mammut commit of last two monts

main
Tobias Arndt 4 years ago
parent 74113d5060
commit 46031fcd5d

14
.gitignore vendored

@ -4,12 +4,26 @@
*.toc *.toc
*.gz *.gz
*.xml *.xml
*.el
*.bbl
*.tdo
*.blg
TeX/auto/* TeX/auto/*
main-blx.bib main-blx.bib
# emacs autosaves # emacs autosaves
*.tex~ *.tex~
*#*.tex* *#*.tex*
*~
# no pdfs # no pdfs
*.pdf *.pdf
# no images
*image*
*.png
*.jpg
*.xcf
# no slurm logs
*slurm*.out

@ -0,0 +1,26 @@
import tensorflow as tf
from tensorflow.keras.callbacks import CSVLogger
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_train, x_test = x_train / 255.0, x_test / 255.0
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(24,kernel_size=5,padding='same',activation='relu',
input_shape=(28,28,1)))
model.add(tf.keras.layers.MaxPool2D())
model.add(tf.keras.layers.Conv2D(64,kernel_size=5,padding='same',activation='relu'))
model.add(tf.keras.layers.MaxPool2D(padding='same'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.SGD(), loss="categorical_crossentropy", metrics=["accuracy"])
csv_logger = CSVLogger('SGD_01_b32.log')
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size = 32, epochs=20, callbacks=[csv_logger])

@ -0,0 +1,22 @@
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10)

@ -0,0 +1,26 @@
import tensorflow as tf
from tensorflow.keras.callbacks import CSVLogger
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
x_train, x_test = x_train / 255.0, x_test / 255.0
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(24,kernel_size=5,padding='same',activation='relu',
input_shape=(28,28,1)))
model.add(tf.keras.layers.MaxPool2D())
model.add(tf.keras.layers.Conv2D(64,kernel_size=5,padding='same',activation='relu'))
model.add(tf.keras.layers.MaxPool2D(padding='same'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.1), loss="categorical_crossentropy", metrics=["accuracy"])
csv_logger = CSVLogger('GD_1.log')
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size = x_train.shape[0], epochs=20, callbacks=[csv_logger])

@ -0,0 +1,22 @@
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=10)

@ -0,0 +1,10 @@
#!/bin/bash -l
#SBATCH --job-name="Keras MNIST"
#SBATCH --ntasks=1
#SBATCH --ntasks-per-core=1
#SBATCH --time=0-00:10:00
#SBATCH --nodelist=node18
srun python3 mnist.py

@ -0,0 +1,10 @@
#!/bin/bash -l
#SBATCH --job-name="Keras MNIST"
#SBATCH --ntasks=1
#SBATCH --ntasks-per-core=1
#SBATCH --time=0-00:10:00
#SBATCH --nodelist=node18
srun python3 mnist.py

@ -0,0 +1,59 @@
x=seq(0, 2*pi,0.1)
y=sin(x)
plot(x,y)
x_i = x
y_i = y
x = x+rnorm(63,0,0.15)
y = y+rnorm(63,0,0.15)
plot(x, y)
x_d = x
y_d = y
for(i in 5:63){
x[i] = (sum(x_d[(i-4):i] * c(1/20,1/6,1/5,1/4,1/3)))
}
for(i in 5:63){
y[i] = (sum(y_d[(i-4):i] * c(1/20,1/6,1/5,1/4,1/3)))
}
#x[1:4] = NA
#y[1:4] = NA
plot(x[-(1:4)],y[-(1:4)])
image = image_read(path = "~/Masterarbeit/TeX/Plots/Data/klammern60_80.jpg")
kernel <- matrix(0, ncol = 3, nrow = 3)
kernel[c(1,3),1] = -1
kernel[c(1,3),3] = 1
kernel[2,1] = -2
kernel[2,3] = 2
kernel
kernel <- matrix(data = c(1,4,7,4,1,4,16,26,16,4,7,26,41,26,7,4,16,26,16,4,1,4,7,4,1),
ncol = 5, nrow=5)
kernel = kernel/273
n=11
s=4
kernel = matrix(0,nrow = n, ncol = n)
for(i in 1:n){
for(j in 1:n){
kernel[i,j] = 1/(2*pi*s) * exp(-(i+j)/(2*s))
}
}
image_con <- image_convolve(image, (kernel))
image_con
image_write(image_con, "~/Masterarbeit/TeX/Plots/Data/image_conv11.png", format="png")
img <- readPNG("~/Masterarbeit/TeX/Plots/Data/image_conv11.png")
out <- matrix(0, ncol = 15, nrow=20)
for(j in 1:15){
for(i in 1:20){
out[i,j] = max(img[((i-1)*4 +1):((i-1)*4+4), ((j-1)*4 +1):((j-1)*4+4)])
}
}
writePNG(out, target = "~/Masterarbeit/TeX/Plots/Data/image_conv12.png")

@ -0,0 +1,22 @@
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

@ -0,0 +1,17 @@
x,y
-3.141592653589793,0.0802212608585366
-2.722713633111154,-0.3759376368887911
-2.303834612632515,-1.3264180339054117
-1.8849555921538759,-0.8971334213504949
-1.4660765716752369,-0.7724344034354425
-1.0471975511965979,-0.9501497164520739
-0.6283185307179586,-0.6224628757084738
-0.2094395102393194,-0.35622668982623207
0.2094395102393194,-0.18377660088356823
0.6283185307179586,0.7836770998126841
1.0471975511965974,0.5874762732054489
1.4660765716752362,1.0696991264956026
1.8849555921538759,1.1297065441952743
2.3038346126325155,0.7587275382323738
2.7227136331111543,-0.030547103790458163
3.1415926535897922,0.044327111895927106
1 x y
2 -3.141592653589793 0.0802212608585366
3 -2.722713633111154 -0.3759376368887911
4 -2.303834612632515 -1.3264180339054117
5 -1.8849555921538759 -0.8971334213504949
6 -1.4660765716752369 -0.7724344034354425
7 -1.0471975511965979 -0.9501497164520739
8 -0.6283185307179586 -0.6224628757084738
9 -0.2094395102393194 -0.35622668982623207
10 0.2094395102393194 -0.18377660088356823
11 0.6283185307179586 0.7836770998126841
12 1.0471975511965974 0.5874762732054489
13 1.4660765716752362 1.0696991264956026
14 1.8849555921538759 1.1297065441952743
15 2.3038346126325155 0.7587275382323738
16 2.7227136331111543 -0.030547103790458163
17 3.1415926535897922 0.044327111895927106

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,101 @@
x_n_5000_tl_0.1,y_n_5000_tl_0.1,x_n_5000_tl_1.0,y_n_5000_tl_1.0,x_n_5000_tl_3.0,y_n_5000_tl_3.0
-5.0,1.794615305950707,-5.0,0.3982406589003759,-5.0,-0.4811539502118497
-4.898989898989899,1.6984389486364895,-4.898989898989899,0.35719218031912614,-4.898989898989899,-0.48887996302459025
-4.797979797979798,1.6014200743009022,-4.797979797979798,0.3160182633093358,-4.797979797979798,-0.4966732473871599
-4.696969696969697,1.5040575427157106,-4.696969696969697,0.27464978660531225,-4.696969696969697,-0.5045073579233731
-4.595959595959596,1.4061194142774731,-4.595959595959596,0.23293440418365288,-4.595959595959596,-0.5123589845230747
-4.494949494949495,1.3072651356075136,-4.494949494949495,0.19100397829173557,-4.494949494949495,-0.5202738824510786
-4.393939393939394,1.2078259346207492,-4.393939393939394,0.1488314515422353,-4.393939393939394,-0.5282281154332915
-4.292929292929293,1.1079271590765678,-4.292929292929293,0.10646618526238515,-4.292929292929293,-0.536250283913464
-4.191919191919192,1.0073183089866045,-4.191919191919192,0.0637511521454329,-4.191919191919192,-0.5443068679044686
-4.090909090909091,0.9064682044248323,-4.090909090909091,0.020965778107027506,-4.090909090909091,-0.5524049731989601
-3.9898989898989896,0.805095064694333,-3.9898989898989896,-0.02200882631350869,-3.9898989898989896,-0.5605562335116703
-3.888888888888889,0.7032463151196859,-3.888888888888889,-0.06548644224881082,-3.888888888888889,-0.5687680272492979
-3.787878787878788,0.6007843964001714,-3.787878787878788,-0.10914135786185346,-3.787878787878788,-0.5770307386196555
-3.686868686868687,0.4978572358270573,-3.686868686868687,-0.15292201515712506,-3.686868686868687,-0.5853131654059709
-3.5858585858585856,0.39465522349482535,-3.5858585858585856,-0.19694472820060063,-3.5858585858585856,-0.593636189078738
-3.484848484848485,0.29091175104318323,-3.484848484848485,-0.24139115547918963,-3.484848484848485,-0.6019914655156898
-3.383838383838384,0.1868284306918275,-3.383838383838384,-0.28617728400089926,-3.383838383838384,-0.6103823599700093
-3.282828282828283,0.0817944681090728,-3.282828282828283,-0.33119615483860937,-3.282828282828283,-0.6188088888423856
-3.1818181818181817,-0.023670753859105602,-3.1818181818181817,-0.3764480559542342,-3.1818181818181817,-0.6272515625106694
-3.080808080808081,-0.1299349094939808,-3.080808080808081,-0.42202262988259276,-3.080808080808081,-0.6357221532633648
-2.9797979797979797,-0.2360705715363967,-2.9797979797979797,-0.467584017465408,-2.9797979797979797,-0.6440454918766952
-2.878787878787879,-0.34125419448980393,-2.878787878787879,-0.5126079284225549,-2.878787878787879,-0.65203614244987
-2.7777777777777777,-0.443504036212927,-2.7777777777777777,-0.5569084060463078,-2.7777777777777777,-0.6594896031012563
-2.676767676767677,-0.5411482698953787,-2.676767676767677,-0.6002683604183435,-2.676767676767677,-0.6661215834468585
-2.5757575757575757,-0.6363089624800997,-2.5757575757575757,-0.6396725440402657,-2.5757575757575757,-0.6715398637661353
-2.474747474747475,-0.725241414197713,-2.474747474747475,-0.6753456416248385,-2.474747474747475,-0.674565545688341
-2.3737373737373737,-0.8010191169999671,-2.3737373737373737,-0.7066964605752718,-2.3737373737373737,-0.6765307025278043
-2.272727272727273,-0.8626605255789729,-2.272727272727273,-0.7348121862404637,-2.272727272727273,-0.6766187567521622
-2.1717171717171717,-0.911435840482434,-2.1717171717171717,-0.7592451818361001,-2.1717171717171717,-0.6747200340049733
-2.070707070707071,-0.9518228090965052,-2.070707070707071,-0.7755022118880182,-2.070707070707071,-0.6711535886166349
-1.9696969696969697,-0.9791642715505677,-1.9696969696969697,-0.7889078495544403,-1.9696969696969697,-0.6653309071624213
-1.868686868686869,-0.9959505678135467,-1.868686868686869,-0.7978655263590677,-1.868686868686869,-0.6574048849245917
-1.7676767676767677,-1.0042572630521163,-1.7676767676767677,-0.8024926242661324,-1.7676767676767677,-0.6465258005011485
-1.6666666666666665,-1.0031374573437621,-1.6666666666666665,-0.8024786300118695,-1.6666666666666665,-0.6326231142587367
-1.5656565656565657,-0.9924082586558415,-1.5656565656565657,-0.7967021619463882,-1.5656565656565657,-0.6166476676023103
-1.4646464646464645,-0.9734669180157094,-1.4646464646464645,-0.7849942222838879,-1.4646464646464645,-0.5979735104135664
-1.3636363636363638,-0.9509454078185711,-1.3636363636363638,-0.7662349774950723,-1.3636363636363638,-0.5774876452737464
-1.2626262626262625,-0.9231872651397443,-1.2626262626262625,-0.7433085627087517,-1.2626262626262625,-0.554712230754877
-1.1616161616161618,-0.8903321986477033,-1.1616161616161618,-0.7150493507052204,-1.1616161616161618,-0.5295933185437713
-1.0606060606060606,-0.8533989447900909,-1.0606060606060606,-0.6814643745239313,-1.0606060606060606,-0.5021785239088743
-0.9595959595959593,-0.8107636317978494,-0.9595959595959593,-0.6421615608115637,-0.9595959595959593,-0.472606158673678
-0.858585858585859,-0.7612745578549842,-0.858585858585859,-0.5973114244123007,-0.858585858585859,-0.4405007246413654
-0.7575757575757578,-0.7079734098301842,-0.7575757575757578,-0.5483264663676062,-0.7575757575757578,-0.4059991890198415
-0.6565656565656566,-0.6488963804386183,-0.6565656565656566,-0.49554278063844803,-0.6565656565656566,-0.3695525928005769
-0.5555555555555554,-0.5859222961089965,-0.5555555555555554,-0.4403758682478846,-0.5555555555555554,-0.33111757514282614
-0.45454545454545503,-0.5162955936688821,-0.45454545454545503,-0.38037108381900747,-0.45454545454545503,-0.28897806883385513
-0.3535353535353538,-0.4413321076045784,-0.3535353535353538,-0.31690399361617216,-0.3535353535353538,-0.24421776219711205
-0.2525252525252526,-0.3616414699818406,-0.2525252525252526,-0.25204481791119354,-0.2525252525252526,-0.19795939679257332
-0.15151515151515138,-0.2780916794094584,-0.15151515151515138,-0.18575713332565263,-0.15151515151515138,-0.15066195015784248
-0.050505050505050164,-0.18977454284683343,-0.050505050505050164,-0.11797643773197505,-0.050505050505050164,-0.10274021898431054
0.050505050505050164,-0.0969321739577506,0.050505050505050164,-0.049351343645831554,0.050505050505050164,-0.05414525935109969
0.15151515151515138,-4.4802289442360816E-4,0.15151515151515138,0.019464788799119597,0.15151515151515138,-0.005354051541524688
0.2525252525252526,0.09918485823776255,0.2525252525252526,0.08804193897553166,0.2525252525252526,0.0433816826222638
0.3535353535353538,0.1998735386668185,0.3535353535353538,0.15569793996298523,0.3535353535353538,0.09176342956997338
0.45454545454545414,0.2999169047201809,0.45454545454545414,0.2218157527002848,0.45454545454545414,0.13952481930457306
0.5555555555555554,0.3978204122760816,0.5555555555555554,0.2846069052305317,0.5555555555555554,0.18668380673527113
0.6565656565656566,0.49120659266814587,0.6565656565656566,0.34467300454040606,0.6565656565656566,0.23277011860523958
0.7575757575757578,0.5777980409414698,0.7575757575757578,0.40208229496894643,0.7575757575757578,0.27613740421328176
0.8585858585858581,0.6568213676446025,0.8585858585858581,0.45705882493784666,0.8585858585858581,0.316305372116494
0.9595959595959593,0.7305067401293432,0.9595959595959593,0.5066458373898202,0.9595959595959593,0.35343427932594923
1.0606060606060606,0.7966609096765547,1.0606060606060606,0.5516149744358979,1.0606060606060606,0.38717949746647334
1.1616161616161618,0.8521200140106753,1.1616161616161618,0.5878017101641295,1.1616161616161618,0.4170777567516486
1.262626262626262,0.8975259277901253,1.262626262626262,0.6168588441570951,1.262626262626262,0.4446516626376453
1.3636363636363633,0.9290861930067627,1.3636363636363633,0.6411836178298306,1.3636363636363633,0.46927636759559477
1.4646464646464645,0.9508521659740165,1.4646464646464645,0.6610795923876176,1.4646464646464645,0.4901812911280025
1.5656565656565657,0.9612143570080512,1.5656565656565657,0.6768219209716341,1.5656565656565657,0.5079918402617868
1.666666666666667,0.9590141254017294,1.666666666666667,0.6878304863477654,1.666666666666667,0.5233400296358803
1.7676767676767673,0.9434050911299104,1.7676767676767673,0.6925040592034013,1.7676767676767673,0.5351552186913862
1.8686868686868685,0.9166484175947194,1.8686868686868685,0.6900246131027935,1.8686868686868685,0.5441567759439713
1.9696969696969697,0.8762489440965586,1.9696969696969697,0.6764843940414706,1.9696969696969697,0.5496025817549586
2.070707070707071,0.821609113516158,2.070707070707071,0.6566284893291617,2.070707070707071,0.5536820874974513
2.1717171717171713,0.7581599898835192,2.1717171717171713,0.6308981649064993,2.1717171717171713,0.5533100035360206
2.2727272727272725,0.6877704486402438,2.2727272727272725,0.6016976467409065,2.2727272727272725,0.550251787575325
2.3737373737373737,0.610815603287697,2.3737373737373737,0.5704721438286479,2.3737373737373737,0.5445865851994449
2.474747474747475,0.5275282181728166,2.474747474747475,0.5362814307290142,2.474747474747475,0.537858723684707
2.5757575757575752,0.44098299617705367,2.5757575757575752,0.5007018478259194,2.5757575757575752,0.5301810557083476
2.6767676767676765,0.3535127269572474,2.6767676767676765,0.4635791072799046,2.6767676767676765,0.5214280506499815
2.7777777777777777,0.2669314340184933,2.7777777777777777,0.4252681214470508,2.7777777777777777,0.5119428002841875
2.878787878787879,0.18244774892195767,2.878787878787879,0.3860805361925665,2.878787878787879,0.5020280103571171
2.9797979797979792,0.10009287374461422,2.9797979797979792,0.34649978327862213,2.9797979797979792,0.4918997465440798
3.0808080808080813,0.01825358803182036,3.0808080808080813,0.3067456416075246,3.0808080808080813,0.48152164248236273
3.1818181818181817,-0.06257603867024951,3.1818181818181817,0.2670556605010131,3.1818181818181817,0.4710506406469346
3.282828282828282,-0.14256250037038515,3.282828282828282,0.22747478740583862,3.282828282828282,0.46061400021772264
3.383838383838384,-0.22183964093761221,3.383838383838384,0.18823442296238005,3.383838383838384,0.4502063176185161
3.4848484848484844,-0.3000530710681483,3.4848484848484844,0.14930923451816047,3.4848484848484844,0.43983195563012295
3.5858585858585865,-0.37715837046834677,3.5858585858585865,0.11064727810620513,3.5858585858585865,0.4294855408707603
3.686868686868687,-0.4535879015098929,3.686868686868687,0.0721761317620166,3.686868686868687,0.41918651120808587
3.787878787878787,-0.5295958753874862,3.787878787878787,0.03385158496402993,3.787878787878787,0.4089211108732785
3.8888888888888893,-0.605341954214415,3.8888888888888893,-0.004196426105451837,3.8888888888888893,0.3986849690078671
3.9898989898989896,-0.6805725256650321,3.9898989898989896,-0.04204424507819378,3.9898989898989896,0.3884698016669201
4.09090909090909,-0.7553382625080638,4.09090909090909,-0.0795288839270637,4.09090909090909,0.37826736472008937
4.191919191919192,-0.8294318073700058,4.191919191919192,-0.11675718948094181,4.191919191919192,0.36808861016948324
4.292929292929292,-0.9025671571505313,4.292929292929292,-0.15379169226972225,4.292929292929292,0.3579396881040081
4.3939393939393945,-0.9751233932017581,4.3939393939393945,-0.19069301489402432,4.3939393939393945,0.3478279422102407
4.494949494949495,-1.0471623188798242,4.494949494949495,-0.227426975503073,4.494949494949495,0.3377388026398381
4.595959595959595,-1.1187532876284094,4.595959595959595,-0.263878605240927,4.595959595959595,0.32767338817749475
4.696969696969697,-1.189660915888889,4.696969696969697,-0.3001960056492053,4.696969696969697,0.3176530967513947
4.797979797979798,-1.2601246569645388,4.797979797979798,-0.3363281464377301,4.797979797979798,0.3076778013243957
4.8989898989899,-1.3303637186847002,4.8989898989899,-0.37225330321499334,4.8989898989899,0.29772768053304777
5.0,-1.4004134094571867,5.0,-0.4080316669473787,5.0,0.2878184725593889
1 x_n_5000_tl_0.1 y_n_5000_tl_0.1 x_n_5000_tl_1.0 y_n_5000_tl_1.0 x_n_5000_tl_3.0 y_n_5000_tl_3.0
2 -5.0 1.794615305950707 -5.0 0.3982406589003759 -5.0 -0.4811539502118497
3 -4.898989898989899 1.6984389486364895 -4.898989898989899 0.35719218031912614 -4.898989898989899 -0.48887996302459025
4 -4.797979797979798 1.6014200743009022 -4.797979797979798 0.3160182633093358 -4.797979797979798 -0.4966732473871599
5 -4.696969696969697 1.5040575427157106 -4.696969696969697 0.27464978660531225 -4.696969696969697 -0.5045073579233731
6 -4.595959595959596 1.4061194142774731 -4.595959595959596 0.23293440418365288 -4.595959595959596 -0.5123589845230747
7 -4.494949494949495 1.3072651356075136 -4.494949494949495 0.19100397829173557 -4.494949494949495 -0.5202738824510786
8 -4.393939393939394 1.2078259346207492 -4.393939393939394 0.1488314515422353 -4.393939393939394 -0.5282281154332915
9 -4.292929292929293 1.1079271590765678 -4.292929292929293 0.10646618526238515 -4.292929292929293 -0.536250283913464
10 -4.191919191919192 1.0073183089866045 -4.191919191919192 0.0637511521454329 -4.191919191919192 -0.5443068679044686
11 -4.090909090909091 0.9064682044248323 -4.090909090909091 0.020965778107027506 -4.090909090909091 -0.5524049731989601
12 -3.9898989898989896 0.805095064694333 -3.9898989898989896 -0.02200882631350869 -3.9898989898989896 -0.5605562335116703
13 -3.888888888888889 0.7032463151196859 -3.888888888888889 -0.06548644224881082 -3.888888888888889 -0.5687680272492979
14 -3.787878787878788 0.6007843964001714 -3.787878787878788 -0.10914135786185346 -3.787878787878788 -0.5770307386196555
15 -3.686868686868687 0.4978572358270573 -3.686868686868687 -0.15292201515712506 -3.686868686868687 -0.5853131654059709
16 -3.5858585858585856 0.39465522349482535 -3.5858585858585856 -0.19694472820060063 -3.5858585858585856 -0.593636189078738
17 -3.484848484848485 0.29091175104318323 -3.484848484848485 -0.24139115547918963 -3.484848484848485 -0.6019914655156898
18 -3.383838383838384 0.1868284306918275 -3.383838383838384 -0.28617728400089926 -3.383838383838384 -0.6103823599700093
19 -3.282828282828283 0.0817944681090728 -3.282828282828283 -0.33119615483860937 -3.282828282828283 -0.6188088888423856
20 -3.1818181818181817 -0.023670753859105602 -3.1818181818181817 -0.3764480559542342 -3.1818181818181817 -0.6272515625106694
21 -3.080808080808081 -0.1299349094939808 -3.080808080808081 -0.42202262988259276 -3.080808080808081 -0.6357221532633648
22 -2.9797979797979797 -0.2360705715363967 -2.9797979797979797 -0.467584017465408 -2.9797979797979797 -0.6440454918766952
23 -2.878787878787879 -0.34125419448980393 -2.878787878787879 -0.5126079284225549 -2.878787878787879 -0.65203614244987
24 -2.7777777777777777 -0.443504036212927 -2.7777777777777777 -0.5569084060463078 -2.7777777777777777 -0.6594896031012563
25 -2.676767676767677 -0.5411482698953787 -2.676767676767677 -0.6002683604183435 -2.676767676767677 -0.6661215834468585
26 -2.5757575757575757 -0.6363089624800997 -2.5757575757575757 -0.6396725440402657 -2.5757575757575757 -0.6715398637661353
27 -2.474747474747475 -0.725241414197713 -2.474747474747475 -0.6753456416248385 -2.474747474747475 -0.674565545688341
28 -2.3737373737373737 -0.8010191169999671 -2.3737373737373737 -0.7066964605752718 -2.3737373737373737 -0.6765307025278043
29 -2.272727272727273 -0.8626605255789729 -2.272727272727273 -0.7348121862404637 -2.272727272727273 -0.6766187567521622
30 -2.1717171717171717 -0.911435840482434 -2.1717171717171717 -0.7592451818361001 -2.1717171717171717 -0.6747200340049733
31 -2.070707070707071 -0.9518228090965052 -2.070707070707071 -0.7755022118880182 -2.070707070707071 -0.6711535886166349
32 -1.9696969696969697 -0.9791642715505677 -1.9696969696969697 -0.7889078495544403 -1.9696969696969697 -0.6653309071624213
33 -1.868686868686869 -0.9959505678135467 -1.868686868686869 -0.7978655263590677 -1.868686868686869 -0.6574048849245917
34 -1.7676767676767677 -1.0042572630521163 -1.7676767676767677 -0.8024926242661324 -1.7676767676767677 -0.6465258005011485
35 -1.6666666666666665 -1.0031374573437621 -1.6666666666666665 -0.8024786300118695 -1.6666666666666665 -0.6326231142587367
36 -1.5656565656565657 -0.9924082586558415 -1.5656565656565657 -0.7967021619463882 -1.5656565656565657 -0.6166476676023103
37 -1.4646464646464645 -0.9734669180157094 -1.4646464646464645 -0.7849942222838879 -1.4646464646464645 -0.5979735104135664
38 -1.3636363636363638 -0.9509454078185711 -1.3636363636363638 -0.7662349774950723 -1.3636363636363638 -0.5774876452737464
39 -1.2626262626262625 -0.9231872651397443 -1.2626262626262625 -0.7433085627087517 -1.2626262626262625 -0.554712230754877
40 -1.1616161616161618 -0.8903321986477033 -1.1616161616161618 -0.7150493507052204 -1.1616161616161618 -0.5295933185437713
41 -1.0606060606060606 -0.8533989447900909 -1.0606060606060606 -0.6814643745239313 -1.0606060606060606 -0.5021785239088743
42 -0.9595959595959593 -0.8107636317978494 -0.9595959595959593 -0.6421615608115637 -0.9595959595959593 -0.472606158673678
43 -0.858585858585859 -0.7612745578549842 -0.858585858585859 -0.5973114244123007 -0.858585858585859 -0.4405007246413654
44 -0.7575757575757578 -0.7079734098301842 -0.7575757575757578 -0.5483264663676062 -0.7575757575757578 -0.4059991890198415
45 -0.6565656565656566 -0.6488963804386183 -0.6565656565656566 -0.49554278063844803 -0.6565656565656566 -0.3695525928005769
46 -0.5555555555555554 -0.5859222961089965 -0.5555555555555554 -0.4403758682478846 -0.5555555555555554 -0.33111757514282614
47 -0.45454545454545503 -0.5162955936688821 -0.45454545454545503 -0.38037108381900747 -0.45454545454545503 -0.28897806883385513
48 -0.3535353535353538 -0.4413321076045784 -0.3535353535353538 -0.31690399361617216 -0.3535353535353538 -0.24421776219711205
49 -0.2525252525252526 -0.3616414699818406 -0.2525252525252526 -0.25204481791119354 -0.2525252525252526 -0.19795939679257332
50 -0.15151515151515138 -0.2780916794094584 -0.15151515151515138 -0.18575713332565263 -0.15151515151515138 -0.15066195015784248
51 -0.050505050505050164 -0.18977454284683343 -0.050505050505050164 -0.11797643773197505 -0.050505050505050164 -0.10274021898431054
52 0.050505050505050164 -0.0969321739577506 0.050505050505050164 -0.049351343645831554 0.050505050505050164 -0.05414525935109969
53 0.15151515151515138 -4.4802289442360816E-4 0.15151515151515138 0.019464788799119597 0.15151515151515138 -0.005354051541524688
54 0.2525252525252526 0.09918485823776255 0.2525252525252526 0.08804193897553166 0.2525252525252526 0.0433816826222638
55 0.3535353535353538 0.1998735386668185 0.3535353535353538 0.15569793996298523 0.3535353535353538 0.09176342956997338
56 0.45454545454545414 0.2999169047201809 0.45454545454545414 0.2218157527002848 0.45454545454545414 0.13952481930457306
57 0.5555555555555554 0.3978204122760816 0.5555555555555554 0.2846069052305317 0.5555555555555554 0.18668380673527113
58 0.6565656565656566 0.49120659266814587 0.6565656565656566 0.34467300454040606 0.6565656565656566 0.23277011860523958
59 0.7575757575757578 0.5777980409414698 0.7575757575757578 0.40208229496894643 0.7575757575757578 0.27613740421328176
60 0.8585858585858581 0.6568213676446025 0.8585858585858581 0.45705882493784666 0.8585858585858581 0.316305372116494
61 0.9595959595959593 0.7305067401293432 0.9595959595959593 0.5066458373898202 0.9595959595959593 0.35343427932594923
62 1.0606060606060606 0.7966609096765547 1.0606060606060606 0.5516149744358979 1.0606060606060606 0.38717949746647334
63 1.1616161616161618 0.8521200140106753 1.1616161616161618 0.5878017101641295 1.1616161616161618 0.4170777567516486
64 1.262626262626262 0.8975259277901253 1.262626262626262 0.6168588441570951 1.262626262626262 0.4446516626376453
65 1.3636363636363633 0.9290861930067627 1.3636363636363633 0.6411836178298306 1.3636363636363633 0.46927636759559477
66 1.4646464646464645 0.9508521659740165 1.4646464646464645 0.6610795923876176 1.4646464646464645 0.4901812911280025
67 1.5656565656565657 0.9612143570080512 1.5656565656565657 0.6768219209716341 1.5656565656565657 0.5079918402617868
68 1.666666666666667 0.9590141254017294 1.666666666666667 0.6878304863477654 1.666666666666667 0.5233400296358803
69 1.7676767676767673 0.9434050911299104 1.7676767676767673 0.6925040592034013 1.7676767676767673 0.5351552186913862
70 1.8686868686868685 0.9166484175947194 1.8686868686868685 0.6900246131027935 1.8686868686868685 0.5441567759439713
71 1.9696969696969697 0.8762489440965586 1.9696969696969697 0.6764843940414706 1.9696969696969697 0.5496025817549586
72 2.070707070707071 0.821609113516158 2.070707070707071 0.6566284893291617 2.070707070707071 0.5536820874974513
73 2.1717171717171713 0.7581599898835192 2.1717171717171713 0.6308981649064993 2.1717171717171713 0.5533100035360206
74 2.2727272727272725 0.6877704486402438 2.2727272727272725 0.6016976467409065 2.2727272727272725 0.550251787575325
75 2.3737373737373737 0.610815603287697 2.3737373737373737 0.5704721438286479 2.3737373737373737 0.5445865851994449
76 2.474747474747475 0.5275282181728166 2.474747474747475 0.5362814307290142 2.474747474747475 0.537858723684707
77 2.5757575757575752 0.44098299617705367 2.5757575757575752 0.5007018478259194 2.5757575757575752 0.5301810557083476
78 2.6767676767676765 0.3535127269572474 2.6767676767676765 0.4635791072799046 2.6767676767676765 0.5214280506499815
79 2.7777777777777777 0.2669314340184933 2.7777777777777777 0.4252681214470508 2.7777777777777777 0.5119428002841875
80 2.878787878787879 0.18244774892195767 2.878787878787879 0.3860805361925665 2.878787878787879 0.5020280103571171
81 2.9797979797979792 0.10009287374461422 2.9797979797979792 0.34649978327862213 2.9797979797979792 0.4918997465440798
82 3.0808080808080813 0.01825358803182036 3.0808080808080813 0.3067456416075246 3.0808080808080813 0.48152164248236273
83 3.1818181818181817 -0.06257603867024951 3.1818181818181817 0.2670556605010131 3.1818181818181817 0.4710506406469346
84 3.282828282828282 -0.14256250037038515 3.282828282828282 0.22747478740583862 3.282828282828282 0.46061400021772264
85 3.383838383838384 -0.22183964093761221 3.383838383838384 0.18823442296238005 3.383838383838384 0.4502063176185161
86 3.4848484848484844 -0.3000530710681483 3.4848484848484844 0.14930923451816047 3.4848484848484844 0.43983195563012295
87 3.5858585858585865 -0.37715837046834677 3.5858585858585865 0.11064727810620513 3.5858585858585865 0.4294855408707603
88 3.686868686868687 -0.4535879015098929 3.686868686868687 0.0721761317620166 3.686868686868687 0.41918651120808587
89 3.787878787878787 -0.5295958753874862 3.787878787878787 0.03385158496402993 3.787878787878787 0.4089211108732785
90 3.8888888888888893 -0.605341954214415 3.8888888888888893 -0.004196426105451837 3.8888888888888893 0.3986849690078671
91 3.9898989898989896 -0.6805725256650321 3.9898989898989896 -0.04204424507819378 3.9898989898989896 0.3884698016669201
92 4.09090909090909 -0.7553382625080638 4.09090909090909 -0.0795288839270637 4.09090909090909 0.37826736472008937
93 4.191919191919192 -0.8294318073700058 4.191919191919192 -0.11675718948094181 4.191919191919192 0.36808861016948324
94 4.292929292929292 -0.9025671571505313 4.292929292929292 -0.15379169226972225 4.292929292929292 0.3579396881040081
95 4.3939393939393945 -0.9751233932017581 4.3939393939393945 -0.19069301489402432 4.3939393939393945 0.3478279422102407
96 4.494949494949495 -1.0471623188798242 4.494949494949495 -0.227426975503073 4.494949494949495 0.3377388026398381
97 4.595959595959595 -1.1187532876284094 4.595959595959595 -0.263878605240927 4.595959595959595 0.32767338817749475
98 4.696969696969697 -1.189660915888889 4.696969696969697 -0.3001960056492053 4.696969696969697 0.3176530967513947
99 4.797979797979798 -1.2601246569645388 4.797979797979798 -0.3363281464377301 4.797979797979798 0.3076778013243957
100 4.8989898989899 -1.3303637186847002 4.8989898989899 -0.37225330321499334 4.8989898989899 0.29772768053304777
101 5.0 -1.4004134094571867 5.0 -0.4080316669473787 5.0 0.2878184725593889

