{\arrow[scale=2,>=stealth]{>}}},postaction={decorate}}}
|
||||
%1
|
||||
\draw [->,>=stealth] (0,.5) -- (2,.5);
|
||||
%2
|
||||
\draw [myptr] (0,0) -- (2,0);
|
||||
\end{tikzpicture}
|
||||
|
||||
|
||||
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "main"
|
||||
%%% End:
|
||||
|
@ -26,9 +26,10 @@
|
||||
\usepackage{makecell}
|
||||
\usepackage{dsfont}
|
||||
\usepackage{tikz}
|
||||
\usepackage{nicefrac}
|
||||
|
||||
\usetikzlibrary{matrix,chains,positioning,decorations.pathreplacing,arrows}
|
||||
\usetikzlibrary{positioning,calc}
|
||||
\usetikzlibrary{positioning,calc,calligraphy}
|
||||
|
||||
\usepackage{pgfplots}
|
||||
\usepgfplotslibrary{colorbrewer}
|
||||
@ -55,6 +56,7 @@
|
||||
\thispagestyle{plain}
|
||||
\newtheorem{Theorem}{Theorem}[section]
|
||||
\newtheorem{Definition}[Theorem]{Definition}
|
||||
\newtheorem{Lemma}[Theorem]{Lemma}
|
||||
\newtheorem{Algorithm}[Theorem]{Algorithm}
|
||||
\newtheorem{Example}[Theorem]{Example}
|
||||
|
||||
|
@ -25,7 +25,74 @@ limes of RN as the amount of nodes is increased.
|
||||
\in \mathbb{R}
|
||||
\end{align*}
|
||||
and \(RN^{*, \tilde{\lambda}}\), \(f^{*,\tilde{\lambda}}_{g, \pm}\)
|
||||
as defined in ??? and ??? respectively.
|
||||
as defined in ??? and ??? respectively.
|
||||
\end{Theorem}
|
||||
In order to proof Theo~\ref{theo:main1} we need to proof a number of
|
||||
auxilary Lemmata first.
|
||||
|
||||
\begin{Definition}[Sobolev Norm]
|
||||
\label{def:sobonorm}
|
||||
The natural norm of the sobolev space is given by
|
||||
\[
|
||||
\norm{f}_{W^{k,p}(K)} =
|
||||
\begin{cases}
|
||||
\left(\sum_{\abs{\alpha} \leq k}
|
||||
\norm{f^{(\alpha)}}^p_{L^p}\right)^{\nicefrac{1}{p}},&
|
||||
\text{for } 1 \leq p < \infty \\
|
||||
max_{\abs{\alpha} \leq k}\left\{f^{(\alpha)}\right\},& \text{for
|
||||
} p = \infty
|
||||
\end{cases}
|
||||
.
|
||||
\]
|
||||
\end{Definition}
|
||||
|
||||
\begin{Lemma}[Poincar\'e typed inequality]
|
||||
Let \(f:\mathbb{R} \to \mathbb{R}\) differentiable with \(f' :
|
||||
\mathbb{R} \to \mathbb{R}\) Lesbeque integrable. Then for \(K=[a,b]
|
||||
\subset \mathbb{R}\) with \(f(a)=0\) it holds that
|
||||
\begin{equation}
|
||||
\label{eq:pti1}
|
||||
\exists C_K^{\infty} \in \mathbb{R}_{>0} :
|
||||
\norm{f}_{w^{1,\infty}(K)} \leq C_K^{\infty}
|
||||
\norm{f'}_{L^{\infty}(K)}.
|
||||
\end{equation}
|
||||
If additionaly \(f'\) is differentiable with \(f'': \mathbb{R} \to
|
||||
\mathbb{R}\) Lesbeque integrable then additionally
|
||||
\begin{equation}
|
||||
\label{eq:pti2}
|
||||
\exists C_K^2 \in \mathbb{R}_{>0} : \norm{f}_{W^{1,\infty}(K)} \leq
|
||||
C_K^2 \norm{f''}_{L^2(K)}.
|
||||
\end{equation}
|
||||
\proof
|
||||
With the fundamental theorem of calculus, if
|
||||
\(\norm{f}_{L^{\infty}(K)}<\infty\) we get
|
||||
\begin{equation}
|
||||
\label{eq:f_f'}
|
||||
\norm{f}_{L^{\infty}(K)} = \sup_{x \in K}\abs{\int_a^x f'(s) ds} \leq
|
||||
\sup_{x \in K}\abs{\int_a^x \sup_{y \in K} \abs{f'(y)} ds} \leq \abs{b-a}
|
||||
\sup_{y \in K}\abs{f'(y)}.
|
||||
\end{equation}
|
||||
Using this we can bound \(\norm{f}_{w^{1,\infty}(K)}\) by
|
||||
\[
|
||||
\norm{f}_{w^{1,\infty}(K)} \stackrel{\text{Def~\ref{def:sobonorm}}}{=}
|
||||
\max\left\{\norm{f}_{L^{\infty}(K)},
|
||||
\norm{f'}_{L^{\infty}(K)}\right\}
|
||||
\stackrel{(\ref{eq:f_f'})}{\leq} max\left\{\abs{b-a},
|
||||
1\right\}\norm{f'}_{L^{\infty}(K)}.
|
||||
\]
|
||||
With \(C_k^{\infty} \coloneqq max\left\{\abs{b-a}, 1\right\}\) we
|
||||
get (\ref{eq:pti1}).
|
||||
By using the Hölder inequality, we can proof the second claim.
|
||||
\begin{align*}
|
||||
\norm{f'}_{L^{\infty}(K)} &= \sup_{x \in K} \abs{\int_a^bf''(y)
|
||||
\mathds{1}_{[a,x]}(y)dy} \leq \sup_{x \in
|
||||
K}\norm{f''\mathds{1}_{[a,x]}}_{L^1(K)}\\
|
||||
&\hspace{-6pt} \stackrel{\text{Hölder}}{\leq} sup_{x
|
||||
\in
|
||||
K}\norm{f''}_{L^2(K)}\norm{\mathds{1}_{[a,x]}}_{L^2(K)}
|
||||
= \abs{b-a}\norm{f''}_{L^2(K)}.
|
||||
\end{align*}
|
||||
Thus (\ref{eq:pti2}) follows with \(C_K^2 \coloneqq
|
||||
\abs{b-a}C_K^{\infty}\).
|
||||
\qed
|
||||
\end{Lemma}
|
Loading…
Reference in New Issue
Block a user