@ -0,0 +1,101 @@
x_n_50_tl_0.0,y_n_50_tl_0.0,x_n_500_tl_0.0,y_n_500_tl_0.0,x_n_5000_tl_0.0,y_n_5000_tl_0.0,x_n_50_tl_1.0,y_n_50_tl_1.0,x_n_500_tl_1.0,y_n_500_tl_1.0,x_n_5000_tl_1.0,y_n_5000_tl_1.0,x_n_50_tl_3.0,y_n_50_tl_3.0,x_n_500_tl_3.0,y_n_500_tl_3.0,x_n_5000_tl_3.0,y_n_5000_tl_3.0
-5.0,-0.8599583057554976,-5.0,1.6797068787192495,-5.0,1.7379689606223239,-5.0,-0.42741272499487776,-5.0,0.23661838590976328,-5.0,0.20399386816229978,-5.0,0.13095951218866275,-5.0,-0.46242184829078237,-5.0,-0.41058629664051305
-4.898989898989899,-0.8456047840536887,-4.898989898989899,1.5940442438460278,-4.898989898989899,1.6472202329485999,-4.898989898989899,-0.4276431031893983,-4.898989898989899,0.20862681459226723,-4.898989898989899,0.17824071850107404,-4.898989898989899,0.10539057470765349,-4.898989898989899,-0.4609018322257037,-4.898989898989899,-0.4110599614729015
-4.797979797979798,-0.8312512623518801,-4.797979797979798,1.5066655952530659,-4.797979797979798,1.5560370024912986,-4.797979797979798,-0.42787348138391906,-4.797979797979798,0.18056404254218186,-4.797979797979798,0.1523309553054011,-4.797979797979798,0.07982163722664384,-4.797979797979798,-0.4593800781031771,-4.797979797979798,-0.41155161184122596
-4.696969696969697,-0.8168977406500709,-4.696969696969697,1.4192486056640365,-4.696969696969697,1.4641612521550218,-4.696969696969697,-0.42810385957843955,-4.696969696969697,0.1524990189306639,-4.696969696969697,0.1262143553005724,-4.696969696969697,0.05464380509332076,-4.696969696969697,-0.4578583174084625,-4.696969696969697,-0.41205688060740875
-4.595959595959596,-0.8025442189482614,-4.595959595959596,1.3308076153149195,-4.595959595959596,1.3718747642404912,-4.595959595959596,-0.42833423777296026,-4.595959595959596,0.12443399531914556,-4.595959595959596,0.10000299804643913,-4.595959595959596,0.029720704709016,-4.595959595959596,-0.45633655338498746,-4.595959595959596,-0.4126005212950324
-4.494949494949495,-0.788190697246453,-4.494949494949495,1.2408764237610932,-4.494949494949495,1.2794547935729972,-4.494949494949495,-0.42856461596748074,-4.494949494949495,0.09628036393480953,-4.494949494949495,0.07370213597938947,-4.494949494949495,0.004797604324711557,-4.494949494949495,-0.45481454100468904,-4.494949494949495,-0.41317280828652125
-4.393939393939394,-0.7757194193374484,-4.393939393939394,1.150777108936673,-4.393939393939394,1.1865984175078124,-4.393939393939394,-0.4287949941620015,-4.393939393939394,0.06803799087458409,-4.393939393939394,0.047353868838267546,-4.393939393939394,-0.019952866294811474,-4.393939393939394,-0.4532902682540511,-4.393939393939394,-0.41378088791316736
-4.292929292929293,-0.7635428572249876,-4.292929292929293,1.0606777941122512,-4.292929292929293,1.0935156155193826,-4.292929292929293,-0.42902537235652216,-4.292929292929293,0.039745189354681264,-4.292929292929293,0.020863777423783696,-4.292929292929293,-0.04424719286600705,-4.292929292929293,-0.45176167641583376,-4.292929292929293,-0.41441903123033147
-4.191919191919192,-0.7514991436388702,-4.191919191919192,0.9705784792878309,-4.191919191919192,0.9999451479756023,-4.191919191919192,-0.42925575055104276,-4.191919191919192,0.01144626171509771,-4.191919191919192,-0.005903721047402898,-4.191919191919192,-0.06854151943720274,-4.191919191919192,-0.4502329821869361,-4.191919191919192,-0.415076548381381
-4.090909090909091,-0.7396941691045894,-4.090909090909091,0.8798554638230421,-4.090909090909091,0.9059203084364202,-4.090909090909091,-0.42948612874556336,-4.090909090909091,-0.016952280979816926,-4.090909090909091,-0.03298925765732338,-4.090909090909091,-0.09283584600839848,-4.090909090909091,-0.44869972853751156,-4.090909090909091,-0.4157629995846106
-3.9898989898989896,-0.7279252765177078,-3.9898989898989896,0.7884244803113447,-3.9898989898989896,0.811474387051809,-3.9898989898989896,-0.42971650694008423,-3.9898989898989896,-0.04548036359257723,-3.9898989898989896,-0.06017986522111469,-3.9898989898989896,-0.11713017257959416,-3.9898989898989896,-0.44715472797022665,-3.9898989898989896,-0.41647096691012625
-3.888888888888889,-0.7161580919866168,-3.888888888888889,0.6966140451148786,-3.888888888888889,0.7168906385054419,-3.888888888888889,-0.4299468851346048,-3.888888888888889,-0.07408610945271141,-3.888888888888889,-0.0874709084540591,-3.888888888888889,-0.14142449915078953,-3.888888888888889,-0.4456015995456161,-3.888888888888889,-0.4171930364234525
-3.787878787878788,-0.7043909074555256,-3.787878787878788,0.604803249010758,-3.787878787878788,0.6219712537736367,-3.787878787878788,-0.4301772633291252,-3.787878787878788,-0.10285723661640957,-3.787878787878788,-0.11503695886523099,-3.787878787878788,-0.16571882572198493,-3.787878787878788,-0.4440477592686527,-3.787878787878788,-0.41792735866227004
-3.686868686868687,-0.6926237229244344,-3.686868686868687,0.512070766385858,-3.686868686868687,0.5265347560169878,-3.686868686868687,-0.4304076415236461,-3.686868686868687,-0.13176620357773466,-3.686868686868687,-0.1429497539600965,-3.686868686868687,-0.19001315229318066,-3.686868686868687,-0.44249216926013074,-3.686868686868687,-0.4186788950692494
-3.5858585858585856,-0.680856538393343,-3.5858585858585856,0.418341406261733,-3.5858585858585856,0.43037422799158725,-3.5858585858585856,-0.43063801971816673,-3.5858585858585856,-0.16072772857488207,-3.5858585858585856,-0.17103810603915154,-3.5858585858585856,-0.21430747886437626,-3.5858585858585856,-0.44093657925160834,-3.5858585858585856,-0.41944890491602094
-3.484848484848485,-0.6690893538622519,-3.484848484848485,0.3230008626762439,-3.484848484848485,0.33347359833985296,-3.484848484848485,-0.43086839791268744,-3.484848484848485,-0.189786562504877,-3.484848484848485,-0.1992640699299042,-3.484848484848485,-0.238601805435572,-3.484848484848485,-0.4393809892430859,-3.484848484848485,-0.4202525693559286
-3.383838383838384,-0.6573221693311603,-3.383838383838384,0.22755806300474243,-3.383838383838384,0.23599152727957395,-3.383838383838384,-0.4310987761072079,-3.383838383838384,-0.21885301172451227,-3.383838383838384,-0.22770533404467666,-3.383838383838384,-0.2628961320067672,-3.383838383838384,-0.43781693796746485,-3.383838383838384,-0.4210766722370822
-3.282828282828283,-0.6455549848000697,-3.282828282828283,0.13172938749299176,-3.282828282828283,0.13785071540835,-3.282828282828283,-0.4313291543017285,-3.282828282828283,-0.24792012144222308,-3.282828282828283,-0.25633384693349226,-3.282828282828283,-0.28719045857796294,-3.282828282828283,-0.4362515901030497,-3.282828282828283,-0.42192705020460003
-3.1818181818181817,-0.6337878002689783,-3.1818181818181817,0.03583960513370717,-3.1818181818181817,0.03926297085619488,-3.1818181818181817,-0.43155953249624923,-3.1818181818181817,-0.2770868438988566,-3.1818181818181817,-0.28512064843139634,-3.1818181818181817,-0.3114847851491585,-3.1818181818181817,-0.4346861097486259,-3.1818181818181817,-0.42279043662854426
-3.080808080808081,-0.6219933944673289,-3.080808080808081,-0.06005017722557655,-3.080808080808081,-0.05953650043486377,-3.080808080808081,-0.4317899106907698,-3.080808080808081,-0.30634202732953336,-3.080808080808081,-0.3140197227479732,-3.080808080808081,-0.33577911172035446,-3.080808080808081,-0.4331124443470669,-3.080808080808081,-0.42366980349780375
-2.9797979797979797,-0.6084802589111126,-2.9797979797979797,-0.15590935392992944,-2.9797979797979797,-0.15810366579897028,-2.9797979797979797,-0.4320202888852905,-2.9797979797979797,-0.33549678779642544,-2.9797979797979797,-0.3430021282671825,-2.9797979797979797,-0.3600734382915496,-2.9797979797979797,-0.4315218307109141,-2.9797979797979797,-0.42449207343700956
-2.878787878787879,-0.5891232690738096,-2.878787878787879,-0.24713180817765498,-2.878787878787879,-0.2552003497036097,-2.878787878787879,-0.43225066707981114,-2.878787878787879,-0.36352866123332933,-2.878787878787879,-0.3716002292573769,-2.878787878787879,-0.38436776486274526,-2.878787878787879,-0.42982012082652077,-2.878787878787879,-0.4251380414134998
-2.7777777777777777,-0.5636588831509095,-2.7777777777777777,-0.33701300990207655,-2.7777777777777777,-0.35066910453142525,-2.7777777777777777,-0.4324810452743318,-2.7777777777777777,-0.3911342117000581,-2.7777777777777777,-0.39951657101606874,-2.7777777777777777,-0.4086620914339411,-2.7777777777777777,-0.42794280685642583,-2.7777777777777777,-0.4254095546530059
-2.676767676767677,-0.538194497228009,-2.676767676767677,-0.4265304961947721,-2.676767676767677,-0.4419057912445846,-2.676767676767677,-0.4295143886441945,-2.676767676767677,-0.41758811768544335,-2.676767676767677,-0.4264377612958712,-2.676767676767677,-0.4329564180051365,-2.676767676767677,-0.4251801800597513,-2.676767676767677,-0.42514350551302893
-2.5757575757575757,-0.5127301113051083,-2.5757575757575757,-0.5160338868263108,-2.5757575757575757,-0.530562896182845,-2.5757575757575757,-0.4209813938653777,-2.5757575757575757,-0.4421888684751682,-2.5757575757575757,-0.4521958194404763,-2.5757575757575757,-0.4572507445763323,-2.5757575757575757,-0.4220835438175992,-2.5757575757575757,-0.42424941235712643
-2.474747474747475,-0.48726572538220836,-2.474747474747475,-0.6045443334592155,-2.474747474747475,-0.615529859161848,-2.474747474747475,-0.4124483990865609,-2.474747474747475,-0.4657884717671948,-2.474747474747475,-0.4762840194362591,-2.474747474747475,-0.480179747245649,-2.474747474747475,-0.4184871960008546,-2.474747474747475,-0.4227211360179997
-2.3737373737373737,-0.4618013394593081,-2.3737373737373737,-0.6866461198443653,-2.3737373737373737,-0.6916556206405179,-2.3737373737373737,-0.4039154043077441,-2.3737373737373737,-0.4872175481179362,-2.3737373737373737,-0.49664688375599,-2.3737373737373737,-0.5021327343044837,-2.3737373737373737,-0.4148617786025484,-2.3737373737373737,-0.42058969704823307
-2.272727272727273,-0.4363369535364072,-2.272727272727273,-0.7664221699283893,-2.272727272727273,-0.76211944205629,-2.272727272727273,-0.3953824095289272,-2.272727272727273,-0.5066515567337302,-2.272727272727273,-0.5156479697413601,-2.272727272727273,-0.5240857213633179,-2.272727272727273,-0.4101489198915738,-2.272727272727273,-0.41773244666508813
-2.1717171717171717,-0.41087256761350716,-2.1717171717171717,-0.8294863656303931,-2.1717171717171717,-0.8275864122047706,-2.1717171717171717,-0.38684941475011053,-2.1717171717171717,-0.5248642081767847,-2.1717171717171717,-0.5320776321494358,-2.1717171717171717,-0.5460387084221523,-2.1717171717171717,-0.40386935734460455,-2.1717171717171717,-0.41386532161191136
-2.070707070707071,-0.38540818169060687,-2.070707070707071,-0.8777818560548117,-2.070707070707071,-0.8828614286116081,-2.070707070707071,-0.37790597680581006,-2.070707070707071,-0.5419305295559403,-2.070707070707071,-0.5450192204063132,-2.070707070707071,-0.5535021346303699,-2.070707070707071,-0.3970390682426877,-2.070707070707071,-0.40816135821642785
-1.9696969696969697,-0.3599437957677064,-1.9696969696969697,-0.9240065596308831,-1.9696969696969697,-0.9252381701217932,-1.9696969696969697,-0.3679210297690768,-1.9696969696969697,-0.5515520831674893,-1.9696969696969697,-0.5532507694312989,-1.9696969696969697,-0.5395642887779512,-1.9696969696969697,-0.3899536977126602,-1.9696969696969697,-0.4010221140801823
-1.868686868686869,-0.3344794098448062,-1.868686868686869,-0.9642081153190732,-1.868686868686869,-0.9553319880266173,-1.868686868686869,-0.3579360827323437,-1.868686868686869,-0.5596849243269256,-1.868686868686869,-0.556146459781286,-1.868686868686869,-0.5226399861377664,-1.868686868686869,-0.38238093755017905,-1.868686868686869,-0.3924834151653046
-1.7676767676767677,-0.3090150239219054,-1.7676767676767677,-1.0007396420666628,-1.7676767676767677,-0.9785388909278812,-1.7676767676767677,-0.34795113569561026,-1.7676767676767677,-0.5614467949548656,-1.7676767676767677,-0.556098671354368,-1.7676767676767677,-0.4982759643499402,-1.7676767676767677,-0.37323932215085087,-1.7676767676767677,-0.3822790688909727
-1.6666666666666665,-0.2835506379990052,-1.6666666666666665,-1.0187333297343348,-1.6666666666666665,-0.990642179129256,-1.6666666666666665,-0.3378404050890797,-1.6666666666666665,-0.5581030917440444,-1.6666666666666665,-0.5516597526410076,-1.6666666666666665,-0.47067804898067184,-1.6666666666666665,-0.3614402633008814,-1.6666666666666665,-0.37030436851426224
-1.5656565656565657,-0.2580862520761052,-1.5656565656565657,-1.0247628857811257,-1.5656565656565657,-0.9908786897501635,-1.5656565656565657,-0.32764529263529574,-1.5656565656565657,-0.5521110428952534,-1.5656565656565657,-0.543054168961121,-1.5656565656565657,-0.44308013361140386,-1.5656565656565657,-0.34868249075072216,-1.5656565656565657,-0.35699361568660476
-1.4646464646464645,-0.2326218661532044,-1.4646464646464645,-1.0034906902849632,-1.4646464646464645,-0.9791175953628313,-1.4646464646464645,-0.3174501801815117,-1.4646464646464645,-0.5459322825614802,-1.4646464646464645,-0.5306579767422843,-1.4646464646464645,-0.41548221824213516,-1.4646464646464645,-0.3311832422822113,-1.4646464646464645,-0.3422960409489238
-1.3636363636363638,-0.20715748023030392,-1.3636363636363638,-0.9673348570651019,-1.3636363636363638,-0.9595107779813504,-1.3636363636363638,-0.30725506772772765,-1.3636363636363638,-0.5358046337748493,-1.3636363636363638,-0.5149935986561597,-1.3636363636363638,-0.3878843028728669,-1.3636363636363638,-0.3132121589299601,-1.3636363636363638,-0.32640862478895577
-1.2626262626262625,-0.1816930943074038,-1.2626262626262625,-0.9225014127525308,-1.2626262626262625,-0.9337929369785798,-1.2626262626262625,-0.29705995527394363,-1.2626262626262625,-0.5219865374295057,-1.2626262626262625,-0.49551878203869837,-1.2626262626262625,-0.3602863875035988,-1.2626262626262625,-0.2946441284959401,-1.2626262626262625,-0.3093875165551468
-1.1616161616161618,-0.15622870838450328,-1.1616161616161618,-0.8751043056611054,-1.1616161616161618,-0.8989581380947891,-1.1616161616161618,-0.2868560938657385,-1.1616161616161618,-0.5034750880272445,-1.1616161616161618,-0.47203943335323734,-1.1616161616161618,-0.33268847213433056,-1.1616161616161618,-0.274883632364574,-1.1616161616161618,-0.290930041718859
-1.0606060606060606,-0.13076432246160322,-1.0606060606060606,-0.821606899074672,-1.0606060606060606,-0.8584249497008333,-1.0606060606060606,-0.27660353819390815,-1.0606060606060606,-0.48270847299437897,-1.0606060606060606,-0.44464074915622404,-1.0606060606060606,-0.3050905567650622,-1.0606060606060606,-0.25396600066040825,-1.0606060606060606,-0.27118022111102713
-0.9595959595959593,-0.1052999365387022,-0.9595959595959593,-0.7640740662013277,-0.9595959595959593,-0.8091349495541134,-0.9595959595959593,-0.2663509825220778,-0.9595959595959593,-0.4531496187924299,-0.9595959595959593,-0.4131252245857649,-0.9595959595959593,-0.2774926413957938,-0.9595959595959593,-0.2325608605277687,-0.9595959595959593,-0.24999263682664583
-0.858585858585859,-0.07983555061580246,-0.858585858585859,-0.6997648036121712,-0.858585858585859,-0.7481101580520273,-0.858585858585859,-0.24945014324598108,-0.858585858585859,-0.4128551081137216,-0.858585858585859,-0.3783375004573455,-0.858585858585859,-0.24988890615957382,-0.858585858585859,-0.20970608424200354,-0.858585858585859,-0.22760758480332924
-0.7575757575757578,-0.054371164692902076,-0.7575757575757578,-0.6349094271338603,-0.7575757575757578,-0.6820384544330558,-0.7575757575757578,-0.22976061598357173,-0.7575757575757578,-0.37194755761368214,-0.7575757575757578,-0.34125536540984164,-0.7575757575757578,-0.22211577202959193,-0.7575757575757578,-0.18612295967753525,-0.7575757575757578,-0.20435972492122192
-0.6565656565656566,-0.028906778770001355,-0.6565656565656566,-0.5675463340257147,-0.6565656565656566,-0.6095055279444694,-0.6565656565656566,-0.21007108872116223,-0.6565656565656566,-0.33089771921954814,-0.6565656565656566,-0.3018873155488892,-0.6565656565656566,-0.193901705770251,-0.6565656565656566,-0.16215648653127196,-0.6565656565656566,-0.17931671250996567
-0.5555555555555554,-0.003442392847101086,-0.5555555555555554,-0.4979737843441253,-0.5555555555555554,-0.5294156894319434,-0.5555555555555554,-0.17756203711819088,-0.5555555555555554,-0.28543993548509355,-0.5555555555555554,-0.26041062451302716,-0.5555555555555554,-0.1652647608815763,-0.5555555555555554,-0.13697108727984195,-0.5555555555555554,-0.15330854213602407
-0.45454545454545503,0.022021993075799252,-0.45454545454545503,-0.41446378537016554,-0.45454545454545503,-0.44063136513918405,-0.45454545454545503,-0.14370193132078618,-0.45454545454545503,-0.2395445410097954,-0.45454545454545503,-0.21652789115320525,-0.45454545454545503,-0.13529651419425484,-0.45454545454545503,-0.11162353028803523,-0.45454545454545503,-0.12623393965312618
-0.3535353535353538,0.047486378998699605,-0.3535353535353538,-0.32279891003383887,-0.3535353535353538,-0.3477046435373429,-0.3535353535353538,-0.10934683153775412,-0.3535353535353538,-0.19101529776271153,-0.3535353535353538,-0.17035416577174828,-0.3535353535353538,-0.10509845793132169,-0.3535353535353538,-0.08626013443382194,-0.3535353535353538,-0.0984136402387288
-0.2525252525252526,0.07295076492159988,-0.2525252525252526,-0.2310925448666578,-0.2525252525252526,-0.25069145628093464,-0.2525252525252526,-0.07491795886312486,-0.2525252525252526,-0.14150481827496786,-0.2525252525252526,-0.12255925867115473,-0.2525252525252526,-0.07490040166838845,-0.2525252525252526,-0.060434579838324495,-0.2525252525252526,-0.07006332009798681
-0.15151515151515138,0.09843047923373265,-0.15151515151515138,-0.13636354870852932,-0.15151515151515138,-0.15095910699954188,-0.15151515151515138,-0.040306119685216676,-0.15151515151515138,-0.08982558834407159,-0.15151515151515138,-0.07398207558396772,-0.15151515151515138,-0.044702345405455264,-0.15151515151515138,-0.033631412543263274,-0.15151515151515138,-0.04141233375856603
-0.050505050505050164,0.12391212075429944,-0.050505050505050164,-0.03941345742250633,-0.050505050505050164,-0.04947445191778734,-0.050505050505050164,-0.005694280507308445,-0.050505050505050164,-0.03797674651308919,-0.050505050505050164,-0.025080464074353173,-0.050505050505050164,-0.014504289142522105,-0.050505050505050164,-0.006446181090338347,-0.050505050505050164,-0.012381418678247798
0.050505050505050164,0.14939376227486617,0.050505050505050164,0.056551574802519614,0.050505050505050164,0.0525838784102356,0.050505050505050164,0.028911158365061536,0.050505050505050164,0.013973891774473416,0.050505050505050164,0.023794553267499748,0.050505050505050164,0.01583885016218507,0.050505050505050164,0.021038028372213642,0.050505050505050164,0.016846741994686543
0.15151515151515138,0.17487540379543332,0.15151515151515138,0.15017264202689645,0.15151515151515138,0.15408973105493792,0.15151515151515138,0.062183868537649845,0.15151515151515138,0.06589471730593952,0.15151515151515138,0.07245763138776953,0.15151515151515138,0.046508129166361926,0.15151515151515138,0.04842915541973139,0.15151515151515138,0.04601083462340586
0.2525252525252526,0.2003570453160002,0.2525252525252526,0.24151055338001104,0.2525252525252526,0.2530277286116801,0.2525252525252526,0.09533027991528796,0.2525252525252526,0.11633887943820748,0.2525252525252526,0.11992049316059605,0.2525252525252526,0.07717740817053882,0.2525252525252526,0.07538338916654858,0.2525252525252526,0.07493657104851133
0.3535353535353538,0.22583868683656727,0.3535353535353538,0.3245702345293225,0.3535353535353538,0.3487077570947679,0.3535353535353538,0.12847669129292608,0.3535353535353538,0.1661606781018032,0.3535353535353538,0.16626942811591283,0.3535353535353538,0.10784668717471575,0.3535353535353538,0.10205978943459323,0.3535353535353538,0.10356289911566637
0.45454545454545414,0.25132032835713397,0.45454545454545414,0.4042440047834261,0.45454545454545414,0.4412637068427958,0.45454545454545414,0.15705349698246504,0.45454545454545414,0.21489012650224273,0.45454545454545414,0.21055873443432177,0.45454545454545414,0.1385159661788923,0.45454545454545414,0.12849799626750344,0.45454545454545414,0.13171638145035697
0.5555555555555554,0.2768019698777009,0.5555555555555554,0.48386343064481413,0.5555555555555554,0.5292644209820558,0.5555555555555554,0.1822941322301175,0.5555555555555554,0.26332131026810235,0.5555555555555554,0.25282542280637477,0.5555555555555554,0.16918524518306918,0.5555555555555554,0.1537986605041808,0.5555555555555554,0.15885558014342485
0.6565656565656566,0.30228361139826787,0.6565656565656566,0.5582703975525269,0.6565656565656566,0.6095279265110211,0.6565656565656566,0.20753476747777022,0.6565656565656566,0.311752494033962,0.6565656565656566,0.2926908500466596,0.6565656565656566,0.1998545241872461,0.6565656565656566,0.17827793057103108,0.6565656565656566,0.18425901109338033
0.7575757575757578,0.3276630675001063,0.7575757575757578,0.6240165672599972,0.7575757575757578,0.6817170975194252,0.7575757575757578,0.23277540272542308,0.7575757575757578,0.35585725421977105,0.7575757575757578,0.32990973382338223,0.7575757575757578,0.23052380319142296,0.7575757575757578,0.19993717433313357,0.7575757575757578,0.20856541522380753
0.8585858585858581,0.35294340046326517,0.8585858585858581,0.6832251591090945,0.8585858585858581,0.7490023509530548,0.8585858585858581,0.2580160379730755,0.8585858585858581,0.39411574874383437,0.8585858585858581,0.3646086605463153,0.8585858585858581,0.2611930821955996,0.8585858585858581,0.21959645347898898,0.8585858585858581,0.2319021251050189
0.9595959595959593,0.3782237334264241,0.9595959595959593,0.7379264665053952,0.9595959595959593,0.8101967957597399,0.9595959595959593,0.28325667322072823,0.9595959595959593,0.4295026011065611,0.9595959595959593,0.39755496473819213,0.9595959595959593,0.2918623611997765,0.9595959595959593,0.23923560012200779,0.9595959595959593,0.25414437767202697
1.0606060606060606,0.40350406638958297,1.0606060606060606,0.7921580999576039,1.0606060606060606,0.865038072851208,1.0606060606060606,0.3013557830052828,1.0606060606060606,0.4622992830762259,1.0606060606060606,0.4264742505103137,1.0606060606060606,0.3225316402039533,1.0606060606060606,0.2583177367004956,1.0606060606060606,0.27509011865395333
1.1616161616161618,0.4287843993527419,1.1616161616161618,0.8463753861957045,1.1616161616161618,0.9101530745705552,1.1616161616161618,0.30890687222540525,1.1616161616161618,0.4901351365169132,1.1616161616161618,0.45319808589043276,1.1616161616161618,0.35276108409396234,1.1616161616161618,0.27725858987652097,1.1616161616161618,0.29560030900846
1.262626262626262,0.4540647323159006,1.262626262626262,0.897495878378595,1.262626262626262,0.9417185837581196,1.262626262626262,0.3164579614455276,1.262626262626262,0.5145846409490937,1.262626262626262,0.4780296455205537,1.262626262626262,0.3794404038170447,1.262626262626262,0.2943968389517317,1.262626262626262,0.3152556528081
1.3636363636363633,0.47934506527905946,1.3636363636363633,0.9371746663372353,1.3636363636363633,0.9683350572505884,1.3636363636363633,0.32400905066565,1.3636363636363633,0.5362370529858077,1.3636363636363633,0.49985847015098533,1.3636363636363633,0.4061135157391696,1.3636363636363633,0.31086438420332474,1.3636363636363633,0.33319398921001137
1.4646464646464645,0.5046253982422182,1.4646464646464645,0.9707358108138878,1.4646464646464645,0.9850292043911345,1.4646464646464645,0.3315601398857724,1.4646464646464645,0.5531019255981576,1.4646464646464645,0.5181848921010453,1.4646464646464645,0.43278662766129444,1.4646464646464645,0.32679862313827224,1.4646464646464645,0.34908318351734496
1.5656565656565657,0.519310758600954,1.5656565656565657,0.9906032176938914,1.5656565656565657,0.9918397190961462,1.5656565656565657,0.3391112291058948,1.5656565656565657,0.5659801950328859,1.5656565656565657,0.5323498791465002,1.5656565656565657,0.4511009412793216,1.5656565656565657,0.34162587661768695,1.5656565656565657,0.3628958484057042
1.666666666666667,0.51401635833774,1.666666666666667,1.005715077214144,1.666666666666667,0.9899656142606021,1.666666666666667,0.346662318326017,1.666666666666667,0.575829702298404,1.666666666666667,0.541260149475436,1.666666666666667,0.4674803110925756,1.666666666666667,0.35601920704359724,1.666666666666667,0.37572761649169056
1.7676767676767673,0.5060676795476615,1.7676767676767673,1.0131883048070176,1.7676767676767673,0.9786887428475383,1.7676767676767673,0.35421340754613934,1.7676767676767673,0.5828151703640635,1.7676767676767673,0.5455395874048847,1.7676767676767673,0.4838510153495891,1.7676767676767673,0.3703169330810678,1.7676767676767673,0.38781035405087
1.8686868686868685,0.495017206229559,1.8686868686868685,0.9802541539054102,1.8686868686868685,0.9559310588882513,1.8686868686868685,0.3617644967662619,1.8686868686868685,0.5839088497682434,1.8686868686868685,0.5467157898697311,1.8686868686868685,0.49835864007261943,1.8686868686868685,0.38410765063343066,1.8686868686868685,0.3977196343512365
1.9696969696969697,0.48396673291145637,1.9696969696969697,0.9263388630289161,1.9696969696969697,0.9221166683929235,1.9696969696969697,0.36931558598638414,1.9696969696969697,0.5804936028756624,1.9696969696969697,0.5450082343452209,1.9696969696969697,0.5115510651058692,1.9696969696969697,0.39647206872026003,1.9696969696969697,0.4057110985660076
2.070707070707071,0.4729162595933537,2.070707070707071,0.8698358861835761,2.070707070707071,0.8764481362001709,2.070707070707071,0.3768666752065065,2.070707070707071,0.574716686049867,2.070707070707071,0.5394474878302619,2.070707070707071,0.5097127295818997,2.070707070707071,0.4049032898801099,2.070707070707071,0.41126316053027995
2.1717171717171713,0.46186578627525116,2.1717171717171713,0.8081407617658106,2.1717171717171713,0.8224404974364862,2.1717171717171713,0.38441776442662906,2.1717171717171713,0.5655375705620478,2.1717171717171713,0.5300324428024472,2.1717171717171713,0.49554940844796147,2.1717171717171713,0.4101839304627971,2.1717171717171713,0.4155357725301964
2.2727272727272725,0.4491770446280175,2.2727272727272725,0.7442526428212628,2.2727272727272725,0.7592323649828391,2.2727272727272725,0.391968853646751,2.2727272727272725,0.552350323381661,2.2727272727272725,0.5163813504127768,2.2727272727272725,0.48094925798793925,2.2727272727272725,0.413936941837358,2.2727272727272725,0.41843071308941276
2.3737373737373737,0.43609986761848685,2.3737373737373737,0.675405575107383,2.3737373737373737,0.6874741372997285,2.3737373737373737,0.39951994286687353,2.3737373737373737,0.5335539998256553,2.3737373737373737,0.49865541506871236,2.3737373737373737,0.4655571015656922,2.3737373737373737,0.4173906236056948,2.3737373737373737,0.42027249977934045
2.474747474747475,0.4066895271847391,2.474747474747475,0.5978840366507735,2.474747474747475,0.6073682995880296,2.474747474747475,0.40692119452733155,2.474747474747475,0.5117177142842388,2.474747474747475,0.4784532511364369,2.474747474747475,0.4501649451434452,2.474747474747475,0.4206585025597512,2.474747474747475,0.4213399238172195
2.5757575757575752,0.3749622763477891,2.5757575757575752,0.5099585586540418,2.5757575757575752,0.5223271133442401,2.5757575757575752,0.41415264022012394,2.5757575757575752,0.4850415148130571,2.5757575757575752,0.4567094947730761,2.5757575757575752,0.43458555601387144,2.5757575757575752,0.42158324745022285,2.5757575757575752,0.42181632222498416
2.6767676767676765,0.3432350255108388,2.6767676767676765,0.4205365946887392,2.6767676767676765,0.432906236858961,2.6767676767676765,0.4199131836378292,2.6767676767676765,0.45218830888592937,2.6767676767676765,0.4332394825941561,2.6767676767676765,0.41774264448225407,2.6767676767676765,0.42145613907090707,2.6767676767676765,0.4215504924390677
2.7777777777777777,0.3115077746738885,2.7777777777777777,0.32930350370842715,2.7777777777777777,0.3412321347424227,2.7777777777777777,0.42274639662898705,2.7777777777777777,0.4163402713183856,2.7777777777777777,0.40851950219775013,2.7777777777777777,0.40089973295063663,2.7777777777777777,0.4209228617300304,2.7777777777777777,0.4203590184673923
2.878787878787879,0.27978052383693824,2.878787878787879,0.23807041272811588,2.878787878787879,0.24760314946640188,2.878787878787879,0.42557960962014507,2.878787878787879,0.3802049595409251,2.878787878787879,0.383057999391408,2.878787878787879,0.3840568214190192,2.878787878787879,0.41938009129458526,2.878787878787879,0.41854626446476473
2.9797979797979792,0.24805327299998842,2.9797979797979792,0.14646854757187647,2.9797979797979792,0.15264712621771054,2.9797979797979792,0.428104678899817,2.9797979797979792,0.3432577786602793,2.9797979797979792,0.35694448241628624,2.9797979797979792,0.367213909887402,2.9797979797979792,0.41773298189050795,2.9797979797979792,0.4163510447804036
3.0808080808080813,0.21632602216303798,3.0808080808080813,0.05456143993271787,3.0808080808080813,0.057336396951423035,3.0808080808080813,0.42910204221273207,3.0808080808080813,0.30602019255320434,3.0808080808080813,0.3305660520102483,3.0808080808080813,0.3503709983557844,3.0808080808080813,0.41593157838764133,3.0808080808080813,0.41396474245507225
3.1818181818181817,0.18459877132608776,3.1818181818181817,-0.03733538955626138,3.1818181818181817,-0.03779843888287274,3.1818181818181817,0.4300994055256468,3.1818181818181817,0.26873960102765904,3.1818181818181817,0.30419224859801247,3.1818181818181817,0.3335280868241671,3.1818181818181817,0.41409475876758717,3.1818181818181817,0.41152646064562604
3.282828282828282,0.15287152048913782,3.282828282828282,-0.12920906194738088,3.282828282828282,-0.13249853932321157,3.282828282828282,0.43099899837317435,3.282828282828282,0.2314874157056526,3.282828282828282,0.27788417508140784,3.282828282828282,0.3164995410780566,3.282828282828282,0.4122620364061852,3.282828282828282,0.40912247673587887
3.383838383838384,0.12114426965218736,3.383838383838384,-0.22108273433850145,3.383838383838384,-0.22672866959540386,3.383838383838384,0.4318917322435721,3.383838383838384,0.19424068277399548,3.383838383838384,0.25176947991950477,3.383838383838384,0.2992528546417876,3.383838383838384,0.41043205422405316,3.383838383838384,0.40674183306733336
3.4848484848484844,0.08941701881523752,3.4848484848484844,-0.3129564067296208,3.4848484848484844,-0.3204339220693533,3.4848484848484844,0.43278446611396965,3.4848484848484844,0.15713787053146627,3.4848484848484844,0.22587592408322044,3.4848484848484844,0.2820061682055188,3.4848484848484844,0.4086021011097265,3.4848484848484844,0.4043698847877142
3.5858585858585865,0.058162275193419995,3.5858585858585865,-0.40462815693660914,3.5858585858585865,-0.41324795154433747,3.5858585858585865,0.4336771999843675,3.5858585858585865,0.12019800234358827,3.5858585858585865,0.20009983185318994,3.5858585858585865,0.2647594817692496,3.5858585858585865,0.4067722514909233,3.5858585858585865,0.40203120630187705
3.686868686868687,0.027654025225499562,3.686868686868687,-0.49422269067564845,3.686868686868687,-0.505293720158625,3.686868686868687,0.43456993385476517,3.686868686868687,0.08338176166505175,3.686868686868687,0.17451220690194294,3.686868686868687,0.24694025624429472,3.686868686868687,0.40494401437700783,3.686868686868687,0.39972779600606
3.787878787878787,-0.0028542247424208616,3.787878787878787,-0.5825355853286744,3.787878787878787,-0.5971159649192432,3.787878787878787,0.4354626677251625,3.787878787878787,0.04665044899957155,3.787878787878787,0.14916273839002891,3.787878787878787,0.22899283485249716,3.787878787878787,0.40312179798093106,3.787878787878787,0.39746202764807126
3.8888888888888893,-0.03336247471034154,3.8888888888888893,-0.6703463394238872,3.8888888888888893,-0.68824406601414,3.8888888888888893,0.4363554015955604,3.8888888888888893,0.009919136334091362,3.8888888888888893,0.12414842115967273,3.8888888888888893,0.21104541346069938,3.8888888888888893,0.4013011021954902,3.8888888888888893,0.3952295870367829
3.9898989898989896,-0.06387072467826214,3.9898989898989896,-0.7575928168757736,3.9898989898989896,-0.7784133912470257,3.9898989898989896,0.437248135465958,3.9898989898989896,-0.026722390982327433,3.9898989898989896,0.09939234299162882,3.9898989898989896,0.19309799206890174,3.9898989898989896,0.399484052282032,3.9898989898989896,0.3930265651896393
4.09090909090909,-0.0943789746461824,4.09090909090909,-0.8443788481067765,4.09090909090909,-0.8681309126980375,4.09090909090909,0.43814086933635565,4.09090909090909,-0.06308596529257729,4.09090909090909,0.07491765400345742,4.09090909090909,0.1750164743635475,4.09090909090909,0.39766754707663343,4.09090909090909,0.3908577509521082
4.191919191919192,-0.12488722461410334,4.191919191919192,-0.9297917533069101,4.191919191919192,-0.9573364023412008,4.191919191919192,0.4390336032067535,4.191919191919192,-0.09929539509789244,4.191919191919192,0.05074971564267564,4.191919191919192,0.1568727764842795,4.191919191919192,0.3958543351530404,4.191919191919192,0.38872432233841003
4.292929292929292,-0.15539547458202363,4.292929292929292,-1.0140884125491687,4.292929292929292,-1.0459165238042567,4.292929292929292,0.4399263370771512,4.292929292929292,-0.1349334585206603,4.292929292929292,0.02675516616820918,4.292929292929292,0.13872907860501169,4.292929292929292,0.3940418892740997,4.292929292929292,0.38661923148208605
4.3939393939393945,-0.18590372454994458,4.3939393939393945,-1.0972974392893766,4.3939393939393945,-1.1342383379633272,4.3939393939393945,0.4408190709475487,4.3939393939393945,-0.16982980680843562,4.3939393939393945,0.002964652994963484,4.3939393939393945,0.11796054958424437,4.3939393939393945,0.3922298874756054,4.3939393939393945,0.3845302650106349
4.494949494949495,-0.216411974517865,4.494949494949495,-1.179182894055243,4.494949494949495,-1.2221355458185688,4.494949494949495,0.44032091498508585,4.494949494949495,-0.20469748939648835,4.494949494949495,-0.0206002794035424,4.494949494949495,0.09701325884395126,4.494949494949495,0.39041788567711144,4.494949494949495,0.38248614430609396
4.595959595959595,-0.24692022448578524,4.595959595959595,-1.2601894992373368,4.595959595959595,-1.3091379548259912,4.595959595959595,0.4390119198940737,4.595959595959595,-0.239564339118166,4.595959595959595,-0.044064215802437315,4.595959595959595,0.07606596810365834,4.595959595959595,0.38861853091288373,4.595959595959595,0.3804739406387159
4.696969696969697,-0.2774284744537062,4.696969696969697,-1.3408190143954206,4.696969696969697,-1.395667382198044,4.696969696969697,0.4377029248030613,4.696969696969697,-0.2744311888398445,4.696969696969697,-0.06739710896332894,4.696969696969697,0.05511867736336504,4.696969696969697,0.38683625018149875,4.696969696969697,0.37848669218529357
4.797979797979798,-0.3079367244216266,4.797979797979798,-1.4214485295534998,4.797979797979798,-1.4814148159277154,4.797979797979798,0.436393929712049,4.797979797979798,-0.3092980385615221,4.797979797979798,-0.09057526494106827,4.797979797979798,0.034171386623072064,4.797979797979798,0.3850542123238927,4.797979797979798,0.37652869146057905
4.8989898989899,-0.3384449743895474,4.8989898989899,-1.5019215376311323,4.8989898989899,-1.5662892316768398,4.8989898989899,0.4350560618496009,4.8989898989899,-0.34416306870335767,4.8989898989899,-0.11357143325279366,4.8989898989899,0.013224095882778591,4.8989898989899,0.383272237289863,4.8989898989899,0.37460430584833954
5.0,-0.3689532243574676,5.0,-1.5820215750973248,5.0,-1.6508596672714462,5.0,0.43307940950570034,5.0,-0.37879161071248096,5.0,-0.13636462992911846,5.0,-0.007723194857514326,5.0,0.38149127984729847,5.0,0.37272620912380855
1 x_n_50_tl_0.0 y_n_50_tl_0.0 x_n_500_tl_0.0 y_n_500_tl_0.0 x_n_5000_tl_0.0 y_n_5000_tl_0.0 x_n_50_tl_1.0 y_n_50_tl_1.0 x_n_500_tl_1.0 y_n_500_tl_1.0 x_n_5000_tl_1.0 y_n_5000_tl_1.0 x_n_50_tl_3.0 y_n_50_tl_3.0 x_n_500_tl_3.0 y_n_500_tl_3.0 x_n_5000_tl_3.0 y_n_5000_tl_3.0
2 -5.0 -0.8599583057554976 -5.0 1.6797068787192495 -5.0 1.7379689606223239 -5.0 -0.42741272499487776 -5.0 0.23661838590976328 -5.0 0.20399386816229978 -5.0 0.13095951218866275 -5.0 -0.46242184829078237 -5.0 -0.41058629664051305
3 -4.898989898989899 -0.8456047840536887 -4.898989898989899 1.5940442438460278 -4.898989898989899 1.6472202329485999 -4.898989898989899 -0.4276431031893983 -4.898989898989899 0.20862681459226723 -4.898989898989899 0.17824071850107404 -4.898989898989899 0.10539057470765349 -4.898989898989899 -0.4609018322257037 -4.898989898989899 -0.4110599614729015
4 -4.797979797979798 -0.8312512623518801 -4.797979797979798 1.5066655952530659 -4.797979797979798 1.5560370024912986 -4.797979797979798 -0.42787348138391906 -4.797979797979798 0.18056404254218186 -4.797979797979798 0.1523309553054011 -4.797979797979798 0.07982163722664384 -4.797979797979798 -0.4593800781031771 -4.797979797979798 -0.41155161184122596
5 -4.696969696969697 -0.8168977406500709 -4.696969696969697 1.4192486056640365 -4.696969696969697 1.4641612521550218 -4.696969696969697 -0.42810385957843955 -4.696969696969697 0.1524990189306639 -4.696969696969697 0.1262143553005724 -4.696969696969697 0.05464380509332076 -4.696969696969697 -0.4578583174084625 -4.696969696969697 -0.41205688060740875
6 -4.595959595959596 -0.8025442189482614 -4.595959595959596 1.3308076153149195 -4.595959595959596 1.3718747642404912 -4.595959595959596 -0.42833423777296026 -4.595959595959596 0.12443399531914556 -4.595959595959596 0.10000299804643913 -4.595959595959596 0.029720704709016 -4.595959595959596 -0.45633655338498746 -4.595959595959596 -0.4126005212950324
7 -4.494949494949495 -0.788190697246453 -4.494949494949495 1.2408764237610932 -4.494949494949495 1.2794547935729972 -4.494949494949495 -0.42856461596748074 -4.494949494949495 0.09628036393480953 -4.494949494949495 0.07370213597938947 -4.494949494949495 0.004797604324711557 -4.494949494949495 -0.45481454100468904 -4.494949494949495 -0.41317280828652125
8 -4.393939393939394 -0.7757194193374484 -4.393939393939394 1.150777108936673 -4.393939393939394 1.1865984175078124 -4.393939393939394 -0.4287949941620015 -4.393939393939394 0.06803799087458409 -4.393939393939394 0.047353868838267546 -4.393939393939394 -0.019952866294811474 -4.393939393939394 -0.4532902682540511 -4.393939393939394 -0.41378088791316736
9 -4.292929292929293 -0.7635428572249876 -4.292929292929293 1.0606777941122512 -4.292929292929293 1.0935156155193826 -4.292929292929293 -0.42902537235652216 -4.292929292929293 0.039745189354681264 -4.292929292929293 0.020863777423783696 -4.292929292929293 -0.04424719286600705 -4.292929292929293 -0.45176167641583376 -4.292929292929293 -0.41441903123033147
10 -4.191919191919192 -0.7514991436388702 -4.191919191919192 0.9705784792878309 -4.191919191919192 0.9999451479756023 -4.191919191919192 -0.42925575055104276 -4.191919191919192 0.01144626171509771 -4.191919191919192 -0.005903721047402898 -4.191919191919192 -0.06854151943720274 -4.191919191919192 -0.4502329821869361 -4.191919191919192 -0.415076548381381
11 -4.090909090909091 -0.7396941691045894 -4.090909090909091 0.8798554638230421 -4.090909090909091 0.9059203084364202 -4.090909090909091 -0.42948612874556336 -4.090909090909091 -0.016952280979816926 -4.090909090909091 -0.03298925765732338 -4.090909090909091 -0.09283584600839848 -4.090909090909091 -0.44869972853751156 -4.090909090909091 -0.4157629995846106
12 -3.9898989898989896 -0.7279252765177078 -3.9898989898989896 0.7884244803113447 -3.9898989898989896 0.811474387051809 -3.9898989898989896 -0.42971650694008423 -3.9898989898989896 -0.04548036359257723 -3.9898989898989896 -0.06017986522111469 -3.9898989898989896 -0.11713017257959416 -3.9898989898989896 -0.44715472797022665 -3.9898989898989896 -0.41647096691012625
13 -3.888888888888889 -0.7161580919866168 -3.888888888888889 0.6966140451148786 -3.888888888888889 0.7168906385054419 -3.888888888888889 -0.4299468851346048 -3.888888888888889 -0.07408610945271141 -3.888888888888889 -0.0874709084540591 -3.888888888888889 -0.14142449915078953 -3.888888888888889 -0.4456015995456161 -3.888888888888889 -0.4171930364234525
14 -3.787878787878788 -0.7043909074555256 -3.787878787878788 0.604803249010758 -3.787878787878788 0.6219712537736367 -3.787878787878788 -0.4301772633291252 -3.787878787878788 -0.10285723661640957 -3.787878787878788 -0.11503695886523099 -3.787878787878788 -0.16571882572198493 -3.787878787878788 -0.4440477592686527 -3.787878787878788 -0.41792735866227004
15 -3.686868686868687 -0.6926237229244344 -3.686868686868687 0.512070766385858 -3.686868686868687 0.5265347560169878 -3.686868686868687 -0.4304076415236461 -3.686868686868687 -0.13176620357773466 -3.686868686868687 -0.1429497539600965 -3.686868686868687 -0.19001315229318066 -3.686868686868687 -0.44249216926013074 -3.686868686868687 -0.4186788950692494
16 -3.5858585858585856 -0.680856538393343 -3.5858585858585856 0.418341406261733 -3.5858585858585856 0.43037422799158725 -3.5858585858585856 -0.43063801971816673 -3.5858585858585856 -0.16072772857488207 -3.5858585858585856 -0.17103810603915154 -3.5858585858585856 -0.21430747886437626 -3.5858585858585856 -0.44093657925160834 -3.5858585858585856 -0.41944890491602094
17 -3.484848484848485 -0.6690893538622519 -3.484848484848485 0.3230008626762439 -3.484848484848485 0.33347359833985296 -3.484848484848485 -0.43086839791268744 -3.484848484848485 -0.189786562504877 -3.484848484848485 -0.1992640699299042 -3.484848484848485 -0.238601805435572 -3.484848484848485 -0.4393809892430859 -3.484848484848485 -0.4202525693559286
18 -3.383838383838384 -0.6573221693311603 -3.383838383838384 0.22755806300474243 -3.383838383838384 0.23599152727957395 -3.383838383838384 -0.4310987761072079 -3.383838383838384 -0.21885301172451227 -3.383838383838384 -0.22770533404467666 -3.383838383838384 -0.2628961320067672 -3.383838383838384 -0.43781693796746485 -3.383838383838384 -0.4210766722370822
19 -3.282828282828283 -0.6455549848000697 -3.282828282828283 0.13172938749299176 -3.282828282828283 0.13785071540835 -3.282828282828283 -0.4313291543017285 -3.282828282828283 -0.24792012144222308 -3.282828282828283 -0.25633384693349226 -3.282828282828283 -0.28719045857796294 -3.282828282828283 -0.4362515901030497 -3.282828282828283 -0.42192705020460003
20 -3.1818181818181817 -0.6337878002689783 -3.1818181818181817 0.03583960513370717 -3.1818181818181817 0.03926297085619488 -3.1818181818181817 -0.43155953249624923 -3.1818181818181817 -0.2770868438988566 -3.1818181818181817 -0.28512064843139634 -3.1818181818181817 -0.3114847851491585 -3.1818181818181817 -0.4346861097486259 -3.1818181818181817 -0.42279043662854426
21 -3.080808080808081 -0.6219933944673289 -3.080808080808081 -0.06005017722557655 -3.080808080808081 -0.05953650043486377 -3.080808080808081 -0.4317899106907698 -3.080808080808081 -0.30634202732953336 -3.080808080808081 -0.3140197227479732 -3.080808080808081 -0.33577911172035446 -3.080808080808081 -0.4331124443470669 -3.080808080808081 -0.42366980349780375
22 -2.9797979797979797 -0.6084802589111126 -2.9797979797979797 -0.15590935392992944 -2.9797979797979797 -0.15810366579897028 -2.9797979797979797 -0.4320202888852905 -2.9797979797979797 -0.33549678779642544 -2.9797979797979797 -0.3430021282671825 -2.9797979797979797 -0.3600734382915496 -2.9797979797979797 -0.4315218307109141 -2.9797979797979797 -0.42449207343700956
23 -2.878787878787879 -0.5891232690738096 -2.878787878787879 -0.24713180817765498 -2.878787878787879 -0.2552003497036097 -2.878787878787879 -0.43225066707981114 -2.878787878787879 -0.36352866123332933 -2.878787878787879 -0.3716002292573769 -2.878787878787879 -0.38436776486274526 -2.878787878787879 -0.42982012082652077 -2.878787878787879 -0.4251380414134998
24 -2.7777777777777777 -0.5636588831509095 -2.7777777777777777 -0.33701300990207655 -2.7777777777777777 -0.35066910453142525 -2.7777777777777777 -0.4324810452743318 -2.7777777777777777 -0.3911342117000581 -2.7777777777777777 -0.39951657101606874 -2.7777777777777777 -0.4086620914339411 -2.7777777777777777 -0.42794280685642583 -2.7777777777777777 -0.4254095546530059
25 -2.676767676767677 -0.538194497228009 -2.676767676767677 -0.4265304961947721 -2.676767676767677 -0.4419057912445846 -2.676767676767677 -0.4295143886441945 -2.676767676767677 -0.41758811768544335 -2.676767676767677 -0.4264377612958712 -2.676767676767677 -0.4329564180051365 -2.676767676767677 -0.4251801800597513 -2.676767676767677 -0.42514350551302893
26 -2.5757575757575757 -0.5127301113051083 -2.5757575757575757 -0.5160338868263108 -2.5757575757575757 -0.530562896182845 -2.5757575757575757 -0.4209813938653777 -2.5757575757575757 -0.4421888684751682 -2.5757575757575757 -0.4521958194404763 -2.5757575757575757 -0.4572507445763323 -2.5757575757575757 -0.4220835438175992 -2.5757575757575757 -0.42424941235712643
27 -2.474747474747475 -0.48726572538220836 -2.474747474747475 -0.6045443334592155 -2.474747474747475 -0.615529859161848 -2.474747474747475 -0.4124483990865609 -2.474747474747475 -0.4657884717671948 -2.474747474747475 -0.4762840194362591 -2.474747474747475 -0.480179747245649 -2.474747474747475 -0.4184871960008546 -2.474747474747475 -0.4227211360179997
28 -2.3737373737373737 -0.4618013394593081 -2.3737373737373737 -0.6866461198443653 -2.3737373737373737 -0.6916556206405179 -2.3737373737373737 -0.4039154043077441 -2.3737373737373737 -0.4872175481179362 -2.3737373737373737 -0.49664688375599 -2.3737373737373737 -0.5021327343044837 -2.3737373737373737 -0.4148617786025484 -2.3737373737373737 -0.42058969704823307
29 -2.272727272727273 -0.4363369535364072 -2.272727272727273 -0.7664221699283893 -2.272727272727273 -0.76211944205629 -2.272727272727273 -0.3953824095289272 -2.272727272727273 -0.5066515567337302 -2.272727272727273 -0.5156479697413601 -2.272727272727273 -0.5240857213633179 -2.272727272727273 -0.4101489198915738 -2.272727272727273 -0.41773244666508813
30 -2.1717171717171717 -0.41087256761350716 -2.1717171717171717 -0.8294863656303931 -2.1717171717171717 -0.8275864122047706 -2.1717171717171717 -0.38684941475011053 -2.1717171717171717 -0.5248642081767847 -2.1717171717171717 -0.5320776321494358 -2.1717171717171717 -0.5460387084221523 -2.1717171717171717 -0.40386935734460455 -2.1717171717171717 -0.41386532161191136
31 -2.070707070707071 -0.38540818169060687 -2.070707070707071 -0.8777818560548117 -2.070707070707071 -0.8828614286116081 -2.070707070707071 -0.37790597680581006 -2.070707070707071 -0.5419305295559403 -2.070707070707071 -0.5450192204063132 -2.070707070707071 -0.5535021346303699 -2.070707070707071 -0.3970390682426877 -2.070707070707071 -0.40816135821642785
32 -1.9696969696969697 -0.3599437957677064 -1.9696969696969697 -0.9240065596308831 -1.9696969696969697 -0.9252381701217932 -1.9696969696969697 -0.3679210297690768 -1.9696969696969697 -0.5515520831674893 -1.9696969696969697 -0.5532507694312989 -1.9696969696969697 -0.5395642887779512 -1.9696969696969697 -0.3899536977126602 -1.9696969696969697 -0.4010221140801823
33 -1.868686868686869 -0.3344794098448062 -1.868686868686869 -0.9642081153190732 -1.868686868686869 -0.9553319880266173 -1.868686868686869 -0.3579360827323437 -1.868686868686869 -0.5596849243269256 -1.868686868686869 -0.556146459781286 -1.868686868686869 -0.5226399861377664 -1.868686868686869 -0.38238093755017905 -1.868686868686869 -0.3924834151653046
34 -1.7676767676767677 -0.3090150239219054 -1.7676767676767677 -1.0007396420666628 -1.7676767676767677 -0.9785388909278812 -1.7676767676767677 -0.34795113569561026 -1.7676767676767677 -0.5614467949548656 -1.7676767676767677 -0.556098671354368 -1.7676767676767677 -0.4982759643499402 -1.7676767676767677 -0.37323932215085087 -1.7676767676767677 -0.3822790688909727
35 -1.6666666666666665 -0.2835506379990052 -1.6666666666666665 -1.0187333297343348 -1.6666666666666665 -0.990642179129256 -1.6666666666666665 -0.3378404050890797 -1.6666666666666665 -0.5581030917440444 -1.6666666666666665 -0.5516597526410076 -1.6666666666666665 -0.47067804898067184 -1.6666666666666665 -0.3614402633008814 -1.6666666666666665 -0.37030436851426224
36 -1.5656565656565657 -0.2580862520761052 -1.5656565656565657 -1.0247628857811257 -1.5656565656565657 -0.9908786897501635 -1.5656565656565657 -0.32764529263529574 -1.5656565656565657 -0.5521110428952534 -1.5656565656565657 -0.543054168961121 -1.5656565656565657 -0.44308013361140386 -1.5656565656565657 -0.34868249075072216 -1.5656565656565657 -0.35699361568660476
37 -1.4646464646464645 -0.2326218661532044 -1.4646464646464645 -1.0034906902849632 -1.4646464646464645 -0.9791175953628313 -1.4646464646464645 -0.3174501801815117 -1.4646464646464645 -0.5459322825614802 -1.4646464646464645 -0.5306579767422843 -1.4646464646464645 -0.41548221824213516 -1.4646464646464645 -0.3311832422822113 -1.4646464646464645 -0.3422960409489238
38 -1.3636363636363638 -0.20715748023030392 -1.3636363636363638 -0.9673348570651019 -1.3636363636363638 -0.9595107779813504 -1.3636363636363638 -0.30725506772772765 -1.3636363636363638 -0.5358046337748493 -1.3636363636363638 -0.5149935986561597 -1.3636363636363638 -0.3878843028728669 -1.3636363636363638 -0.3132121589299601 -1.3636363636363638 -0.32640862478895577
39 -1.2626262626262625 -0.1816930943074038 -1.2626262626262625 -0.9225014127525308 -1.2626262626262625 -0.9337929369785798 -1.2626262626262625 -0.29705995527394363 -1.2626262626262625 -0.5219865374295057 -1.2626262626262625 -0.49551878203869837 -1.2626262626262625 -0.3602863875035988 -1.2626262626262625 -0.2946441284959401 -1.2626262626262625 -0.3093875165551468
40 -1.1616161616161618 -0.15622870838450328 -1.1616161616161618 -0.8751043056611054 -1.1616161616161618 -0.8989581380947891 -1.1616161616161618 -0.2868560938657385 -1.1616161616161618 -0.5034750880272445 -1.1616161616161618 -0.47203943335323734 -1.1616161616161618 -0.33268847213433056 -1.1616161616161618 -0.274883632364574 -1.1616161616161618 -0.290930041718859
41 -1.0606060606060606 -0.13076432246160322 -1.0606060606060606 -0.821606899074672 -1.0606060606060606 -0.8584249497008333 -1.0606060606060606 -0.27660353819390815 -1.0606060606060606 -0.48270847299437897 -1.0606060606060606 -0.44464074915622404 -1.0606060606060606 -0.3050905567650622 -1.0606060606060606 -0.25396600066040825 -1.0606060606060606 -0.27118022111102713
42 -0.9595959595959593 -0.1052999365387022 -0.9595959595959593 -0.7640740662013277 -0.9595959595959593 -0.8091349495541134 -0.9595959595959593 -0.2663509825220778 -0.9595959595959593 -0.4531496187924299 -0.9595959595959593 -0.4131252245857649 -0.9595959595959593 -0.2774926413957938 -0.9595959595959593 -0.2325608605277687 -0.9595959595959593 -0.24999263682664583
43 -0.858585858585859 -0.07983555061580246 -0.858585858585859 -0.6997648036121712 -0.858585858585859 -0.7481101580520273 -0.858585858585859 -0.24945014324598108 -0.858585858585859 -0.4128551081137216 -0.858585858585859 -0.3783375004573455 -0.858585858585859 -0.24988890615957382 -0.858585858585859 -0.20970608424200354 -0.858585858585859 -0.22760758480332924
44 -0.7575757575757578 -0.054371164692902076 -0.7575757575757578 -0.6349094271338603 -0.7575757575757578 -0.6820384544330558 -0.7575757575757578 -0.22976061598357173 -0.7575757575757578 -0.37194755761368214 -0.7575757575757578 -0.34125536540984164 -0.7575757575757578 -0.22211577202959193 -0.7575757575757578 -0.18612295967753525 -0.7575757575757578 -0.20435972492122192
45 -0.6565656565656566 -0.028906778770001355 -0.6565656565656566 -0.5675463340257147 -0.6565656565656566 -0.6095055279444694 -0.6565656565656566 -0.21007108872116223 -0.6565656565656566 -0.33089771921954814 -0.6565656565656566 -0.3018873155488892 -0.6565656565656566 -0.193901705770251 -0.6565656565656566 -0.16215648653127196 -0.6565656565656566 -0.17931671250996567
46 -0.5555555555555554 -0.003442392847101086 -0.5555555555555554 -0.4979737843441253 -0.5555555555555554 -0.5294156894319434 -0.5555555555555554 -0.17756203711819088 -0.5555555555555554 -0.28543993548509355 -0.5555555555555554 -0.26041062451302716 -0.5555555555555554 -0.1652647608815763 -0.5555555555555554 -0.13697108727984195 -0.5555555555555554 -0.15330854213602407
47 -0.45454545454545503 0.022021993075799252 -0.45454545454545503 -0.41446378537016554 -0.45454545454545503 -0.44063136513918405 -0.45454545454545503 -0.14370193132078618 -0.45454545454545503 -0.2395445410097954 -0.45454545454545503 -0.21652789115320525 -0.45454545454545503 -0.13529651419425484 -0.45454545454545503 -0.11162353028803523 -0.45454545454545503 -0.12623393965312618
48 -0.3535353535353538 0.047486378998699605 -0.3535353535353538 -0.32279891003383887 -0.3535353535353538 -0.3477046435373429 -0.3535353535353538 -0.10934683153775412 -0.3535353535353538 -0.19101529776271153 -0.3535353535353538 -0.17035416577174828 -0.3535353535353538 -0.10509845793132169 -0.3535353535353538 -0.08626013443382194 -0.3535353535353538 -0.0984136402387288
49 -0.2525252525252526 0.07295076492159988 -0.2525252525252526 -0.2310925448666578 -0.2525252525252526 -0.25069145628093464 -0.2525252525252526 -0.07491795886312486 -0.2525252525252526 -0.14150481827496786 -0.2525252525252526 -0.12255925867115473 -0.2525252525252526 -0.07490040166838845 -0.2525252525252526 -0.060434579838324495 -0.2525252525252526 -0.07006332009798681
50 -0.15151515151515138 0.09843047923373265 -0.15151515151515138 -0.13636354870852932 -0.15151515151515138 -0.15095910699954188 -0.15151515151515138 -0.040306119685216676 -0.15151515151515138 -0.08982558834407159 -0.15151515151515138 -0.07398207558396772 -0.15151515151515138 -0.044702345405455264 -0.15151515151515138 -0.033631412543263274 -0.15151515151515138 -0.04141233375856603
51 -0.050505050505050164 0.12391212075429944 -0.050505050505050164 -0.03941345742250633 -0.050505050505050164 -0.04947445191778734 -0.050505050505050164 -0.005694280507308445 -0.050505050505050164 -0.03797674651308919 -0.050505050505050164 -0.025080464074353173 -0.050505050505050164 -0.014504289142522105 -0.050505050505050164 -0.006446181090338347 -0.050505050505050164 -0.012381418678247798
52 0.050505050505050164 0.14939376227486617 0.050505050505050164 0.056551574802519614 0.050505050505050164 0.0525838784102356 0.050505050505050164 0.028911158365061536 0.050505050505050164 0.013973891774473416 0.050505050505050164 0.023794553267499748 0.050505050505050164 0.01583885016218507 0.050505050505050164 0.021038028372213642 0.050505050505050164 0.016846741994686543
53 0.15151515151515138 0.17487540379543332 0.15151515151515138 0.15017264202689645 0.15151515151515138 0.15408973105493792 0.15151515151515138 0.062183868537649845 0.15151515151515138 0.06589471730593952 0.15151515151515138 0.07245763138776953 0.15151515151515138 0.046508129166361926 0.15151515151515138 0.04842915541973139 0.15151515151515138 0.04601083462340586
54 0.2525252525252526 0.2003570453160002 0.2525252525252526 0.24151055338001104 0.2525252525252526 0.2530277286116801 0.2525252525252526 0.09533027991528796 0.2525252525252526 0.11633887943820748 0.2525252525252526 0.11992049316059605 0.2525252525252526 0.07717740817053882 0.2525252525252526 0.07538338916654858 0.2525252525252526 0.07493657104851133
55 0.3535353535353538 0.22583868683656727 0.3535353535353538 0.3245702345293225 0.3535353535353538 0.3487077570947679 0.3535353535353538 0.12847669129292608 0.3535353535353538 0.1661606781018032 0.3535353535353538 0.16626942811591283 0.3535353535353538 0.10784668717471575 0.3535353535353538 0.10205978943459323 0.3535353535353538 0.10356289911566637
56 0.45454545454545414 0.25132032835713397 0.45454545454545414 0.4042440047834261 0.45454545454545414 0.4412637068427958 0.45454545454545414 0.15705349698246504 0.45454545454545414 0.21489012650224273 0.45454545454545414 0.21055873443432177 0.45454545454545414 0.1385159661788923 0.45454545454545414 0.12849799626750344 0.45454545454545414 0.13171638145035697
57 0.5555555555555554 0.2768019698777009 0.5555555555555554 0.48386343064481413 0.5555555555555554 0.5292644209820558 0.5555555555555554 0.1822941322301175 0.5555555555555554 0.26332131026810235 0.5555555555555554 0.25282542280637477 0.5555555555555554 0.16918524518306918 0.5555555555555554 0.1537986605041808 0.5555555555555554 0.15885558014342485
58 0.6565656565656566 0.30228361139826787 0.6565656565656566 0.5582703975525269 0.6565656565656566 0.6095279265110211 0.6565656565656566 0.20753476747777022 0.6565656565656566 0.311752494033962 0.6565656565656566 0.2926908500466596 0.6565656565656566 0.1998545241872461 0.6565656565656566 0.17827793057103108 0.6565656565656566 0.18425901109338033
59 0.7575757575757578 0.3276630675001063 0.7575757575757578 0.6240165672599972 0.7575757575757578 0.6817170975194252 0.7575757575757578 0.23277540272542308 0.7575757575757578 0.35585725421977105 0.7575757575757578 0.32990973382338223 0.7575757575757578 0.23052380319142296 0.7575757575757578 0.19993717433313357 0.7575757575757578 0.20856541522380753
60 0.8585858585858581 0.35294340046326517 0.8585858585858581 0.6832251591090945 0.8585858585858581 0.7490023509530548 0.8585858585858581 0.2580160379730755 0.8585858585858581 0.39411574874383437 0.8585858585858581 0.3646086605463153 0.8585858585858581 0.2611930821955996 0.8585858585858581 0.21959645347898898 0.8585858585858581 0.2319021251050189
61 0.9595959595959593 0.3782237334264241 0.9595959595959593 0.7379264665053952 0.9595959595959593 0.8101967957597399 0.9595959595959593 0.28325667322072823 0.9595959595959593 0.4295026011065611 0.9595959595959593 0.39755496473819213 0.9595959595959593 0.2918623611997765 0.9595959595959593 0.23923560012200779 0.9595959595959593 0.25414437767202697
62 1.0606060606060606 0.40350406638958297 1.0606060606060606 0.7921580999576039 1.0606060606060606 0.865038072851208 1.0606060606060606 0.3013557830052828 1.0606060606060606 0.4622992830762259 1.0606060606060606 0.4264742505103137 1.0606060606060606 0.3225316402039533 1.0606060606060606 0.2583177367004956 1.0606060606060606 0.27509011865395333
63 1.1616161616161618 0.4287843993527419 1.1616161616161618 0.8463753861957045 1.1616161616161618 0.9101530745705552 1.1616161616161618 0.30890687222540525 1.1616161616161618 0.4901351365169132 1.1616161616161618 0.45319808589043276 1.1616161616161618 0.35276108409396234 1.1616161616161618 0.27725858987652097 1.1616161616161618 0.29560030900846
64 1.262626262626262 0.4540647323159006 1.262626262626262 0.897495878378595 1.262626262626262 0.9417185837581196 1.262626262626262 0.3164579614455276 1.262626262626262 0.5145846409490937 1.262626262626262 0.4780296455205537 1.262626262626262 0.3794404038170447 1.262626262626262 0.2943968389517317 1.262626262626262 0.3152556528081
65 1.3636363636363633 0.47934506527905946 1.3636363636363633 0.9371746663372353 1.3636363636363633 0.9683350572505884 1.3636363636363633 0.32400905066565 1.3636363636363633 0.5362370529858077 1.3636363636363633 0.49985847015098533 1.3636363636363633 0.4061135157391696 1.3636363636363633 0.31086438420332474 1.3636363636363633 0.33319398921001137
66 1.4646464646464645 0.5046253982422182 1.4646464646464645 0.9707358108138878 1.4646464646464645 0.9850292043911345 1.4646464646464645 0.3315601398857724 1.4646464646464645 0.5531019255981576 1.4646464646464645 0.5181848921010453 1.4646464646464645 0.43278662766129444 1.4646464646464645 0.32679862313827224 1.4646464646464645 0.34908318351734496
67 1.5656565656565657 0.519310758600954 1.5656565656565657 0.9906032176938914 1.5656565656565657 0.9918397190961462 1.5656565656565657 0.3391112291058948 1.5656565656565657 0.5659801950328859 1.5656565656565657 0.5323498791465002 1.5656565656565657 0.4511009412793216 1.5656565656565657 0.34162587661768695 1.5656565656565657 0.3628958484057042
68 1.666666666666667 0.51401635833774 1.666666666666667 1.005715077214144 1.666666666666667 0.9899656142606021 1.666666666666667 0.346662318326017 1.666666666666667 0.575829702298404 1.666666666666667 0.541260149475436 1.666666666666667 0.4674803110925756 1.666666666666667 0.35601920704359724 1.666666666666667 0.37572761649169056
69 1.7676767676767673 0.5060676795476615 1.7676767676767673 1.0131883048070176 1.7676767676767673 0.9786887428475383 1.7676767676767673 0.35421340754613934 1.7676767676767673 0.5828151703640635 1.7676767676767673 0.5455395874048847 1.7676767676767673 0.4838510153495891 1.7676767676767673 0.3703169330810678 1.7676767676767673 0.38781035405087
70 1.8686868686868685 0.495017206229559 1.8686868686868685 0.9802541539054102 1.8686868686868685 0.9559310588882513 1.8686868686868685 0.3617644967662619 1.8686868686868685 0.5839088497682434 1.8686868686868685 0.5467157898697311 1.8686868686868685 0.49835864007261943 1.8686868686868685 0.38410765063343066 1.8686868686868685 0.3977196343512365
71 1.9696969696969697 0.48396673291145637 1.9696969696969697 0.9263388630289161 1.9696969696969697 0.9221166683929235 1.9696969696969697 0.36931558598638414 1.9696969696969697 0.5804936028756624 1.9696969696969697 0.5450082343452209 1.9696969696969697 0.5115510651058692 1.9696969696969697 0.39647206872026003 1.9696969696969697 0.4057110985660076
72 2.070707070707071 0.4729162595933537 2.070707070707071 0.8698358861835761 2.070707070707071 0.8764481362001709 2.070707070707071 0.3768666752065065 2.070707070707071 0.574716686049867 2.070707070707071 0.5394474878302619 2.070707070707071 0.5097127295818997 2.070707070707071 0.4049032898801099 2.070707070707071 0.41126316053027995
73 2.1717171717171713 0.46186578627525116 2.1717171717171713 0.8081407617658106 2.1717171717171713 0.8224404974364862 2.1717171717171713 0.38441776442662906 2.1717171717171713 0.5655375705620478 2.1717171717171713 0.5300324428024472 2.1717171717171713 0.49554940844796147 2.1717171717171713 0.4101839304627971 2.1717171717171713 0.4155357725301964
74 2.2727272727272725 0.4491770446280175 2.2727272727272725 0.7442526428212628 2.2727272727272725 0.7592323649828391 2.2727272727272725 0.391968853646751 2.2727272727272725 0.552350323381661 2.2727272727272725 0.5163813504127768 2.2727272727272725 0.48094925798793925 2.2727272727272725 0.413936941837358 2.2727272727272725 0.41843071308941276
75 2.3737373737373737 0.43609986761848685 2.3737373737373737 0.675405575107383 2.3737373737373737 0.6874741372997285 2.3737373737373737 0.39951994286687353 2.3737373737373737 0.5335539998256553 2.3737373737373737 0.49865541506871236 2.3737373737373737 0.4655571015656922 2.3737373737373737 0.4173906236056948 2.3737373737373737 0.42027249977934045
76 2.474747474747475 0.4066895271847391 2.474747474747475 0.5978840366507735 2.474747474747475 0.6073682995880296 2.474747474747475 0.40692119452733155 2.474747474747475 0.5117177142842388 2.474747474747475 0.4784532511364369 2.474747474747475 0.4501649451434452 2.474747474747475 0.4206585025597512 2.474747474747475 0.4213399238172195
77 2.5757575757575752 0.3749622763477891 2.5757575757575752 0.5099585586540418 2.5757575757575752 0.5223271133442401 2.5757575757575752 0.41415264022012394 2.5757575757575752 0.4850415148130571 2.5757575757575752 0.4567094947730761 2.5757575757575752 0.43458555601387144 2.5757575757575752 0.42158324745022285 2.5757575757575752 0.42181632222498416
78 2.6767676767676765 0.3432350255108388 2.6767676767676765 0.4205365946887392 2.6767676767676765 0.432906236858961 2.6767676767676765 0.4199131836378292 2.6767676767676765 0.45218830888592937 2.6767676767676765 0.4332394825941561 2.6767676767676765 0.41774264448225407 2.6767676767676765 0.42145613907090707 2.6767676767676765 0.4215504924390677
79 2.7777777777777777 0.3115077746738885 2.7777777777777777 0.32930350370842715 2.7777777777777777 0.3412321347424227 2.7777777777777777 0.42274639662898705 2.7777777777777777 0.4163402713183856 2.7777777777777777 0.40851950219775013 2.7777777777777777 0.40089973295063663 2.7777777777777777 0.4209228617300304 2.7777777777777777 0.4203590184673923
80 2.878787878787879 0.27978052383693824 2.878787878787879 0.23807041272811588 2.878787878787879 0.24760314946640188 2.878787878787879 0.42557960962014507 2.878787878787879 0.3802049595409251 2.878787878787879 0.383057999391408 2.878787878787879 0.3840568214190192 2.878787878787879 0.41938009129458526 2.878787878787879 0.41854626446476473
81 2.9797979797979792 0.24805327299998842 2.9797979797979792 0.14646854757187647 2.9797979797979792 0.15264712621771054 2.9797979797979792 0.428104678899817 2.9797979797979792 0.3432577786602793 2.9797979797979792 0.35694448241628624 2.9797979797979792 0.367213909887402 2.9797979797979792 0.41773298189050795 2.9797979797979792 0.4163510447804036
82 3.0808080808080813 0.21632602216303798 3.0808080808080813 0.05456143993271787 3.0808080808080813 0.057336396951423035 3.0808080808080813 0.42910204221273207 3.0808080808080813 0.30602019255320434 3.0808080808080813 0.3305660520102483 3.0808080808080813 0.3503709983557844 3.0808080808080813 0.41593157838764133 3.0808080808080813 0.41396474245507225
83 3.1818181818181817 0.18459877132608776 3.1818181818181817 -0.03733538955626138 3.1818181818181817 -0.03779843888287274 3.1818181818181817 0.4300994055256468 3.1818181818181817 0.26873960102765904 3.1818181818181817 0.30419224859801247 3.1818181818181817 0.3335280868241671 3.1818181818181817 0.41409475876758717 3.1818181818181817 0.41152646064562604
84 3.282828282828282 0.15287152048913782 3.282828282828282 -0.12920906194738088 3.282828282828282 -0.13249853932321157 3.282828282828282 0.43099899837317435 3.282828282828282 0.2314874157056526 3.282828282828282 0.27788417508140784 3.282828282828282 0.3164995410780566 3.282828282828282 0.4122620364061852 3.282828282828282 0.40912247673587887
85 3.383838383838384 0.12114426965218736 3.383838383838384 -0.22108273433850145 3.383838383838384 -0.22672866959540386 3.383838383838384 0.4318917322435721 3.383838383838384 0.19424068277399548 3.383838383838384 0.25176947991950477 3.383838383838384 0.2992528546417876 3.383838383838384 0.41043205422405316 3.383838383838384 0.40674183306733336
86 3.4848484848484844 0.08941701881523752 3.4848484848484844 -0.3129564067296208 3.4848484848484844 -0.3204339220693533 3.4848484848484844 0.43278446611396965 3.4848484848484844 0.15713787053146627 3.4848484848484844 0.22587592408322044 3.4848484848484844 0.2820061682055188 3.4848484848484844 0.4086021011097265 3.4848484848484844 0.4043698847877142
87 3.5858585858585865 0.058162275193419995 3.5858585858585865 -0.40462815693660914 3.5858585858585865 -0.41324795154433747 3.5858585858585865 0.4336771999843675 3.5858585858585865 0.12019800234358827 3.5858585858585865 0.20009983185318994 3.5858585858585865 0.2647594817692496 3.5858585858585865 0.4067722514909233 3.5858585858585865 0.40203120630187705
88 3.686868686868687 0.027654025225499562 3.686868686868687 -0.49422269067564845 3.686868686868687 -0.505293720158625 3.686868686868687 0.43456993385476517 3.686868686868687 0.08338176166505175 3.686868686868687 0.17451220690194294 3.686868686868687 0.24694025624429472 3.686868686868687 0.40494401437700783 3.686868686868687 0.39972779600606
89 3.787878787878787 -0.0028542247424208616 3.787878787878787 -0.5825355853286744 3.787878787878787 -0.5971159649192432 3.787878787878787 0.4354626677251625 3.787878787878787 0.04665044899957155 3.787878787878787 0.14916273839002891 3.787878787878787 0.22899283485249716 3.787878787878787 0.40312179798093106 3.787878787878787 0.39746202764807126
90 3.8888888888888893 -0.03336247471034154 3.8888888888888893 -0.6703463394238872 3.8888888888888893 -0.68824406601414 3.8888888888888893 0.4363554015955604 3.8888888888888893 0.009919136334091362 3.8888888888888893 0.12414842115967273 3.8888888888888893 0.21104541346069938 3.8888888888888893 0.4013011021954902 3.8888888888888893 0.3952295870367829
91 3.9898989898989896 -0.06387072467826214 3.9898989898989896 -0.7575928168757736 3.9898989898989896 -0.7784133912470257 3.9898989898989896 0.437248135465958 3.9898989898989896 -0.026722390982327433 3.9898989898989896 0.09939234299162882 3.9898989898989896 0.19309799206890174 3.9898989898989896 0.399484052282032 3.9898989898989896 0.3930265651896393
92 4.09090909090909 -0.0943789746461824 4.09090909090909 -0.8443788481067765 4.09090909090909 -0.8681309126980375 4.09090909090909 0.43814086933635565 4.09090909090909 -0.06308596529257729 4.09090909090909 0.07491765400345742 4.09090909090909 0.1750164743635475 4.09090909090909 0.39766754707663343 4.09090909090909 0.3908577509521082
93 4.191919191919192 -0.12488722461410334 4.191919191919192 -0.9297917533069101 4.191919191919192 -0.9573364023412008 4.191919191919192 0.4390336032067535 4.191919191919192 -0.09929539509789244 4.191919191919192 0.05074971564267564 4.191919191919192 0.1568727764842795 4.191919191919192 0.3958543351530404 4.191919191919192 0.38872432233841003
94 4.292929292929292 -0.15539547458202363 4.292929292929292 -1.0140884125491687 4.292929292929292 -1.0459165238042567 4.292929292929292 0.4399263370771512 4.292929292929292 -0.1349334585206603 4.292929292929292 0.02675516616820918 4.292929292929292 0.13872907860501169 4.292929292929292 0.3940418892740997 4.292929292929292 0.38661923148208605
95 4.3939393939393945 -0.18590372454994458 4.3939393939393945 -1.0972974392893766 4.3939393939393945 -1.1342383379633272 4.3939393939393945 0.4408190709475487 4.3939393939393945 -0.16982980680843562 4.3939393939393945 0.002964652994963484 4.3939393939393945 0.11796054958424437 4.3939393939393945 0.3922298874756054 4.3939393939393945 0.3845302650106349
96 4.494949494949495 -0.216411974517865 4.494949494949495 -1.179182894055243 4.494949494949495 -1.2221355458185688 4.494949494949495 0.44032091498508585 4.494949494949495 -0.20469748939648835 4.494949494949495 -0.0206002794035424 4.494949494949495 0.09701325884395126 4.494949494949495 0.39041788567711144 4.494949494949495 0.38248614430609396
97 4.595959595959595 -0.24692022448578524 4.595959595959595 -1.2601894992373368 4.595959595959595 -1.3091379548259912 4.595959595959595 0.4390119198940737 4.595959595959595 -0.239564339118166 4.595959595959595 -0.044064215802437315 4.595959595959595 0.07606596810365834 4.595959595959595 0.38861853091288373 4.595959595959595 0.3804739406387159
98 4.696969696969697 -0.2774284744537062 4.696969696969697 -1.3408190143954206 4.696969696969697 -1.395667382198044 4.696969696969697 0.4377029248030613 4.696969696969697 -0.2744311888398445 4.696969696969697 -0.06739710896332894 4.696969696969697 0.05511867736336504 4.696969696969697 0.38683625018149875 4.696969696969697 0.37848669218529357
99 4.797979797979798 -0.3079367244216266 4.797979797979798 -1.4214485295534998 4.797979797979798 -1.4814148159277154 4.797979797979798 0.436393929712049 4.797979797979798 -0.3092980385615221 4.797979797979798 -0.09057526494106827 4.797979797979798 0.034171386623072064 4.797979797979798 0.3850542123238927 4.797979797979798 0.37652869146057905
100 4.8989898989899 -0.3384449743895474 4.8989898989899 -1.5019215376311323 4.8989898989899 -1.5662892316768398 4.8989898989899 0.4350560618496009 4.8989898989899 -0.34416306870335767 4.8989898989899 -0.11357143325279366 4.8989898989899 0.013224095882778591 4.8989898989899 0.383272237289863 4.8989898989899 0.37460430584833954
101 5.0 -0.3689532243574676 5.0 -1.5820215750973248 5.0 -1.6508596672714462 5.0 0.43307940950570034 5.0 -0.37879161071248096 5.0 -0.13636462992911846 5.0 -0.007723194857514326 5.0 0.38149127984729847 5.0 0.37272620912380855

@ -0,0 +1,7 @@
x,y
-3.14159265358979 , -1.22464679914735e-16
-1.88495559215388 , -0.951056516295154
-0.628318530717959 , -0.587785252292473
0.628318530717959 , 0.587785252292473
1.88495559215388 , 0.951056516295154
3.14159265358979 , 1.22464679914735e-16
1 x y
2 -3.14159265358979 -1.22464679914735e-16
3 -1.88495559215388 -0.951056516295154
4 -0.628318530717959 -0.587785252292473
5 0.628318530717959 0.587785252292473
6 1.88495559215388 0.951056516295154
7 3.14159265358979 1.22464679914735e-16

@ -0,0 +1,64 @@
,x_i,y_i,x_d,y_d,x,y
"1",0,0,-0.251688505259414,-0.109203329280437,-0.0838961684198045,-0.0364011097601456
"2",0.1,0.0998334166468282,0.216143831477992,0.112557051753147,0.00912581751114394,0.0102181849309398
"3",0.2,0.198669330795061,0.351879533708722,0.52138915851383,0.120991434720523,0.180094983253476
"4",0.3,0.29552020666134,-0.0169121548298757,0.0870956013269369,0.0836131805695847,0.163690012207993
"5",0.4,0.389418342308651,0.278503661037003,0.464752686490904,0.182421968363305,0.294268636359638
"6",0.5,0.479425538604203,0.241783494554983,0.521480762031938,0.216291763003623,0.399960258238722
"7",0.6,0.564642473395035,0.67288177436767,0.617435509386938,0.35521581484916,0.469717955748659
"8",0.7,0.644217687237691,0.692239292735764,0.395366561077235,0.492895242512842,0.472257444593698
"9",0.8,0.717356090899523,0.779946606884677,0.830045203984444,0.621840812496715,0.609161571471379
"10",0.9,0.783326909627483,0.796987424421658,0.801263132114778,0.723333122197902,0.682652280249237
"11",1,0.841470984807897,1.06821012817873,0.869642838589798,0.860323524382936,0.752971972337735
"12",1.1,0.891207360061435,1.50128637982775,0.899079529605641,1.09148187598916,0.835465707990221
"13",1.2,0.932039085967226,1.1194263347154,0.906626360727432,1.13393429991233,0.875953352580199
"14",1.3,0.963558185417193,1.24675170552299,1.07848030956084,1.2135821540696,0.950969562327306
"15",1.4,0.98544972998846,1.32784804980202,0.76685418220594,1.2818141129714,0.899892140468108
"16",1.5,0.997494986604054,1.23565831982523,1.07310713979952,1.2548338349408,0.961170357331681
"17",1.6,0.999573603041505,1.90289281875567,0.88003153305018,1.47254506382487,0.94006950203764
"18",1.7,0.991664810452469,1.68871194985252,1.01829329437246,1.56940444551462,0.955793455192302
"19",1.8,0.973847630878195,1.72179983981017,1.02268013575533,1.64902528694529,0.988666907865147
"20",1.9,0.946300087687414,2.0758716236832,0.805032560816536,1.83908127693465,0.928000158917177
"21",2,0.909297426825682,2.11118945422405,1.0134691646089,1.94365432453739,0.957334347939419
"22",2.1,0.863209366648874,2.00475777514698,0.86568986134637,1.9826265174693,0.924298444442167
"23",2.2,0.80849640381959,2.40773948766051,0.667018023975934,2.15807575978944,0.826761739840873
"24",2.3,0.74570521217672,2.14892522112975,0.872704236332415,2.17485332420928,0.839957045849706
"25",2.4,0.675463180551151,2.41696701330131,0.253955021611832,2.26412064248401,0.631186439537074
"26",2.5,0.598472144103957,2.4087686184711,0.49450592290142,2.33847747374241,0.557319074033222
"27",2.6,0.515501371821464,2.55312145187913,0.343944677655963,2.4151672191424,0.467867318187242
"28",2.7,0.42737988023383,2.6585492172135,0.528990826178838,2.51649125567521,0.447178678139147
"29",2.8,0.334988150155905,2.86281283456189,0.311400289332401,2.65184232661008,0.399952143417531
"30",2.9,0.239249329213982,2.74379162744449,0.501282616227342,2.70796893413474,0.432791852065713
"31",3,0.141120008059867,2.95951338295806,0.241385538727577,2.81576254355573,0.373424929745113
"32",3.1,0.0415806624332905,2.87268165585702,0.0764217470113609,2.85626015646841,0.264426413128825
"33",3.2,-0.0583741434275801,3.29898326143096,-0.272500742891131,3.0101734240017,0.0756660807058224
"34",3.3,-0.157745694143249,3.64473302259565,-0.24394459655987,3.24463496592626,-0.0688606479078372
"35",3.4,-0.255541102026832,3.46698556586598,-0.184272732807665,3.35339770834784,-0.15210430721581
"36",3.5,-0.35078322768962,3.67208160089566,-0.119933071489115,3.51318482264886,-0.176430496141549
"37",3.6,-0.442520443294852,3.73738883546162,-0.486197268315415,3.62961845872181,-0.283186040443485
"38",3.7,-0.529836140908493,3.77209072631297,-0.70275845349803,3.68619468325631,-0.422698101171958
"39",3.8,-0.611857890942719,3.66424718733509,-0.482410535792735,3.69727905622484,-0.462935060857071
"40",3.9,-0.687766159183974,3.72257849834575,-0.58477261395861,3.71784166083333,-0.543108060927685
"41",4,-0.756802495307928,3.85906293918747,-0.703015362823377,3.76539960460785,-0.618449987254768
"42",4.1,-0.818277111064411,4.0131961543859,-0.900410257326814,3.84632588679948,-0.708384794580195
"43",4.2,-0.871575772413588,4.0263131749378,-0.906044808231391,3.92085812717095,-0.789303202089581
"44",4.3,-0.916165936749455,4.77220075671212,-0.530827398816399,4.22925719163087,-0.729943577630504
"45",4.4,-0.951602073889516,4.4795636311648,-1.26672674728111,4.35331987391088,-0.921377204806384
"46",4.5,-0.977530117665097,4.5088210845027,-0.886168448505782,4.44898342417679,-0.914264630323723
"47",4.6,-0.993691003633465,4.70645816063034,-1.1082213336257,4.58861983576766,-0.97806804633887
"48",4.7,-0.999923257564101,4.48408312008838,-0.98352521226689,4.55827710678399,-1.01979325501755
"49",4.8,-0.996164608835841,4.97817348334347,-1.03043977928678,4.69715193557134,-1.02203657500247
"50",4.9,-0.982452612624332,5.09171179984929,-0.948912592308037,4.8484480091335,-0.999631162740658
"51",5,-0.958924274663138,4.87710566000798,-0.825224506141761,4.87693462801326,-0.937722874707385
"52",5.1,-0.925814682327732,5.04139294635392,-0.718936957124138,4.97198282698482,-0.856650521199568
"53",5.2,-0.883454655720153,4.94893136398377,-0.992753696742329,4.98294046406006,-0.885371127105841
"54",5.3,-0.832267442223901,5.38128555915899,-0.717434652733088,5.10670981664685,-0.816103747160468
"55",5.4,-0.772764487555987,5.46192736637355,-0.724060934669406,5.2398375587704,-0.780347098915984
"56",5.5,-0.705540325570392,5.30834840605735,-0.721772537926303,5.28807996342596,-0.766498807502665
"57",5.6,-0.631266637872321,5.53199687756185,-0.583133415115471,5.40779902870202,-0.688843253413245
"58",5.7,-0.550685542597638,5.9238064899769,-0.541063721566544,5.59865656961444,-0.627040990301198
"59",5.8,-0.464602179413757,5.8067999294844,-0.43156566524513,5.68077207716296,-0.552246304884294
"60",5.9,-0.373876664830236,5.93089453525347,-0.604056792592816,5.80084302534748,-0.550733954237757
"61",6,-0.279415498198926,6.02965160059402,-0.234452930170458,5.91786841211583,-0.434812265604247
"62",6.1,-0.182162504272095,5.88697419016579,-0.135764844759742,5.91990685000071,-0.323660336266941
"63",6.2,-0.0830894028174964,5.91445270773648,-0.0073552500992853,5.92798052258888,-0.205537962618181
1 x_i y_i x_d y_d x y
2 1 0 0 -0.251688505259414 -0.109203329280437 -0.0838961684198045 -0.0364011097601456
3 2 0.1 0.0998334166468282 0.216143831477992 0.112557051753147 0.00912581751114394 0.0102181849309398
4 3 0.2 0.198669330795061 0.351879533708722 0.52138915851383 0.120991434720523 0.180094983253476
5 4 0.3 0.29552020666134 -0.0169121548298757 0.0870956013269369 0.0836131805695847 0.163690012207993
6 5 0.4 0.389418342308651 0.278503661037003 0.464752686490904 0.182421968363305 0.294268636359638
7 6 0.5 0.479425538604203 0.241783494554983 0.521480762031938 0.216291763003623 0.399960258238722
8 7 0.6 0.564642473395035 0.67288177436767 0.617435509386938 0.35521581484916 0.469717955748659
9 8 0.7 0.644217687237691 0.692239292735764 0.395366561077235 0.492895242512842 0.472257444593698
10 9 0.8 0.717356090899523 0.779946606884677 0.830045203984444 0.621840812496715 0.609161571471379
11 10 0.9 0.783326909627483 0.796987424421658 0.801263132114778 0.723333122197902 0.682652280249237
12 11 1 0.841470984807897 1.06821012817873 0.869642838589798 0.860323524382936 0.752971972337735
13 12 1.1 0.891207360061435 1.50128637982775 0.899079529605641 1.09148187598916 0.835465707990221
14 13 1.2 0.932039085967226 1.1194263347154 0.906626360727432 1.13393429991233 0.875953352580199
15 14 1.3 0.963558185417193 1.24675170552299 1.07848030956084 1.2135821540696 0.950969562327306
16 15 1.4 0.98544972998846 1.32784804980202 0.76685418220594 1.2818141129714 0.899892140468108
17 16 1.5 0.997494986604054 1.23565831982523 1.07310713979952 1.2548338349408 0.961170357331681
18 17 1.6 0.999573603041505 1.90289281875567 0.88003153305018 1.47254506382487 0.94006950203764
19 18 1.7 0.991664810452469 1.68871194985252 1.01829329437246 1.56940444551462 0.955793455192302
20 19 1.8 0.973847630878195 1.72179983981017 1.02268013575533 1.64902528694529 0.988666907865147
21 20 1.9 0.946300087687414 2.0758716236832 0.805032560816536 1.83908127693465 0.928000158917177
22 21 2 0.909297426825682 2.11118945422405 1.0134691646089 1.94365432453739 0.957334347939419
23 22 2.1 0.863209366648874 2.00475777514698 0.86568986134637 1.9826265174693 0.924298444442167
24 23 2.2 0.80849640381959 2.40773948766051 0.667018023975934 2.15807575978944 0.826761739840873
25 24 2.3 0.74570521217672 2.14892522112975 0.872704236332415 2.17485332420928 0.839957045849706
26 25 2.4 0.675463180551151 2.41696701330131 0.253955021611832 2.26412064248401 0.631186439537074
27 26 2.5 0.598472144103957 2.4087686184711 0.49450592290142 2.33847747374241 0.557319074033222
28 27 2.6 0.515501371821464 2.55312145187913 0.343944677655963 2.4151672191424 0.467867318187242
29 28 2.7 0.42737988023383 2.6585492172135 0.528990826178838 2.51649125567521 0.447178678139147
30 29 2.8 0.334988150155905 2.86281283456189 0.311400289332401 2.65184232661008 0.399952143417531
31 30 2.9 0.239249329213982 2.74379162744449 0.501282616227342 2.70796893413474 0.432791852065713
32 31 3 0.141120008059867 2.95951338295806 0.241385538727577 2.81576254355573 0.373424929745113
33 32 3.1 0.0415806624332905 2.87268165585702 0.0764217470113609 2.85626015646841 0.264426413128825
34 33 3.2 -0.0583741434275801 3.29898326143096 -0.272500742891131 3.0101734240017 0.0756660807058224
35 34 3.3 -0.157745694143249 3.64473302259565 -0.24394459655987 3.24463496592626 -0.0688606479078372
36 35 3.4 -0.255541102026832 3.46698556586598 -0.184272732807665 3.35339770834784 -0.15210430721581
37 36 3.5 -0.35078322768962 3.67208160089566 -0.119933071489115 3.51318482264886 -0.176430496141549
38 37 3.6 -0.442520443294852 3.73738883546162 -0.486197268315415 3.62961845872181 -0.283186040443485
39 38 3.7 -0.529836140908493 3.77209072631297 -0.70275845349803 3.68619468325631 -0.422698101171958
40 39 3.8 -0.611857890942719 3.66424718733509 -0.482410535792735 3.69727905622484 -0.462935060857071
41 40 3.9 -0.687766159183974 3.72257849834575 -0.58477261395861 3.71784166083333 -0.543108060927685
42 41 4 -0.756802495307928 3.85906293918747 -0.703015362823377 3.76539960460785 -0.618449987254768
43 42 4.1 -0.818277111064411 4.0131961543859 -0.900410257326814 3.84632588679948 -0.708384794580195
44 43 4.2 -0.871575772413588 4.0263131749378 -0.906044808231391 3.92085812717095 -0.789303202089581
45 44 4.3 -0.916165936749455 4.77220075671212 -0.530827398816399 4.22925719163087 -0.729943577630504
46 45 4.4 -0.951602073889516 4.4795636311648 -1.26672674728111 4.35331987391088 -0.921377204806384
47 46 4.5 -0.977530117665097 4.5088210845027 -0.886168448505782 4.44898342417679 -0.914264630323723
48 47 4.6 -0.993691003633465 4.70645816063034 -1.1082213336257 4.58861983576766 -0.97806804633887
49 48 4.7 -0.999923257564101 4.48408312008838 -0.98352521226689 4.55827710678399 -1.01979325501755
50 49 4.8 -0.996164608835841 4.97817348334347 -1.03043977928678 4.69715193557134 -1.02203657500247
51 50 4.9 -0.982452612624332 5.09171179984929 -0.948912592308037 4.8484480091335 -0.999631162740658
52 51 5 -0.958924274663138 4.87710566000798 -0.825224506141761 4.87693462801326 -0.937722874707385
53 52 5.1 -0.925814682327732 5.04139294635392 -0.718936957124138 4.97198282698482 -0.856650521199568
54 53 5.2 -0.883454655720153 4.94893136398377 -0.992753696742329 4.98294046406006 -0.885371127105841
55 54 5.3 -0.832267442223901 5.38128555915899 -0.717434652733088 5.10670981664685 -0.816103747160468
56 55 5.4 -0.772764487555987 5.46192736637355 -0.724060934669406 5.2398375587704 -0.780347098915984
57 56 5.5 -0.705540325570392 5.30834840605735 -0.721772537926303 5.28807996342596 -0.766498807502665
58 57 5.6 -0.631266637872321 5.53199687756185 -0.583133415115471 5.40779902870202 -0.688843253413245
59 58 5.7 -0.550685542597638 5.9238064899769 -0.541063721566544 5.59865656961444 -0.627040990301198
60 59 5.8 -0.464602179413757 5.8067999294844 -0.43156566524513 5.68077207716296 -0.552246304884294
61 60 5.9 -0.373876664830236 5.93089453525347 -0.604056792592816 5.80084302534748 -0.550733954237757
62 61 6 -0.279415498198926 6.02965160059402 -0.234452930170458 5.91786841211583 -0.434812265604247
63 62 6.1 -0.182162504272095 5.88697419016579 -0.135764844759742 5.91990685000071 -0.323660336266941
64 63 6.2 -0.0830894028174964 5.91445270773648 -0.0073552500992853 5.92798052258888 -0.205537962618181

@ -0,0 +1,138 @@
\pgfplotsset{
compat=1.11,
legend image code/.code={
\draw[mark repeat=2,mark phase=2]
plot coordinates {
(0cm,0cm)
(0.075cm,0cm) %% default is (0.3cm,0cm)
(0.15cm,0cm) %% default is (0.6cm,0cm)
};%
}
}
\begin{figure}
\begin{subfigure}[b]{0.5\textwidth}
\begin{subfigure}[b]{\textwidth}
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
\begin{tikzpicture}
\begin{axis}[
ytick = {-1, 0, 1, 2},
yticklabels = {$-1$, $\phantom{-0.}0$, $1$, $2$},]
\addplot table [x=x, y=y, col sep=comma, only marks,
forget plot] {Plots/Data/sin_6.csv};
\addplot [black, line width=2pt] table [x=x, y=y, col
sep=comma, mark=none] {Plots/Data/matlab_0.csv};
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.0,
y=y_n_5000_tl_0.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
\addlegendentry{$f_1^{*, 0.1}$};
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{$\lambda = 0.1$}
\end{subfigure}\\
\begin{subfigure}[b]{\textwidth}
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
\begin{tikzpicture}
\begin{axis}
\addplot table [x=x, y=y, col sep=comma, only marks,
forget plot] {Plots/Data/sin_6.csv};
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_1.csv};
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0,
y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
\addlegendentry{$f_1^{*, 1.0}$};
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{$\lambda = 1.0$}
\end{subfigure}\\
\begin{subfigure}[b]{\textwidth}
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
\begin{tikzpicture}
\begin{axis}
\addplot table [x=x, y=y, col sep=comma, only marks,
forget plot] {Plots/Data/sin_6.csv};
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_3.csv};
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0,
y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
\addlegendentry{$f_1^{*, 3.0}$};
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{$\lambda = 3.0$}
\end{subfigure}
\end{subfigure}
\begin{subfigure}[b]{0.5\textwidth}
\begin{subfigure}[b]{\textwidth}
\begin{adjustbox}{width=\textwidth, height=0.245\textheight}
\begin{tikzpicture}
\begin{axis}[
ytick = {-2,-1, 0, 1, 2},
yticklabels = {$-2$,$-1$, $\phantom{-0.}0$, $1$, $2$},]
\addplot table [x=x, y=y, col sep=comma, only marks,
forget plot] {Plots/Data/data_sin_d_t.csv};
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_01.csv};
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.1,
y=y_n_5000_tl_0.1, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
\addlegendentry{$f_1^{*, 0.1}$};
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{$\lambda = 0.1$}
\end{subfigure}\\
\begin{subfigure}[b]{\textwidth}
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
\begin{tikzpicture}
\begin{axis}
\addplot table [x=x, y=y, col sep=comma, only marks,
forget plot] {Plots/Data/data_sin_d_t.csv};
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_1.csv};
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0,
y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
\addlegendentry{$f_1^{*, 1.0}$};
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda},*}$};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{$\lambda = 1.0$}
\end{subfigure}\\
\begin{subfigure}[b]{\textwidth}
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
\begin{tikzpicture}
\begin{axis}
\addplot table [x=x, y=y, col sep=comma, only marks,
forget plot] {Plots/Data/data_sin_d_t.csv};
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_3.csv};
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0,
y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
\addlegendentry{$f_1^{*, 3.0}$};
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{$\lambda = 3.0$}
\end{subfigure}
\end{subfigure}
\caption{% In these Figures the behaviour stated in ... is visualized
% in two exaples. For $(a), (b), (c)$ six values of sinus equidistantly
% spaced on $[-\pi, \pi]$ have been used as training data. For
% $(d),(e),(f)$ 15 equidistand values have been used, where
% $y_i^{train} = \sin(x_i^{train}) + \varepsilon_i$ and
% $\varepsilon_i \sim \mathcal{N}(0, 0.3)$. For
% $\mathcal{RN}_w^{\tilde{\lambda, *}}$ the random weights are
% distributed as follows
% \begin{align*}
% \xi_k &\sim
% \end{align*}
Ridge Penalized Neural Network compared to Regression Spline,
with them being trained on $\text{data}_A$ in a), b), c) and on
$\text{data}_B$ in d), e), f).
The Parameters of each are given above.
}
\end{figure}
%%% Local Variables:
%%% mode: latex
%%% TeX-master:
%%% End:

@ -0,0 +1,91 @@
\pgfplotsset{
compat=1.11,
legend image code/.code={
\draw[mark repeat=2,mark phase=2]
plot coordinates {
(0cm,0cm)
(0.0cm,0cm) %% default is (0.3cm,0cm)
(0.0cm,0cm) %% default is (0.6cm,0cm)
};%
}
}
\begin{figure}
\begin{subfigure}[h!]{\textwidth}
\begin{tikzpicture}
\begin{axis}[tick style = {draw = none}, width = \textwidth,
height = 0.65\textwidth,
xtick = {1, 3, 5,7,9,11,13,15,17,19},
xticklabels = {$2$, $4$, $6$, $8$,
$10$,$12$,$14$,$16$,$18$,$20$},
xlabel = {training epoch}, ylabel = {classification accuracy}]
\addplot table
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_01.log};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_05.log};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_1.log};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma]
{Plots/Data/SGD_01_b32.log};
\addlegendentry{GD$_{0.01}$}
\addlegendentry{GD$_{0.05}$}
\addlegendentry{GD$_{0.1}$}
\addlegendentry{SGD$_{0.01}$}
\end{axis}
\end{tikzpicture}
%\caption{Classification accuracy}
\end{subfigure}
\begin{subfigure}[b]{\textwidth}
\begin{tikzpicture}
\begin{axis}[tick style = {draw = none}, width = \textwidth,
height = 0.65\textwidth,
ytick = {0, 1, 2, 3, 4},
yticklabels = {$0$, $1$, $\phantom{0.}2$, $3$, $4$},
xtick = {1, 3, 5,7,9,11,13,15,17,19},
xticklabels = {$2$, $4$, $6$, $8$,
$10$,$12$,$14$,$16$,$18$,$20$},
xlabel = {training epoch}, ylabel = {error measure}]
\addplot table
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_01.log};
\addplot table
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_05.log};
\addplot table
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_1.log};
\addplot table
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/SGD_01_b32.log};
\addlegendentry{GD$_{0.01}$}
\addlegendentry{GD$_{0.05}$}
\addlegendentry{GD$_{0.1}$}
\addlegendentry{SGD$_{0.01}$}
\end{axis}
\end{tikzpicture}
\caption{Performance metrics during training}
\end{subfigure}
% \\~\\
\caption{The neural network given in ?? trained with different
algorithms on the MNIST handwritten digits data set. For gradient
descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{\cdot}$). For
stochastic gradient descend a batch size of 32 and learning rate
of 0.01 is used (SDG$_{0.01}$).}
\label{fig:sgd_vs_gd}
\end{figure}
\begin{table}
\begin{tabu} to \textwidth {@{} *4{X[c]}c*4{X[c]} @{}}
\multicolumn{4}{c}{Classification Accuracy}
&~&\multicolumn{4}{c}{Error Measure}
\\\cline{1-4}\cline{6-9}
GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$
\\\cline{1-4}\cline{6-9}
1&1&1&1&&1&1&1&1
\end{tabu}
\caption{Performace metrics of the networks trained in
Figure~\ref{ref:sdg_vs_gd} after 20 training epochs.}
\end{table}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "../main"
%%% End:

@ -0,0 +1,71 @@
\message{ !name(pfg_test.tex)}\documentclass{article}
\usepackage{pgfplots}
\usepackage{filecontents}
\usepackage{subcaption}
\usepackage{adjustbox}
\usepackage{xcolor}
\usepackage{graphicx}
\usetikzlibrary{calc, 3d}
\begin{document}
\message{ !name(pfg_test.tex) !offset(6) }
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{True position (\textcolor{red}{red}), distorted data (black)}
\end{figure}
\begin{center}
\begin{figure}[h]
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{Data/klammern.jpg}
\caption{Original Picure}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{Data/image_conv4.png}
\caption{test}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{Data/image_conv5.png}
\caption{test}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{Data/image_conv6.png}
\caption{test}
\end{subfigure}
\end{figure}
\end{center}
\begin{figure}
\begin{adjustbox}{width=\textwidth}
\begin{tikzpicture}
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
\node[canvas is xy plane at z=0, transform shape] at (0,0)
{\includegraphics[width=5cm]{Data/klammern_r.jpg}};
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
{\includegraphics[width=5cm]{Data/klammern_g.jpg}};
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
{\includegraphics[width=5cm]{Data/klammern_b.jpg}};
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
{\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
\end{scope}
\end{tikzpicture}
\end{adjustbox}
\caption{On the right the red, green and blue chanels of the picture
are displayed. In order to better visualize the color channes the
black and white picture of each channel has been colored in the
respective color. Combining the layers results in the image on the
left}
\end{figure}
\message{ !name(pfg_test.tex) !offset(3) }
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:

@ -0,0 +1,146 @@
\documentclass{article}
\usepackage{pgfplots}
\usepackage{filecontents}
\usepackage{subcaption}
\usepackage{adjustbox}
\usepackage{xcolor}
\usepackage{tabu}
\usepackage{graphicx}
\usetikzlibrary{calc, 3d}
\begin{document}
\pgfplotsset{
compat=1.11,
legend image code/.code={
\draw[mark repeat=2,mark phase=2]
plot coordinates {
(0cm,0cm)
(0.0cm,0cm) %% default is (0.3cm,0cm)
(0.0cm,0cm) %% default is (0.6cm,0cm)
};%
}
}
\begin{figure}
\begin{subfigure}[b]{\textwidth}
\begin{tikzpicture}
\begin{axis}[tick style = {draw = none}, width = \textwidth,
height = 0.7\textwidth,
xtick = {1, 3, 5,7,9,11,13,15,17,19},
xticklabels = {$2$, $4$, $6$, $8$,
$10$,$12$,$14$,$16$,$18$,$20$},
xlabel = {epoch}, ylabel = {Classification Accuracy}]
\addplot table
[x=epoch, y=val_accuracy, col sep=comma] {Data/GD_01.log};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma] {Data/GD_05.log};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma] {Data/GD_1.log};
\addplot table
[x=epoch, y=val_accuracy, col sep=comma]
{Data/SGD_01_b32.log};
\addlegendentry{GD$_{0.01}$}
\addlegendentry{GD$_{0.05}$}
\addlegendentry{GD$_{0.1}$}
\addlegendentry{SGD$_{0.01}$}
\end{axis}
\end{tikzpicture}
%\caption{Classification accuracy}
\end{subfigure}
\begin{subfigure}[b]{\textwidth}
\begin{tikzpicture}
\begin{axis}[tick style = {draw = none}, width = \textwidth,
height = 0.7\textwidth,
ytick = {0, 1, 2, 3, 4},
yticklabels = {$0$, $1$, $\phantom{0.}2$, $3$, $4$},
xtick = {1, 3, 5,7,9,11,13,15,17,19},
xticklabels = {$2$, $4$, $6$, $8$,
$10$,$12$,$14$,$16$,$18$,$20$},
xlabel = {epoch}, ylabel = {Error Measure}]
\addplot table
[x=epoch, y=val_loss, col sep=comma] {Data/GD_01.log};
\addplot table
[x=epoch, y=val_loss, col sep=comma] {Data/GD_05.log};
\addplot table
[x=epoch, y=val_loss, col sep=comma] {Data/GD_1.log};
\addplot table
[x=epoch, y=val_loss, col sep=comma] {Data/SGD_01_b32.log};
\addlegendentry{GD$_{0.01}$}
\addlegendentry{GD$_{0.05}$}
\addlegendentry{GD$_{0.1}$}
\addlegendentry{SGD$_{0.01}$}
\end{axis}
\end{tikzpicture}
\caption{Performance metrics during training}
\end{subfigure}
\\~\\
\begin{subfigure}[b]{1.0\linewidth}
\begin{tabu} to \textwidth {@{} *4{X[c]}c*4{X[c]} @{}}
\multicolumn{4}{c}{Classification Accuracy}
&~&\multicolumn{4}{c}{Error Measure}
\\\cline{1-4}\cline{6-9}
GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$
\\\cline{1-4}\cline{6-9}
1&1&1&1&&1&1&1&1
\end{tabu}
\caption{Performace metrics after 20 epochs}
\end{subfigure}
\caption{The neural network given in ?? trained with different
algorithms on the MNIST handwritten digits data set. For gradient
descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{\text{rate}}$). For
stochastic gradient descend a batch size of 32 and learning rate
of 0.01 is used (SDG$_{0.01}$)}
\end{figure}
\begin{center}
\begin{figure}[h]
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{Data/klammern.jpg}
\caption{Original Picure}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{Data/image_conv4.png}
\caption{test}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{Data/image_conv5.png}
\caption{test}
\end{subfigure}
\begin{subfigure}{0.49\textwidth}
\includegraphics[width=\textwidth]{Data/image_conv6.png}
\caption{test}
\end{subfigure}
\end{figure}
\end{center}
\begin{figure}
\begin{adjustbox}{width=\textwidth}
\begin{tikzpicture}
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
\node[canvas is xy plane at z=0, transform shape] at (0,0)
{\includegraphics[width=5cm]{Data/klammern_r.jpg}};
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
{\includegraphics[width=5cm]{Data/klammern_g.jpg}};
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
{\includegraphics[width=5cm]{Data/klammern_b.jpg}};
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
{\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
\end{scope}
\end{tikzpicture}
\end{adjustbox}
\caption{On the right the red, green and blue chanels of the picture
are displayed. In order to better visualize the color channes the
black and white picture of each channel has been colored in the
respective color. Combining the layers results in the image on the
left}
\end{figure}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:

@ -0,0 +1,64 @@
"","x_i","y_i","x_d","y_d","x","y"
"1",0,0,0.0815633019993375,0.095134925029757,0.0815633019993375,0.095134925029757
"2",0.1,0.0998334166468282,-0.137539012603596,0.503920419784276,-0.137539012603596,0.503920419784276
"3",0.2,0.198669330795061,0.219868163218743,0.32022289024623,0.219868163218743,0.32022289024623
"4",0.3,0.29552020666134,0.378332723534869,0.474906286765401,0.378332723534869,0.474906286765401
"5",0.4,0.389418342308651,0.286034335293811,0.422891394375764,0.215056588291437,0.412478430748051
"6",0.5,0.479425538604203,-0.109871707385461,0.229661026779107,0.122574532557623,0.353221043330047
"7",0.6,0.564642473395035,0.91036951450573,0.56079130435097,0.451160317716352,0.452893574072324
"8",0.7,0.644217687237691,0.899001194675409,0.714355793051917,0.491731451724399,0.514477919331008
"9",0.8,0.717356090899523,0.733791390723896,0.694085383523086,0.488943974889845,0.530054084580656
"10",0.9,0.783326909627483,0.893642943873427,0.739792642916928,0.599785378272423,0.575149967162231
"11",1,0.841470984807897,0.895913227983752,0.658288213778898,0.650886140047209,0.577618711891772
"12",1.1,0.891207360061435,1.01252219752013,0.808981437684505,0.726263244907525,0.643161394030218
"13",1.2,0.932039085967226,1.30930912337975,1.04111824066026,0.872590842152803,0.745714536528734
"14",1.3,0.963558185417193,1.0448292335495,0.741250429230841,0.850147062957694,0.687171673021914
"15",1.4,0.98544972998846,1.57369086195552,1.17277927321094,1.06520673597544,0.847936751231165
"16",1.5,0.997494986604054,1.61427415976939,1.3908361301708,1.15616745244604,0.969474391592075
"17",1.6,0.999573603041505,1.34409615749122,0.976992098566069,1.13543598207093,0.889434319996364
"18",1.7,0.991664810452469,1.79278028030419,1.02939764179765,1.33272772191879,0.935067381106346
"19",1.8,0.973847630878195,1.50721559744085,0.903076361857071,1.30862923824728,0.91665506605512
"20",1.9,0.946300087687414,1.835014641556,0.830477479204284,1.45242210409837,0.889715842048808
"21",2,0.909297426825682,1.98589997236352,0.887302138185342,1.56569111721857,0.901843632635883
"22",2.1,0.863209366648874,2.31436634488224,0.890096618924313,1.73810390755555,0.899632162941341
"23",2.2,0.80849640381959,2.14663445612581,0.697012453130415,1.77071083163663,0.831732978616874
"24",2.3,0.74570521217672,2.17162372560288,0.614243640399509,1.84774268936257,0.787400621584077
"25",2.4,0.675463180551151,2.2488591417345,0.447664288915269,1.93366609303299,0.707449056213168
"26",2.5,0.598472144103957,2.56271588872389,0.553368843490625,2.08922735802261,0.702402440783529
"27",2.6,0.515501371821464,2.60986205081511,0.503762006272682,2.17548673152621,0.657831176057599
"28",2.7,0.42737988023383,2.47840649766003,0.215060732402894,2.20251747034638,0.533903400086802
"29",2.8,0.334988150155905,2.99861119922542,0.28503285049582,2.43015164462239,0.512492561673074
"30",2.9,0.239249329213982,3.09513467852082,0.245355736487949,2.54679545455398,0.461447717313721
"31",3,0.141120008059867,2.86247369846558,0.0960140633436418,2.55274767368554,0.371740588261606
"32",3.1,0.0415806624332905,2.79458017090243,-0.187923650913249,2.59422388058738,0.234694070506915
"33",3.2,-0.0583741434275801,3.6498183243501,-0.186738431858275,2.9216851043241,0.173308072295566
"34",3.3,-0.157745694143249,3.19424275971809,-0.221908035274934,2.86681135711315,0.101325637659584
"35",3.4,-0.255541102026832,3.53166785156005,-0.295496842654793,3.03827050777863,0.0191967841533109
"36",3.5,-0.35078322768962,3.53250700922714,-0.364585027403596,3.12709094619305,-0.0558446366563474
"37",3.6,-0.442520443294852,3.52114271616751,-0.363845774016092,3.18702722489489,-0.10585071711408
"38",3.7,-0.529836140908493,3.72033580551176,-0.386489608468821,3.31200591645168,-0.158195730190865
"39",3.8,-0.611857890942719,4.0803717995796,-0.64779795182054,3.49862620703954,-0.284999326812438
"40",3.9,-0.687766159183974,3.88351729419721,-0.604406622894426,3.51908925124143,-0.324791870057922
"41",4,-0.756802495307928,3.9941257036697,-0.8061112437715,3.62222513609486,-0.438560071688316
"42",4.1,-0.818277111064411,3.81674488816054,-0.548538951165239,3.63032709398802,-0.41285438330036
"43",4.2,-0.871575772413588,4.47703348424544,-0.998992385231986,3.88581748102334,-0.592305016590357
"44",4.3,-0.916165936749455,4.46179199544059,-0.969288921090897,3.96444243944485,-0.643076376622242
"45",4.4,-0.951602073889516,4.15184730382548,-1.11987501275525,3.93838897981045,-0.743258835859858
"46",4.5,-0.977530117665097,4.64522916494355,-0.772872365801468,4.15504805602606,-0.691414328153313
"47",4.6,-0.993691003633465,4.68087925098283,-0.650422764094352,4.24176417425486,-0.675107584174976
"48",4.7,-0.999923257564101,5.00475403211142,-0.922605880059771,4.41432228408005,-0.770625346502085
"49",4.8,-0.996164608835841,4.71428836112322,-1.14280193223997,4.41279031790692,-0.861010494025717
"50",4.9,-0.982452612624332,5.02115518218406,-0.9819618243158,4.57449352886454,-0.843786948015608
"51",5,-0.958924274663138,4.92057344952522,-0.872931430146499,4.61418118503201,-0.836318916150308
"52",5.1,-0.925814682327732,5.37277893732831,-0.91444926304078,4.81555148166217,-0.864686555983682
"53",5.2,-0.883454655720153,5.19524942845082,-1.41169784739596,4.84152902094499,-1.03768305406186
"54",5.3,-0.832267442223901,5.4432222181271,-0.726481337519931,4.98565483155961,-0.856094353978009
"55",5.4,-0.772764487555987,4.98285013865449,-0.692803346852181,4.90897053115903,-0.838425020062396
"56",5.5,-0.705540325570392,5.33298025214155,-0.343702005257262,5.0497327607228,-0.711573964373115
"57",5.6,-0.631266637872321,5.49935694796791,-0.828968673188174,5.15036520204232,-0.816467931201244
"58",5.7,-0.550685542597638,5.69204187550805,-0.481580461165225,5.26232964126231,-0.689500817105975
"59",5.8,-0.464602179413757,5.84391772412888,-0.20453899468884,5.38069867877875,-0.564365367144995
"60",5.9,-0.373876664830236,5.48166674139637,-0.597796931577294,5.3357436834558,-0.649913835818738
"61",6,-0.279415498198926,5.77474590863769,-0.280234463056808,5.46956415981143,-0.524503219480344
"62",6.1,-0.182162504272095,6.36764321572312,-0.0996286988755344,5.7169871104113,-0.422854073705143
"63",6.2,-0.0830894028174964,6.46175133910451,-0.025702847911482,5.83540227044819,-0.355719019286555
1 x_i y_i x_d y_d x y
2 1 0 0 0.0815633019993375 0.095134925029757 0.0815633019993375 0.095134925029757
3 2 0.1 0.0998334166468282 -0.137539012603596 0.503920419784276 -0.137539012603596 0.503920419784276
4 3 0.2 0.198669330795061 0.219868163218743 0.32022289024623 0.219868163218743 0.32022289024623
5 4 0.3 0.29552020666134 0.378332723534869 0.474906286765401 0.378332723534869 0.474906286765401
6 5 0.4 0.389418342308651 0.286034335293811 0.422891394375764 0.215056588291437 0.412478430748051
7 6 0.5 0.479425538604203 -0.109871707385461 0.229661026779107 0.122574532557623 0.353221043330047
8 7 0.6 0.564642473395035 0.91036951450573 0.56079130435097 0.451160317716352 0.452893574072324
9 8 0.7 0.644217687237691 0.899001194675409 0.714355793051917 0.491731451724399 0.514477919331008
10 9 0.8 0.717356090899523 0.733791390723896 0.694085383523086 0.488943974889845 0.530054084580656
11 10 0.9 0.783326909627483 0.893642943873427 0.739792642916928 0.599785378272423 0.575149967162231
12 11 1 0.841470984807897 0.895913227983752 0.658288213778898 0.650886140047209 0.577618711891772
13 12 1.1 0.891207360061435 1.01252219752013 0.808981437684505 0.726263244907525 0.643161394030218
14 13 1.2 0.932039085967226 1.30930912337975 1.04111824066026 0.872590842152803 0.745714536528734
15 14 1.3 0.963558185417193 1.0448292335495 0.741250429230841 0.850147062957694 0.687171673021914
16 15 1.4 0.98544972998846 1.57369086195552 1.17277927321094 1.06520673597544 0.847936751231165
17 16 1.5 0.997494986604054 1.61427415976939 1.3908361301708 1.15616745244604 0.969474391592075
18 17 1.6 0.999573603041505 1.34409615749122 0.976992098566069 1.13543598207093 0.889434319996364
19 18 1.7 0.991664810452469 1.79278028030419 1.02939764179765 1.33272772191879 0.935067381106346
20 19 1.8 0.973847630878195 1.50721559744085 0.903076361857071 1.30862923824728 0.91665506605512
21 20 1.9 0.946300087687414 1.835014641556 0.830477479204284 1.45242210409837 0.889715842048808
22 21 2 0.909297426825682 1.98589997236352 0.887302138185342 1.56569111721857 0.901843632635883
23 22 2.1 0.863209366648874 2.31436634488224 0.890096618924313 1.73810390755555 0.899632162941341
24 23 2.2 0.80849640381959 2.14663445612581 0.697012453130415 1.77071083163663 0.831732978616874
25 24 2.3 0.74570521217672 2.17162372560288 0.614243640399509 1.84774268936257 0.787400621584077
26 25 2.4 0.675463180551151 2.2488591417345 0.447664288915269 1.93366609303299 0.707449056213168
27 26 2.5 0.598472144103957 2.56271588872389 0.553368843490625 2.08922735802261 0.702402440783529
28 27 2.6 0.515501371821464 2.60986205081511 0.503762006272682 2.17548673152621 0.657831176057599
29 28 2.7 0.42737988023383 2.47840649766003 0.215060732402894 2.20251747034638 0.533903400086802
30 29 2.8 0.334988150155905 2.99861119922542 0.28503285049582 2.43015164462239 0.512492561673074
31 30 2.9 0.239249329213982 3.09513467852082 0.245355736487949 2.54679545455398 0.461447717313721
32 31 3 0.141120008059867 2.86247369846558 0.0960140633436418 2.55274767368554 0.371740588261606
33 32 3.1 0.0415806624332905 2.79458017090243 -0.187923650913249 2.59422388058738 0.234694070506915
34 33 3.2 -0.0583741434275801 3.6498183243501 -0.186738431858275 2.9216851043241 0.173308072295566
35 34 3.3 -0.157745694143249 3.19424275971809 -0.221908035274934 2.86681135711315 0.101325637659584
36 35 3.4 -0.255541102026832 3.53166785156005 -0.295496842654793 3.03827050777863 0.0191967841533109
37 36 3.5 -0.35078322768962 3.53250700922714 -0.364585027403596 3.12709094619305 -0.0558446366563474
38 37 3.6 -0.442520443294852 3.52114271616751 -0.363845774016092 3.18702722489489 -0.10585071711408
39 38 3.7 -0.529836140908493 3.72033580551176 -0.386489608468821 3.31200591645168 -0.158195730190865
40 39 3.8 -0.611857890942719 4.0803717995796 -0.64779795182054 3.49862620703954 -0.284999326812438
41 40 3.9 -0.687766159183974 3.88351729419721 -0.604406622894426 3.51908925124143 -0.324791870057922
42 41 4 -0.756802495307928 3.9941257036697 -0.8061112437715 3.62222513609486 -0.438560071688316
43 42 4.1 -0.818277111064411 3.81674488816054 -0.548538951165239 3.63032709398802 -0.41285438330036
44 43 4.2 -0.871575772413588 4.47703348424544 -0.998992385231986 3.88581748102334 -0.592305016590357
45 44 4.3 -0.916165936749455 4.46179199544059 -0.969288921090897 3.96444243944485 -0.643076376622242
46 45 4.4 -0.951602073889516 4.15184730382548 -1.11987501275525 3.93838897981045 -0.743258835859858
47 46 4.5 -0.977530117665097 4.64522916494355 -0.772872365801468 4.15504805602606 -0.691414328153313
48 47 4.6 -0.993691003633465 4.68087925098283 -0.650422764094352 4.24176417425486 -0.675107584174976
49 48 4.7 -0.999923257564101 5.00475403211142 -0.922605880059771 4.41432228408005 -0.770625346502085
50 49 4.8 -0.996164608835841 4.71428836112322 -1.14280193223997 4.41279031790692 -0.861010494025717
51 50 4.9 -0.982452612624332 5.02115518218406 -0.9819618243158 4.57449352886454 -0.843786948015608
52 51 5 -0.958924274663138 4.92057344952522 -0.872931430146499 4.61418118503201 -0.836318916150308
53 52 5.1 -0.925814682327732 5.37277893732831 -0.91444926304078 4.81555148166217 -0.864686555983682
54 53 5.2 -0.883454655720153 5.19524942845082 -1.41169784739596 4.84152902094499 -1.03768305406186
55 54 5.3 -0.832267442223901 5.4432222181271 -0.726481337519931 4.98565483155961 -0.856094353978009
56 55 5.4 -0.772764487555987 4.98285013865449 -0.692803346852181 4.90897053115903 -0.838425020062396
57 56 5.5 -0.705540325570392 5.33298025214155 -0.343702005257262 5.0497327607228 -0.711573964373115
58 57 5.6 -0.631266637872321 5.49935694796791 -0.828968673188174 5.15036520204232 -0.816467931201244
59 58 5.7 -0.550685542597638 5.69204187550805 -0.481580461165225 5.26232964126231 -0.689500817105975
60 59 5.8 -0.464602179413757 5.84391772412888 -0.20453899468884 5.38069867877875 -0.564365367144995
61 60 5.9 -0.373876664830236 5.48166674139637 -0.597796931577294 5.3357436834558 -0.649913835818738
62 61 6 -0.279415498198926 5.77474590863769 -0.280234463056808 5.46956415981143 -0.524503219480344
63 62 6.1 -0.182162504272095 6.36764321572312 -0.0996286988755344 5.7169871104113 -0.422854073705143
64 63 6.2 -0.0830894028174964 6.46175133910451 -0.025702847911482 5.83540227044819 -0.355719019286555

@ -0,0 +1,45 @@
\begin{figure}
\centering
\begin{subfigure}[b]{0.49\textwidth}
\centering
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
\begin{tikzpicture}
\begin{axis}[tick style = {draw = none}, xticklabel = \empty,
yticklabel=\empty]
\addplot [mark options={scale = 0.7}, mark = o] table
[x=x_d,y=y_d, col sep = comma] {Plots/Data/sin_conv.csv};
\addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Plots/Data/sin_conv.csv};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{True position (\textcolor{red}{red}), distorted position data (black)}
\end{subfigure}
\begin{subfigure}[b]{0.49\textwidth}
\centering
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
\begin{tikzpicture}
\begin{axis}[tick style = {draw = none}, xticklabel = \empty,
yticklabel=\empty]
\addplot [mark options={scale = 0.7}, mark = o] table [x=x,y=y, col
sep = comma] {Plots/Data/sin_conv.csv};
\addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Plots/Data/sin_conv.csv};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{True position (\textcolor{red}{red}), filtered position data (black)}
\end{subfigure}
\caption{Example for noise reduction using convolution with simulated
positional data. As filter
$g(i)=\left(\nicefrac{1}{3},\nicefrac{1}{4},\nicefrac{1}{5},\nicefrac{1}{6},\nicefrac{1}{20}\right)_{(i-1)}$
is chosen and applied to the $x$ and $y$ coordinate
data seperately. The convolution of both signals with $g$
improves the MSE of the positions from 0.196 to 0.170 and
visibly smoothes the data.
}
\label{fig:sin_conv}
\end{figure}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "../main"
%%% End:

@ -0,0 +1,5 @@
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "../main"
%%% End:

@ -0,0 +1,33 @@
\newpage
\begin{appendices}
\section{Proofs for sone Lemmata in ...}
In the following there will be proofs for some important Lemmata in
Section~\ref{sec:theo38}. Further proofs not discussed here can be
found in \textcite{heiss2019}
\begin{Theorem}[Proof of Lemma~\ref{theo38}]
\end{Theorem}
\begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}_k}{v_k}\approx\mathcal{O}(\frac{1}{n})$]
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, we have
\[
\max_{k \in \left\{1,\dots,n\right\}} \frac{w^{*,
\tilde{\lambda}}_k}{v_k} = \po_{n\to\infty}
\]
\end{Lemma}
\end{appendices}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End:

@ -0,0 +1,58 @@
@UNPUBLISHED{heiss2019,
series = {arXiv},
author = {Heiss, Jakob and Teichmann, Josef and Wutte, Hanna},
publisher = {Cornell University},
year = {2019},
language = {en},
copyright = {In Copyright - Non-Commercial Use Permitted},
keywords = {early stopping; implicit regularization; machine learning; neural networks; spline; regression; gradient descent; artificial intelligence},
size = {53 p.},
address = {Ithaca, NY},
abstract = {Today, various forms of neural networks are trained to perform approximation tasks in many fields. However, the solutions obtained are not fully understood. Empirical results suggest that typical training algorithms favor regularized solutions.These observations motivate us to analyze properties of the solutions found by gradient descent initialized close to zero, that is frequently employed to perform the training task. As a starting point, we consider one dimensional (shallow) ReLU neural networks in which weights are chosen randomly and only the terminal layer is trained. We show that the resulting solution converges to the smooth spline interpolation of the training data as the number of hidden nodes tends to infinity. Moreover, we derive a correspondence between the early stopped gradient descent and the smoothing spline regression. This might give valuable insight on the properties of the solutions obtained using gradient descent methods in general settings.},
DOI = {10.3929/ethz-b-000402003},
title = {How Implicit Regularization of Neural Networks Affects the Learned Function Part I},
PAGES = {1911.02903}
}
@article{Dropout,
author = {Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov},
title = {Dropout: A Simple Way to Prevent Neural Networks from Overfitting},
journal = {Journal of Machine Learning Research},
year = 2014,
volume = 15,
number = 56,
pages = {1929-1958},
url = {http://jmlr.org/papers/v15/srivastava14a.html}
}
@article{ADADELTA,
author = {Matthew D. Zeiler},
title = {{ADADELTA:} An Adaptive Learning Rate Method},
journal = {CoRR},
volume = {abs/1212.5701},
year = 2012,
url = {http://arxiv.org/abs/1212.5701},
archivePrefix = {arXiv},
eprint = {1212.5701},
timestamp = {Mon, 13 Aug 2018 16:45:57 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1212-5701.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{backprop,
author={Rumelhart, David E.
and Hinton, Geoffrey E.
and Williams, Ronald J.},
title={Learning representations by back-propagating errors},
journal={Nature},
year={1986},
month={Oct},
day={01},
volume={323},
number={6088},
pages={533-536},
abstract={We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal `hidden' units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.},
issn={1476-4687},
doi={10.1038/323533a0},
url={https://doi.org/10.1038/323533a0}
}

@ -0,0 +1,329 @@
\section{Application of NN to higher complexity Problems}
As neural networks are applied to problems of higher complexity often
resulting in higher dimensionality of the input the amount of
parameters in the network rises drastically. For example a network
with ...
A way to combat the
\subsection{Convolution}
Convolution is a mathematical operation, where the product of two
functions is integrated after one has been reversed and shifted.
\[
(f * g) (t) \coloneqq \int_{-\infty}^{\infty} f(t-s) g(s) ds.
\]
This operation can be described as a filter-function $g$ being applied
to $f$,
as values $f(t)$ are being replaced by an average of values of $f$
weighted by $g$ in position $t$.
The convolution operation allows plentiful manipulation of data, with
a simple example being smoothing of real-time data. Consider a sensor
measuring the location of an object (e.g. via GPS). We expect the
output of the sensor to be noisy as a result of a number of factors
that will impact the accuracy. In order to get a better estimate of
the actual location we want to smooth
the data to reduce the noise. Using convolution for this task, we
can control the significance we want to give each data-point. We
might want to give a larger weight to more recent measurements than
older ones. If we assume these measurements are taken on a discrete
timescale, we need to introduce discrete convolution first. Let $f$,
$g: \mathbb{Z} \to \mathbb{R}$ then
\[
(f * g)(t) = \sum_{i \in \mathbb{Z}} f(t-i) g(i).
\]
Applying this on the data with the filter $g$ chosen accordingly we
are
able to improve the accuracy, which can be seen in
Figure~\ref{fig:sin_conv}.
\input{Plots/sin_conv.tex}
This form of discrete convolution can also be applied to functions
with inputs of higher dimensionality. Let $f$, $g: \mathbb{Z}^d \to
\mathbb{R}$ then
\[
(f * g)(x_1, \dots, x_d) = \sum_{i \in \mathbb{Z}^d} f(x_1 - i_1,
\dots, x_d - i_d) g(i_1, \dots, i_d)
\]
This will prove to be a useful framework for image manipulation but
in order to apply convolution to images we need to discuss
representation of image data first. Most often images are represented
by each pixel being a mixture of base colors these base colors define
the color-space in which the image is encoded. Often used are
color-spaces RGB (red,
blue, green) or CMYK (cyan, magenta, yellow, black). An example of an
image split in its red, green and blue channel is given in
Figure~\ref{fig:rgb} Using this
encoding of the image we can define a corresponding discrete function
describing the image, by mapping the coordinates $(x,y)$ of an pixel
and the
channel (color) $c$ to the respective value $v$
\begin{align}
\begin{split}
I: \mathbb{N}^3 & \to \mathbb{R}, \\
(x,y,c) & \mapsto v.
\end{split}
\label{def:I}
\end{align}
\begin{figure}
\begin{adjustbox}{width=\textwidth}
\begin{tikzpicture}
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
\node[canvas is xy plane at z=0, transform shape] at (0,0)
{\includegraphics[width=5cm]{Plots/Data/klammern_r.jpg}};
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
{\includegraphics[width=5cm]{Plots/Data/klammern_g.jpg}};
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
{\includegraphics[width=5cm]{Plots/Data/klammern_b.jpg}};
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
{\includegraphics[width=5.3cm]{Plots/Data/klammern_rgb.jpg}};
\end{scope}
\end{tikzpicture}
\end{adjustbox}
\caption{On the right the red, green and blue chances of the picture
are displayed. In order to better visualize the color channels the
black and white picture of each channel has been colored in the
respective color. Combining the layers results in the image on the
left.}
\label{fig:rgb}
\end{figure}
With this representation of an image as a function, we can apply
filters to the image using convolution for multidimensional functions
as described above. In order to simplify the notation we will write
the function $I$ given in (\ref{def:I}) as well as the filter-function $g$
as a tensor from now on, resulting in the modified notation of
convolution
\[
(I * g)_{x,y,c} = \sum_{i,j,l \in \mathbb{Z}} I_{x-i,y-j,c-l} g_{i,j,l}.
\]
Simple examples for image manipulation using
convolution are smoothing operations or
rudimentary detection of edges in grayscale images, meaning they only
have one channel. A popular filter for smoothing images
is the Gauss-filter which for a given $\sigma \in \mathbb{R}_+$ and
size $s \in \mathbb{N}$ is
defined as
\[
G_{x,y} = \frac{1}{2 \pi \sigma^2} e^{-\frac{x^2 + y^2}{2
\sigma^2}}, ~ x,y \in \left\{1,\dots,s\right\}.
\]
For edge detection purposes the Sobel operator is widespread. Here two
filters are applied to the
image $I$ and then combined. Edges in the $x$ direction are detected
by convolution with
\[
G =\left[
\begin{matrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{matrix}\right],
\]
and edges is the y direction by convolution with $G^T$, the final
output is given by
\[
O = \sqrt{(I * G)^2 + (I*G^T)^2}
\]
where $\sqrt{\cdot}$ and $\cdot^2$ are applied component
wise. Examples of convolution with both kernels are given in Figure~\ref{fig:img_conv}.
\begin{figure}[h]
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{Plots/Data/klammern.jpg}
\caption{Original Picture}
\label{subf:OrigPicGS}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{Plots/Data/image_conv9.png}
\caption{Gaussian Blur $\sigma^2 = 1$}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{Plots/Data/image_conv10.png}
\caption{Gaussian Blur $\sigma^2 = 4$}
\end{subfigure}\\
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{Plots/Data/image_conv4.png}
\caption{Sobel Operator $x$-direction}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{Plots/Data/image_conv5.png}
\caption{Sobel Operator $y$-direction}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{Plots/Data/image_conv6.png}
\caption{Sobel Operator combined}
\end{subfigure}
% \begin{subfigure}{0.24\textwidth}
% \centering
% \includegraphics[width=\textwidth]{Plots/Data/image_conv6.png}
% \caption{test}
% \end{subfigure}
\caption{Convolution of original greyscale Image (a) with different
kernels. In (b) and (c) Gaussian kernels of size 11 and stated
$\sigma^2$ are used. In (d) - (f) the above defined Sobel Operator
kernels are used.}
\label{fig:img_conv}
\end{figure}
\clearpage
\newpage
\subsection{Convolutional NN}
In conventional neural networks as described in chapter ... all layers
are fully connected, meaning each output node in a layer is influenced
by all inputs. For $i$ inputs and $o$ output nodes this results in $i
+ 1$ variables at each node (weights and bias) and a total $o(i + 1)$
variables. For large inputs like image data the amount of variables
that have to be trained in order to fit the model can get excessive
and hinder the ability to train the model due to memory and
computational restrictions. By using convolution we can extract
meaningful information such as edges in an image with a kernel of a
small size $k$ in the tens or hundreds independent of the size of the
original image. Thus for a large image $k \cdot i$ can be several
orders of magnitude smaller than $o\cdot i$ .
As seen convolution lends itself for image manipulation. In this
chapter we will explore how we can incorporate convolution in neural
networks, and how that might be beneficial.
Convolutional Neural Networks as described by ... are made up of
convolutional layers, pooling layers, and fully connected ones. The
fully connected layers are layers in which each input node is
connected to each output node which is the structure introduced in
chapter ...
In a convolutional layer instead of combining all input nodes for each
output node, the input nodes are interpreted as a tensor on which a
kernel is applied via convolution, resulting in the output. Most often
multiple kernels are used, resulting in multiple output tensors. These
kernels are the variables, which can be altered in order to fit the
model to the data. Using multiple kernels it is possible to extract
different features from the image (e.g. edges -> sobel). As this
increases dimensionality even further which is undesirable as it
increases the amount of variables in later layers of the model, a convolutional layer
is often followed by a pooling one. In a pooling layer the input is
reduced in size by extracting a single value from a
neighborhood \todo{moving...}... . The resulting output size is dependent on
the offset of the neighborhoods used. Popular is max-pooling where the
largest value in a neighborhood is used or.
This construct allows for extraction of features from the input while
using far less input variables.
... \todo{Beispiel mit kleinem Bild, am besten das von oben}
\subsubsection{Parallels to the Visual Cortex in Mammals}
The choice of convolution for image classification tasks is not
arbitrary. ... auge... bla bla
\subsection{Limitations of the Gradient Descent Algorithm}
-Hyperparameter guesswork
-Problems navigating valleys -> momentum
-Different scale of gradients for vars in different layers -> ADAdelta
\subsection{Stochastic Training Algorithms}
For many applications in which neural networks are used such as
image classification or segmentation, large training data sets become
detrimental to capture the nuances of the
data. However as training sets get larger the memory requirement
during training grows with it.
In order to update the weights with the gradient descent algorithm
derivatives of the network with respect for each
variable need to be calculated for all data points in order to get the
full gradient of the error of the network.
Thus the amount of memory and computing power available limits the
size of the training data that can be efficiently used in fitting the
network. A class of algorithms that augment the gradient descent
algorithm in order to lessen this problem are stochastic gradient
descent algorithms. Here the premise is that instead of using the whole
dataset a (different) subset of data is chosen to
compute the gradient in each iteration.
The amount of iterations until each data point has been considered in
updating the parameters is commonly called a ``epoch''.
This reduces the amount of memory and computing power required for
each iteration. This allows for use of very large training
sets. Additionally the noise introduced on the gradient can improve
the accuracy of the fit as stochastic gradient descent algorithms are
less likely to get stuck on local extrema.
\input{Plots/SGD_vs_GD.tex}
Another benefit of using subsets even if enough memory is available to
use the whole dataset is that depending on the size of the subsets the
gradient can be calculated far quicker which allows to make more steps
in the same time. If the approximated gradient is close enough to the
``real'' one this can drastically cut down the time required for
training the model.
\begin{itemize}
\item ADAM
\item momentum
\item ADADETLA \textcite{ADADELTA}
\end{itemize}
% \subsubsubsection{Stochastic Gradient Descent}
\subsection{Combating Overfitting}
% As in many machine learning applications if the model is overfit in
% the data it can drastically reduce the generalization of the model. In
% many machine learning approaches noise introduced in the learning
% algorithm in order to reduce overfitting. This results in a higher
% bias of the model but the trade off of lower variance of the model is
% beneficial in many cases. For example the regression tree model
% ... benefits greatly from restricting the training algorithm on
% randomly selected features in every iteration and then averaging many
% such trained trees inserted of just using a single one. \todo{noch
% nicht sicher ob ich das nehmen will} For neural networks similar
% strategies exist. A popular approach in regularizing convolutional neural network
% is \textit{dropout} which has been first introduced in
% \cite{Dropout}
Similarly to shallow networks overfitting still can impact the quality of
convolutional neural networks. A popular way to combat this problem is
by introducing noise into the training of the model. This is a
successful strategy for ofter models as well, the a conglomerate of
descision trees grown on bootstrapped trainig samples benefit greatly
of randomizing the features available to use in each training
iteration (Hastie, Bachelorarbeit??). The way noise is introduced into
the model is by deactivating certain nodes (setting the output of the
node to 0) in the fully connected layers of the convolutional neural
networks. The nodes are chosen at random and change in every
iteration, this practice is called Dropout and was introduced by
\textcite{Dropout}.
\todo{Vergleich verschiedene dropout größen auf MNSIT o.ä.}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End:

@ -0,0 +1,10 @@
\section{Introduction}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End:

@ -26,107 +26,67 @@ except for the input layer, which recieves the components of the input.
\begin{figure}[h!] \begin{figure}[h!]
\center \center
\fbox{ % \fbox{
\resizebox{\textwidth}{!}{% \resizebox{\textwidth}{!}{%
\begin{tikzpicture}[x=1.75cm, y=1.75cm, >=stealth] \begin{tikzpicture}[x=1.75cm, y=1.75cm, >=stealth]
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with % \tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
{\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}} {\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
\foreach \m/\l [count=\y] in {1,2,3,missing,4} \foreach \m/\l [count=\y] in {1,2,3,missing,4}
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,2.5-\y) {}; \node [every neuron/.try, neuron \m/.try] (input-\m) at (0,2.5-\y) {};
\foreach \m [count=\y] in {1,missing,2} \foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (hidden1-\m) at (2,2-\y*1.25) {}; \node [every neuron/.try, neuron \m/.try ] (hidden1-\m) at (2,2-\y*1.25) {};
\foreach \m [count=\y] in {1,missing,2} \foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (hidden2-\m) at (5,2-\y*1.25) {}; \node [every neuron/.try, neuron \m/.try ] (hidden2-\m) at (5,2-\y*1.25) {};
\foreach \m [count=\y] in {1,missing,2} \foreach \m [count=\y] in {1,missing,2}
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (7,1.5-\y) {}; \node [every neuron/.try, neuron \m/.try ] (output-\m) at (7,1.5-\y) {};
\foreach \l [count=\i] in {1,2,3,d_i} \foreach \l [count=\i] in {1,2,3,d_i}
\draw [myptr] (input-\i)+(-1,0) -- (input-\i) \draw [myptr] (input-\i)+(-1,0) -- (input-\i)
node [above, midway] {$x_{\l}$}; node [above, midway] {$x_{\l}$};
\foreach \l [count=\i] in {1,n_1} \foreach \l [count=\i] in {1,n_1}
\node [above] at (hidden1-\i.north) {$\mathcal{N}_{1,\l}$}; \node [above] at (hidden1-\i.north) {$\mathcal{N}_{1,\l}$};
\foreach \l [count=\i] in {1,n_l} \foreach \l [count=\i] in {1,n_l}
\node [above] at (hidden2-\i.north) {$\mathcal{N}_{l,\l}$}; \node [above] at (hidden2-\i.north) {$\mathcal{N}_{l,\l}$};
\foreach \l [count=\i] in {1,d_o} \foreach \l [count=\i] in {1,d_o}
\draw [myptr] (output-\i) -- ++(1,0) \draw [myptr] (output-\i) -- ++(1,0)
node [above, midway] {$O_{\l}$}; node [above, midway] {$O_{\l}$};
\foreach \i in {1,...,4} \foreach \i in {1,...,4}
\foreach \j in {1,...,2} \foreach \j in {1,...,2}
\draw [myptr] (input-\i) -- (hidden1-\j); \draw [myptr] (input-\i) -- (hidden1-\j);
\foreach \i in {1,...,2} \foreach \i in {1,...,2}
\foreach \j in {1,...,2} \foreach \j in {1,...,2}
\draw [myptr] (hidden1-\i) -- (hidden2-\j); \draw [myptr] (hidden1-\i) -- (hidden2-\j);
\foreach \i in {1,...,2} \foreach \i in {1,...,2}
\foreach \j in {1,...,2} \foreach \j in {1,...,2}
\draw [myptr] (hidden2-\i) -- (output-\j); \draw [myptr] (hidden2-\i) -- (output-\j);
\node [align=center, above] at (0,2) {Input\\layer}; \node [align=center, above] at (0,2) {Input\\layer};
\node [align=center, above] at (2,2) {Hidden \\layer $1$}; \node [align=center, above] at (2,2) {Hidden \\layer $1$};
\node [align=center, above] at (5,2) {Hidden \\layer $l$}; \node [align=center, above] at (5,2) {Hidden \\layer $l$};
\node [align=center, above] at (7,2) {Output \\layer}; \node [align=center, above] at (7,2) {Output \\layer};
\node[fill=white,scale=1.5,inner xsep=10pt,inner ysep=10mm] at ($(hidden1-1)!.5!(hidden2-2)$) {$\dots$}; \node[fill=white,scale=1.5,inner xsep=10pt,inner ysep=10mm] at ($(hidden1-1)!.5!(hidden2-2)$) {$\dots$};
\end{tikzpicture}}} \end{tikzpicture}}%}
\caption{test} \caption{Illustration of a neural network with $d_i$ inputs, $l$
hidden layers with $n_{\cdot}$ nodes in each layer, as well as
$d_o$ outputs.
}
\end{figure} \end{figure}
\begin{figure} \subsection{Nonlinearity of Neural Networks}
\begin{tikzpicture}[x=1.5cm, y=1.5cm]
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
{\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
\foreach \m/\l [count=\y] in {1}
\node [every neuron/.try, neuron \m/.try] (input-\m) at (0,0.5-\y) {};
\foreach \m [count=\y] in {1,2,missing,3,4}
\node [every neuron/.try, neuron \m/.try ] (hidden-\m) at (1.25,3.25-\y*1.25) {};
\foreach \m [count=\y] in {1}
\node [every neuron/.try, neuron \m/.try ] (output-\m) at (2.5,0.5-\y) {};
\foreach \l [count=\i] in {1}
\draw [myptr] (input-\i)+(-1,0) -- (input-\i)
node [above, midway] {$x$};
\foreach \l [count=\i] in {1,2,n-1,n}
\node [above] at (hidden-\i.north) {$\mathcal{N}_{\l}$};
\foreach \l [count=\i] in {1,n_l}
\node [above] at (output-\i.north) {};
\foreach \l [count=\i] in {1}
\draw [myptr, >=stealth] (output-\i) -- ++(1,0)
node [above, midway] {$y$};
\foreach \i in {1}
\foreach \j in {1,2,...,3,4}
\draw [myptr, >=stealth] (input-\i) -- (hidden-\j);
\foreach \i in {1,2,...,3,4}
\foreach \j in {1}
\draw [myptr, >=stealth] (hidden-\i) -- (output-\j);
\node [align=center, above] at (0,1) {Input \\layer};
\node [align=center, above] at (1.25,3) {Hidden layer};
\node [align=center, above] at (2.5,1) {Output \\layer};
\end{tikzpicture}
\caption{Shallow Neural Network with input- and output-dimension of \(d
= 1\)}
\end{figure}
\begin{figure} \begin{figure}
@ -159,7 +119,7 @@ except for the input layer, which recieves the components of the input.
\node [align = center, below] at (3, 0) {Summing \\junction}; \node [align = center, below] at (3, 0) {Summing \\junction};
\node [draw, minimum size = 1.25cm] (act) at (4.5, 0.625) \node [draw, minimum size = 1.25cm] (act) at (4.5, 0.625)
{\(\psi(.)\)}; {\(\sigma(.)\)};
\node [align = center, above] at (4.5, 1.25) {Activation \\function}; \node [align = center, above] at (4.5, 1.25) {Activation \\function};
\node [circle, draw, fill=black, inner sep = 0pt, minimum size = \node [circle, draw, fill=black, inner sep = 0pt, minimum size =
@ -215,17 +175,125 @@ except for the input layer, which recieves the components of the input.
\caption{Structure of a single neuron} \caption{Structure of a single neuron}
\end{figure} \end{figure}
\begin{tikzpicture} \clearpage
\tikzset{myptr/.style={decoration={markings,mark=at position 1 with % \subsection{Training Neural Networks}
{\arrow[scale=2,>=stealth]{>}}},postaction={decorate}}}
%1 After a neural network model is designed, like most statistical models
\draw [->,>=stealth] (0,.5) -- (2,.5); it has to be fit to the data. In the machine learning context this is
%2 often called ``training'' as due to the complexity and amount of
\draw [myptr] (0,0) -- (2,0); variables in these models they are fitted iteratively to the data,
\end{tikzpicture} ``learing'' the properties of the data better with each iteration.
There are two main categories of machine learning models, being
supervised and unsupervised learners. Unsupervised learners learn
structure in the data without guidance form outside (as labeling data
beforehand for training) popular examples of this are clustering
algorithms\todo{quelle}. Supervised learners on the other hand are as
the name suggest supervised during learning. This generally amounts to
using data with the expected response (label) attached to each
data-point in fitting the model, where usually some distance between
the model output and the labels is minimized.
\subsubsection{Interpreting the Output}
In order to properly interpret the output of a neural network and
training it, depending on the problem it might be advantageous to
transform the output form the last layer. Given the nature of the
neural network the value at each output node is a real number. This is
desirable for applications where the desired output is a real numbered
vector (e.g. steering inputs for a autonomous car), however for
classification problems it is desirable to transform this
output. Often classification problems are modeled in such a way that
each output node corresponds to a class. Then the output vector needs
to be normalized in order to give a prediction. The naive approach is
to transform the output vector $o$ into a one-hot vector $p$
corresponding to a $0$
entry for all classes except one, which is the predicted class.
\[
p_i =
\begin{cases}
1,& i < j, \forall i,j \in \text{arg}\max o_i, \\
0,& \text{else.}
\end{cases}
\]\todo{besser formulieren}
However this imposes difficulties in training the network as with this
addition the model is no longer differentiable which imitates the
ways the model can be trained. Additionally information about the
``certainty'' for each class in the prediction gets lost. A popular
way to circumvent this problem is to normalize the output vector is
such a way that the entries add up to one, this allows for the
interpretation of probabilities assigned to each class.
\subsubsection{Error Measurement}
In order to make assessment about the quality of a network $\mathcal{NN}$ and train
it we need to discuss how we measure error. As for regression problems
the output is continuous in contrast to the class predictions in a
classification problem, we need to discuss these problems separately.
\paragraph{Regression Problems}
\subsubsection{Gradient Descent Algorithm}
When trying to fit a neural network it is hard
to predict the impact of the single parameters on the accuracy of the
output. Thus applying numeric optimization algorithms is the only
feasible way to fit the model. A attractive algorithm for training
neural networks is gradient descent where each parameter $\theta_i$ is
iterative changed according to the gradient regarding the error
measure and a step size $\gamma$. For this all parameters are
initialized (often random or close to zero) and then iteratively
updated until a certain criteria is hit, mostly either being a fixed
number of iterations or a desired upper limit for the error measure.
% For a function $f_\theta$ with parameters $\theta \in \mathbb{R}^n$
% and a error function $L(f_\theta)$ the gradient descent algorithm is
% given in \ref{alg:gd}.
\begin{algorithm}[H]
\SetAlgoLined
\KwInput{function $f_\theta$ with parameters $\theta \in
\mathbb{R}^n$ \newline step size $\gamma$}
initialize $\theta^0$\;
$i \leftarrow 1$\;
\While{While termination condition is not met}{
$\nabla \leftarrow \frac{\mathrm{d}f_\theta}{\mathrm{d} \theta}\vert_{\theta^{i-1}}$\;
$\theta^i \leftarrow \theta^{i-1} - \gamma \nabla $\;
$i \leftarrow i +1$\;
}
\caption{Gradient Descent}
\label{alg:gd}
\end{algorithm}
The algorithm for gradient descent is given in
Algorithm~\ref{alg:gd}. In the context of fitting a neural network
$f_\theta$ corresponds to the error measurement of the network
$L\left(\mathcal{NN}_{\theta}\right)$ where $\theta$ is a vector
containing all the weights and biases of the network.
As ca be seen this requires computing the derivative of the network
with regard to each variable. With the number of variables getting
large in networks with multiple layers of high neuron count naively
computing these can get quite memory and computational expensive. But
by using the chain rule and exploiting the layered structure we can
compute the gradient much more efficiently by using backpropagation
first introduced by \textcite{backprop}.
\subsubsection{Backpropagation}
As with an increasing amount of layers the derivative of a loss
function with respect to a certain variable becomes more intensive to
compute there have been efforts in increasing the efficiency of
computing these derivatives. Today the BACKPROPAGATION algorithm is
widely used to compute the derivatives needed for the optimization
algorithms. Here instead of naively calculating the derivative for
each variable, the chain rule is used in order to compute derivatives
for each layer from output layer towards the first layer while only
needing to ....
\[
\frac{\partial L(...)}{}
\]
%%% Local Variables: %%% Local Variables:
%%% mode: latex %%% mode: latex

@ -1,6 +1,8 @@
\documentclass[a4paper, 12pt]{article} \documentclass[a4paper, 12pt, draft=true]{article}
%\usepackage[margin=1in]{geometry}
%\geometry{a4paper, left=30mm, right=40mm,top=25mm, bottom=20mm}
\usepackage[margin=1in]{geometry}
\usepackage[english]{babel} \usepackage[english]{babel}
\usepackage[utf8]{inputenc} \usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc} \usepackage[T1]{fontenc}
@ -16,8 +18,8 @@
\usepackage{sectsty} \usepackage{sectsty}
\usepackage{setspace} \usepackage{setspace}
\usepackage{booktabs} \usepackage{booktabs}
\usepackage{caption} \usepackage[format=plain,
\usepackage[justification=RaggedRight, singlelinecheck=false]{caption} textfont=it]{caption}
%\usepackage{natbib} %[numbers] %\usepackage{natbib} %[numbers]
\usepackage{multirow} \usepackage{multirow}
\usepackage{3parttable} \usepackage{3parttable}
@ -28,9 +30,18 @@
\usepackage{tikz} \usepackage{tikz}
\usepackage{nicefrac} \usepackage{nicefrac}
\usepackage{enumitem} \usepackage{enumitem}
\usepackage[toc, page]{appendix}
\usepackage{todonotes}
\usepackage{lipsum}
\usepackage[ruled,vlined]{algorithm2e}
\usepackage{showframe}
\usepackage[protrusion=true, expansion=true, kerning=true]{microtype}
\captionsetup[sub]{justification=centering}
\usetikzlibrary{matrix,chains,positioning,decorations.pathreplacing,arrows} \usetikzlibrary{matrix,chains,positioning,decorations.pathreplacing,arrows}
\usetikzlibrary{positioning,calc,calligraphy} \usetikzlibrary{positioning,calc,calligraphy}
\usetikzlibrary{calc, 3d}
\usepackage{pgfplots} \usepackage{pgfplots}
\usepgfplotslibrary{colorbrewer} \usepgfplotslibrary{colorbrewer}
@ -42,9 +53,8 @@
\usepackage[style=authoryear, backend=bibtex]{biblatex} \usepackage[style=authoryear, backend=bibtex]{biblatex}
\addbibresource{Literaturverzeichnis.bib}
\urlstyle{same} \urlstyle{same}
\bibliography{Literaturverzeichnis.bib} \bibliography{bibliograpy.bib}
\numberwithin{figure}{section} \numberwithin{figure}{section}
\numberwithin{table}{section} \numberwithin{table}{section}
\numberwithin{equation}{section} \numberwithin{equation}{section}
@ -66,16 +76,22 @@
\DeclareMathOperator*{\plim}{\mathbb{P}\text{-}\lim} \DeclareMathOperator*{\plim}{\mathbb{P}\text{-}\lim}
\DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\supp}{supp}
\DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\argmin}{arg\,min}
\begin{document} \DeclareMathOperator*{\po}{\mathbb{P}\text{-}\mathcal{O}}
\DeclareMathOperator*{\equals}{=}
\begin{document}f
\newcommand{\plimn}[0]{\plim\limits_{n \to \infty}} \newcommand{\plimn}[0]{\plim\limits_{n \to \infty}}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{ \newcommand*\circled[1]{\tikz[baseline=(char.base)]{
\node[shape=circle,draw,inner sep=2pt] (char) {#1};}} \node[shape=circle,draw,inner sep=2pt] (char) {#1};}}
\newcommand{\abs}[1]{\ensuremath{\left\vert#1\right\vert}} \newcommand{\abs}[1]{\ensuremath{\left\vert#1\right\vert}}
\SetKwInput{KwInput}{Input}
%\newcommand{\myrightarrow}[1]{\xrightarrow{\makebox[2em][c]{$\scriptstyle#1$}}} %\newcommand{\myrightarrow}[1]{\xrightarrow{\makebox[2em][c]{$\scriptstyle#1$}}}
%Arndt Tobias \hfill 21.12.2017\newline %Arndt Tobias \hfill 21.12.2017\newline
@ -92,6 +108,12 @@
\newpage \newpage
%\setcounter{tocdepth}{4} %\setcounter{tocdepth}{4}
\tableofcontents \tableofcontents
\listoftodos
\newpage
\pagenumbering{arabic}
% Introduction
\input{introduction}
\newpage \newpage
% Introduction Neural Networks % Introduction Neural Networks
@ -100,7 +122,19 @@
\newpage \newpage
% Theorem 3.8 % Theorem 3.8
\input{theo_3_8.tex} \input{theo_3_8}
\newpage
% Kapitel 4
\input{further_applications_of_nn}
\newpage
\printbibliography
% Appendix A
\input{appendixA.tex}
\end{document} \end{document}

@ -0,0 +1,25 @@
\documentclass{article}
\usepackage{pgfplots}
\usepackage{filecontents}
\begin{document}
\begin{tikzpicture}
\begin{axis}
\addplot+ [mark options={scale = 0.7}, mark = o] table [x=x,y=y, col sep = comma,
only marks] {data_sin_d_t.csv};
\addplot [black] table [x=x, y=y, col sep=comma, mark=none, color = 'black'] {matlab_sin_d_01.csv};
\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{axis}
\addplot table [x=x, y=y, col sep=comma, only marks] {data_sin_d_t.csv};
\addplot table [black, x=x, y=y, col sep=comma, mark=none, color = 'black'] {matlab_sin_d_01.csv};
\end{axis}
\end{tikzpicture}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:

@ -4,15 +4,247 @@
%%% mode: latex %%% mode: latex
%%% TeX-master: "main" %%% TeX-master: "main"
%%% End: %%% End:
\section{Shallow Neural Networks}
In this section we will analyze the connection of shallow Neural In order to examine some behavior of neural networks in this chapter
Networks and regression splines. We will see that the punishment of we consider a simple class of networks, the shallow ones. These
wight size in training the shallow Neural Netowork will result in a networks only contain one hidden layer and have a single output node.
function that minimizes the second derivative as the amount of hidden
nodes ia grown to infinity. In order to properly formulate this relation we will \begin{Definition}[Shallow neural network]
first need to introduce some definitions. For a input dimension $d$ and a Lipschitz continuous activation function $\sigma:
\mathbb{R} \to \mathbb{R}$ we define a shallow neural network with
$n$ hidden nodes as
$\mathcal{NN}_\vartheta : \mathbb{R}^d \to \mathbb{R}$ as
\[
\mathcal{NN}_\vartheta \coloneqq \sum_{k=1}^n w_k \sigma\left(b_k +
\sum_{j=1}^d v_{k,j} x_j\right) + c ~~ \forall x \in \mathbb{R}^d
\]
with
\begin{itemize}
\item weights $w_k \in \mathbb{R},~k \in \left\{1,\dots,n\right\}$
\item biases $b_k \in \mathbb{R},~k \in \left\{1, \dots,n\right\}$
\item weights $v_k \in \mathbb{R}^d,~k\in\left\{1,\dots,n\right\}$
\item bias $c \in \mathbb{R}$
\item these weights and biases collected in
\[
\vartheta \coloneqq (w, b, v, c) \in \Theta \coloneqq
\mathbb{R}^{n \times n \times (n \times d) \times 1}
\]
\end{itemize}
\end{Definition}
% \begin{figure}
% \begin{tikzpicture}[x=1.5cm, y=1.5cm]
% \tikzset{myptr/.style={decoration={markings,mark=at position 1 with %
% {\arrow[scale=1.5,>=stealth]{>}}},postaction={decorate}}}
% \foreach \m/\l [count=\y] in {1}
% \node [every neuron/.try, neuron \m/.try] (input-\m) at (0,0.5-\y) {};
% \foreach \m [count=\y] in {1,2,missing,3,4}
% \node [every neuron/.try, neuron \m/.try ] (hidden-\m) at (1.25,3.25-\y*1.25) {};
% \foreach \m [count=\y] in {1}
% \node [every neuron/.try, neuron \m/.try ] (output-\m) at (2.5,0.5-\y) {};
% \foreach \l [count=\i] in {1}
% \draw [myptr] (input-\i)+(-1,0) -- (input-\i)
% node [above, midway] {$x$};
% \foreach \l [count=\i] in {1,2,n-1,n}
% \node [above] at (hidden-\i.north) {$\mathcal{N}_{\l}$};
% \foreach \l [count=\i] in {1,n_l}
% \node [above] at (output-\i.north) {};
% \foreach \l [count=\i] in {1}
% \draw [myptr, >=stealth] (output-\i) -- ++(1,0)
% node [above, midway] {$y$};
% \foreach \i in {1}
% \foreach \j in {1,2,...,3,4}
% \draw [myptr, >=stealth] (input-\i) -- (hidden-\j);
% \foreach \i in {1,2,...,3,4}
% \foreach \j in {1}
% \draw [myptr, >=stealth] (hidden-\i) -- (output-\j);
% \node [align=center, above] at (0,1) {Input \\layer};
% \node [align=center, above] at (1.25,3) {Hidden layer};
% \node [align=center, above] at (2.5,1) {Output \\layer};
% \end{tikzpicture}
% \caption{Shallow Neural Network with input- and output-dimension of \(d
% = 1\)}
% \label{fig:shallowNN}
% \end{figure}
As neural networks with a large amount of nodes have a large amount of
parameters that can be tuned it can often fit the data quite well. If a ReLU
\[
\sigma(x) \coloneqq \max{(0, x)}
\]
is chosen as activation function one can easily prove that if the
amount of hidden nodes exceeds the
amount of data points in the training data a shallow network trained
on MSE will perfectly fit the data.
\begin{Theorem}[sinnvoller titel]
For training data of size t
\[
\left(x_i^{\text{train}}, y_i^{\text{train}}\right) \in \mathbb{R}^d
\times \mathbb{R},~i\in\left\{1,\dots,t\right\}
\]
a shallow neural network $\mathcal{NN}_\vartheta$ with $n \geq t$
hidden nodes will perfectly fit the data when
minimizing squared error loss.
\proof
W.l.o.g. all values $x_{ij}^{\text{train}} \in [0,1],~\forall i \in
\left\{1,\dots\right\}, j \in \left\{1,\dots,d\right\}$. Now we
chose $v^*$ in order to calculate a unique value for all
$x_i^{\text{train}}$:
\[
v^*_{k,j} = v^*_{j} = 10^{j-1}, ~ \forall k \in \left\{1,\dots,n\right\}.
\]
Assuming $x_i^{\text{train}} \neq x_j^{\text{train}},~\forall i\neq
j$ we get
\[
\left(v_k^*\right)^{\mathrm{T}} x_i^{\text{train}} \neq
\left(v_k^*\right)^{\mathrm{T}} x_j^{\text{train}}, ~ \forall i
\neq j.
\]
W.l.o.g assume $x_i^{\text{train}}$ are ordered such that
$\left(v_k^*\right)^{\mathrm{T}} x_i^{\text{train}} <
\left(v_k^*\right)^{\mathrm{T}} x_j^{\text{train}}, ~\forall j<j$,
Then we can choose $b^*_k$ such that neuron $k$ is only active for all
$x_i^{\text{train}}$ with $i \geq k$:
\begin{align*}
b^*_1 &> -\left(v^*\right)^{\mathrm{T}} x_1^{\text{train}},\\
b^*_k &= -\left(v^*\right)^{\mathrm{T}}
x_{k-1}^{\text{train}},~\forall k \in \left\{2, \dots,
t\right\}, \\
b_k^* &\leq -\left(v^*\right)^{\mathrm{T}}
x_{t}^{\text{train}},~\forall k > t.
\end{align*}
With
\begin{align*}
w_k^* &= \frac{y_k^{\text{train}} - \sum_{j =1}^{k-1} w^*_j\left(b^*_j +
x_k^{\text{train}}\right)}{b_k + \left(v^*\right)^{\mathrm{T}}
x_k^{\text{train}}},~\forall k \in \left\{1,\dots,t\right\}\\
w_k^* &\in \mathbb{R} \text{ arbitrary, } \forall k > t.
\end{align*}
and $\vartheta^* = (w^*, b^*, v^*, c = 0)$ we get
\[
\mathcal{NN}_{\vartheta^*} (x_i^{\text{train}}) = \sum_{k =
1}^{i-1} w_k\left(\left(v^*\right)^{\mathrm{T}}
x_i^{\text{train}}\right) + w_i\left(\left(v^*\right)^{\mathrm{T}}
x_i^{\text{train}}\right) = y_i^{\text{train}}.
\]
As the squared error of $\mathcal{NN}_{\vartheta^*}$ is zero all
squared error loss minimizing shallow networks with at least $t$ hidden
nodes will perfectly fit the data.
\qed
\label{theo:overfit}
\end{Theorem}
However this behavior is often not desired as over fit models often
have bad generalization properties especially if noise is present in
the data. This effect can be seen in
Figure~\ref{fig:overfit}. Here a network that perfectly fits the
training data regarding the MSE is \todo{Formulierung}
constructed and compared to a regression spline
(Definition~\ref{def:wrs}). While the network
fits the data better than the spline, the spline is much closer to the
underlying mechanism that was used to generate the data. The better
generalization of the spline compared to the network is further
illustrated by the better validation error computed with new generated
test data.
In order to improve the accuracy of the model we want to reduce
overfitting. A possible way to achieve this is by explicitly
regularizing the network through the cost function as done with
ridge penalized networks
(Definition~\ref{def:rpnn}) where large weights $w$ are punished. In
Theorem~\ref{theo:main1} we will
prove that this will result in the network converging to
regressions splines as the amount of nodes in the hidden layer is
increased.
\begin{figure}
\begin{adjustbox}{width = \textwidth}
\pgfplotsset{
compat=1.11,
legend image code/.code={
\draw[mark repeat=2,mark phase=2]
plot coordinates {
(0cm,0cm)
(0.15cm,0cm) %% default is (0.3cm,0cm)
(0.3cm,0cm) %% default is (0.6cm,0cm)
};%
}
}
\begin{tikzpicture}
\begin{axis}[tick style = {draw = none}, width = \textwidth,
height = 0.6\textwidth]
\addplot table
[x=x, y=y, col sep=comma, only marks,mark options={scale =
0.7}] {Plots/Data/overfit.csv};
\addplot [red, line width=0.8pt] table [x=x_n, y=s_n, col
sep=comma, forget plot] {Plots/Data/overfit.csv};
\addplot [black, line width=0.8pt] table [x=x_n, y=y_n, col
sep=comma] {Plots/Data/overfit.csv};
\addplot [black, line width=0.8pt, dashed] table [x=x, y=y, col
sep=comma] {Plots/Data/overfit_spline.csv};
\addlegendentry{\footnotesize{data}};
\addlegendentry{\footnotesize{$\mathcal{NN}_{\vartheta^*}$}};
\addlegendentry{\footnotesize{spline}};
\end{axis}
\end{tikzpicture}
\end{adjustbox}
\caption{For data of the form $y=\sin(\frac{x+\pi}{2 \pi}) +
\varepsilon,~ \varepsilon \sim \mathcal{N}(0,0.4)$
(\textcolor{blue}{blue dots}) the neural network constructed
according to the proof of Theorem~\ref{theo:overfit} (black) and the
underlying signal (\textcolor{red}{red}). While the network has no
bias a regression spline (black dashed) fits the data much
better. For a test set of size 20 with uniformly distributed $x$
values and responses of the same fashion as the training data the MSE of the neural network is
0.30, while the MSE of the spline is only 0.14 thus generalizing
much better.
}
\label{fig:overfit}
\end{figure}
\clearpage
\subsection{Convergence Behaviour of 1-dim. Randomized Shallow Neural
Networks}
In this section we will analyze the connection of randomized shallow
Neural Networks with one dimensional input and regression splines. We
will see that the punishment of the size of the weights in training
the randomized shallow
Neural Network will result in a function that minimizes the second
derivative as the amount of hidden nodes is grown to infinity. In order
to properly formulate this relation we will first need to introduce
some definitions.
\begin{Definition}[Randomized shallow neural network]
For an input dimension $d$, let $n \in \mathbb{N}$ be the number of
hidden nodes and $v(\omega) \in \mathbb{R}^{i \times n}, b(\omega)
\in \mathbb{R}^n$ randomly drawn weights. Then for a weight vector
$w$ the corresponding randomized shallow neural network is given by
\[
\mathcal{RN}_{w, \omega} (x) = \sum_{k=1}^n w_k
\sigma\left(b_k(\omega) + \sum_{j=1}^d v_{k, j}(\omega) x_j\right).
\]
\label{def:rsnn}
\end{Definition}
\begin{Definition}[Ridge penalized Neural Network] \begin{Definition}[Ridge penalized Neural Network]
\label{def:rpnn}
Let $\mathcal{RN}_{w, \omega}$ be a randomized shallow neural Let $\mathcal{RN}_{w, \omega}$ be a randomized shallow neural
network, as introduced in ???. Then the optimal ridge penalized network, as introduced in ???. Then the optimal ridge penalized
network is given by network is given by
@ -24,12 +256,11 @@ first need to introduce some definitions.
\[ \[
w^{*,\tilde{\lambda}}(\omega) :\in \argmin_{w \in w^{*,\tilde{\lambda}}(\omega) :\in \argmin_{w \in
\mathbb{R}^n} \underbrace{ \left\{\overbrace{\sum_{i = 1}^N \left(\mathcal{RN}_{w, \mathbb{R}^n} \underbrace{ \left\{\overbrace{\sum_{i = 1}^N \left(\mathcal{RN}_{w,
\omega}(x_i^{\text{train}}) - \omega}(x_i^{\text{train}}) -
y_i^{\text{train}}\right)^2}^{L(\mathcal{RN}_{w, \omega})} + y_i^{\text{train}}\right)^2}^{L(\mathcal{RN}_{w, \omega})} +
\tilde{\lambda} \norm{w}_2^2\right\}}_{\eqqcolon F_n^{\tilde{\lambda}}(\mathcal{RN}_{w,\omega})}. \tilde{\lambda} \norm{w}_2^2\right\}}_{\eqqcolon F_n^{\tilde{\lambda}}(\mathcal{RN}_{w,\omega})}.
\] \]
\end{Definition} \end{Definition}
\label{def:rpnn}
In the ridge penalized Neural Network large weights are penalized, the In the ridge penalized Neural Network large weights are penalized, the
extend of which can be tuned with the parameter $\tilde{\lambda}$. If extend of which can be tuned with the parameter $\tilde{\lambda}$. If
$n$ is larger than the amount of training samples $N$ then for $n$ is larger than the amount of training samples $N$ then for
@ -43,14 +274,12 @@ having minimal weights, resulting in the \textit{minimum norm
\[ \[
w^{\text{min}} \in \argmin_{w \in \mathbb{R}^n} \norm{w}, \text{ w^{\text{min}} \in \argmin_{w \in \mathbb{R}^n} \norm{w}, \text{
s.t. } s.t. }
\mathcal{RN}_{w,\omega}(x_i^{train}) = y_i^{train}, \, \forall i \in \mathcal{RN}_{w,\omega}(x_i^{\text{train}}) = y_i^{\text{train}}, \, \forall i \in
\left\{1,\dots,N\right\}. \left\{1,\dots,N\right\}.
\] \]
For $\tilde{\lambda} \to \infty$ the learned For $\tilde{\lambda} \to \infty$ the learned
function will resemble the data less and less with the weights function will resemble the data less and less with the weights
approaching $0$. Usually $\tilde{\lambda}$ lies between 0 and 1, as approaching $0$. .\par
for larger values the focus of weight reduction is larger than fittig
the data.\par
In order to make the notation more convinient in the follwoing the In order to make the notation more convinient in the follwoing the
$\omega$ used to express the realised random parameters will no longer $\omega$ used to express the realised random parameters will no longer
be explizitly mentioned. be explizitly mentioned.
@ -60,10 +289,10 @@ be explizitly mentioned.
Network according to Definition~\ref{def:rsnn}, then kinks depending on the random parameters can Network according to Definition~\ref{def:rsnn}, then kinks depending on the random parameters can
be observed. be observed.
\[ \[
\mathcal{RN}_w(x) = \sum_{k = 1}^n w_k \gamma(b_k + v_kx) \mathcal{RN}_w(x) = \sum_{k = 1}^n w_k \sigma(b_k + v_kx)
\] \]
Because we specified $\gamma(y) \coloneqq \max\left\{0, y\right\}$ a Because we specified $\sigma(y) \coloneqq \max\left\{0, y\right\}$ a
kink in $\gamma$ can be observed at $\gamma(0) = 0$. As $b_k + v_kx = 0$ for $x kink in $\sigma$ can be observed at $\sigma(0) = 0$. As $b_k + v_kx = 0$ for $x
= -\frac{b_k}{v_k}$ we define the following: = -\frac{b_k}{v_k}$ we define the following:
\begin{enumerate}[label=(\alph*)] \begin{enumerate}[label=(\alph*)]
\item Let $\xi_k \coloneqq -\frac{b_k}{v_k}$ be the k-th kink of $\mathcal{RN}_w$. \item Let $\xi_k \coloneqq -\frac{b_k}{v_k}$ be the k-th kink of $\mathcal{RN}_w$.
@ -91,7 +320,7 @@ smooth approximation of the RSNN.
\[ \[
\kappa_x(s) \coloneqq \mathds{1}_{\left\{\abs{s} \leq \frac{1}{2 \sqrt{n} \kappa_x(s) \coloneqq \mathds{1}_{\left\{\abs{s} \leq \frac{1}{2 \sqrt{n}
g_{\xi}(x)}\right\}}(s)\sqrt{n} g_{\xi}(x), \, \forall s \in \mathbb{R} g_{\xi}(x)}\right\}}(s)\sqrt{n} g_{\xi}(x), \, \forall s \in \mathbb{R}
\] \]
Using this kernel we define a smooth approximation of Using this kernel we define a smooth approximation of
@ -113,69 +342,120 @@ that the ridge penalized neural network as defined in
Definition~\ref{def:rpnn} converges a weighted regression spline, as Definition~\ref{def:rpnn} converges a weighted regression spline, as
the amount of hidden nodes is grown to inifity. the amount of hidden nodes is grown to inifity.
\begin{Definition}[Weighted regression spline] \begin{Definition}[Adapted Weighted regression spline]
Let $x_i^{train}, y_i^{train} \in \mathbb{R}, i \in \label{def:wrs}
Let $x_i^{\text{train}}, y_i^{\text{train}} \in \mathbb{R}, i \in
\left\{1,\dots,N\right\}$ be trainig data. For a given $\lambda \in \mathbb{R}_{>0}$ \left\{1,\dots,N\right\}$ be trainig data. For a given $\lambda \in \mathbb{R}_{>0}$
and a function $g: \mathbb{R} \to \mathbb{R}_{>0}$ the weighted and a function $g: \mathbb{R} \to \mathbb{R}_{>0}$ the weighted
regression spline $f^{*, \lambda}_g$ is given by regression spline $f^{*, \lambda}_g$ is given by
\[ \[
f^{*, \lambda}_g :\in \argmin_{\substack{f \in \mathcal{C}^2(\mathbb{R}) f^{*, \lambda}_g :\in \argmin_{\substack{f \in \mathcal{C}^2(\mathbb{R})
\\ \supp(f) \subseteq \supp(g)}} \underbrace{\left\{ \overbrace{\sum_{i = \\ \supp(f) \subseteq \supp(g)}} \underbrace{\left\{ \overbrace{\sum_{i =
1}^N \left(f(x_i^{train}) - y_i^{train}\right)^2}^{L(f)} + 1}^N \left(f(x_i^{\text{train}}) - y_i^{\text{train}}\right)^2}^{L(f)} +
\lambda g(0) \int_{\supp(g)}\frac{\left(f''(x)\right)^2}{g(x)} \lambda g(0) \int_{\supp(g)}\frac{\left(f''(x)\right)^2}{g(x)}
dx\right\}}_{\eqqcolon F^{\lambda, g}(f)}. dx\right\}}_{\eqqcolon F^{\lambda, g}(f)}.
\] \]
\todo{Anforderung an Ableitung von f, doch nicht?}
\end{Definition} \end{Definition}
Similary to ridge weight penalized neural networks the parameter Similary to ridge weight penalized neural networks the parameter
$\lambda$ controls a trade-off between accuracy on the training data $\lambda$ controls a trade-off between accuracy on the training data
and smoothness or low second dreivative. For $g \equiv 1$ and $\lambda \to 0$ the and smoothness or low second dreivative. For $g \equiv 1$ and $\lambda \to 0$ the
resuling function $f^{*, 0+}$ will interpolate the training data while minimizing resuling function $f^{*, 0+}$ will interpolate the training data while minimizing
the second derivative. Such a function is known as smooth spline the second derivative. Such a function is known as cubic spline
interpolation or (cubic) smoothing spline. interpolation.
\todo{cite cubic spline}
\[ \[
f^{*, 0+} \text{ smooth spline interpolation: } f^{*, 0+} \text{ smooth spline interpolation: }
\] \]
\[ \[
f^{*, 0+} \coloneqq \lim_{\lambda \to 0+} f^{*, \lambda}_1 \in f^{*, 0+} \coloneqq \lim_{\lambda \to 0+} f^{*, \lambda}_1 \in
\argmin_{\substack{f \in \mathcal{C}^2\mathbb{R}, \\ f(x_i^{train}) = \argmin_{\substack{f \in \mathcal{C}^2\mathbb{R}, \\ f(x_i^{\text{train}}) =
y_i^{train}} = \left( \int _{\mathbb{R}} (f''(x))^2dx\right). y_i^{\text{train}}}} = \left( \int _{\mathbb{R}} (f''(x))^2dx\right).
\] \]
For $\lambda \to \infty$ on the other hand $f_g^{*\lambda}$ converges
to linear regression of the data.
\begin{Definition}[Spline approximating Randomised Shallow Neural
Network]
\label{def:sann}
Let $\mathcal{RN}$ be a randomised shallow Neural Network according
to Definition~\ref{def:RSNN} and $f^{*, \lambda}_g$ be the weighted
regression spline as introduced in Definition~\ref{def:wrs}. Then
the randomised shallow neural network approximating $f^{*,
\lambda}_g$ is given by
\[
\mathcal{RN}_{\tilde{w}}(x) = \sum_{k = 1}^n \tilde{w}_k \sigma(b_k + v_k x),
\]
with the weights $\tilde{w}_k$ defined as
\[
\tilde{w}_k \coloneqq \frac{h_{k,n} v_k}{\mathbb{E}[v^2 \vert \xi
= \xi_k]} (f_g^{*, \lambda})''(\xi_k).
\]
\end{Definition}
The approximating nature of the network in
Definition~\ref{def:sann} can be seen by LOOKING \todo{besseres Wort
finden} at the first derivative of $\mathcal{RN}_{\tilde{w}}(x)$ which is given
by
\begin{align}
\frac{\partial \mathcal{RN}_{\tilde{w}}}{\partial x}
\Big{|}_{x} &= \sum_k^n \tilde{w}_k \mathds{1}_{\left\{b_k + v_k x >
0\right\}}(v_k) = \sum_{\substack{k \in \mathbb{N} \\ \xi_k <
x}} \tilde{w}_k v_k \nonumber \\
&= \frac{1}{n} \sum_{\substack{k \in \mathbb{N} \\
\xi_k < x}} \frac{v_k^2}{g_{\xi}(\xi_k) \mathbb{E}[v^2 \vert \xi
= \xi_k]} (f_g^{*, \lambda})''(\xi_k). \label{eq:derivnn}
\end{align}
\todo{gescheite Ableitungs Notation}
As the expression (\ref{eq:derivnn}) behaves similary to a
Riemann-sum for $n \to \infty$ it will converge to the first
derievative of $f^{*,\lambda}_g$. A formal proof of this behaviour
is given in Lemma~\ref{lem:s0}.
In order to formulate the theorem describing the convergence of $RN_w$
we need to make a couple of assumptions.
\todo{Bessere Formulierung}
\begin{Assumption}~ \begin{Assumption}~
\label{ass:theo38}
\begin{enumerate}[label=(\alph*)] \begin{enumerate}[label=(\alph*)]
\item The probability density function of the kinks $\xi_k$, namely $g_\xi$ \item The probability density fucntion of the kinks $\xi_k$,
namely $g_{\xi}$ as defined in Definition~\ref{def:kink} exists
and is well defined.
\item The density function $g_\xi$
has compact support on $\supp(g_{\xi})$. has compact support on $\supp(g_{\xi})$.
\item The density $g_{\xi}$ is uniformly continuous on $\supp(g_{\xi})$. \item The density function $g_{\xi}$ is uniformly continuous on $\supp(g_{\xi})$.
\item $g_{\xi}(0) \neq 0$ \item $g_{\xi}(0) \neq 0$.
\item $\frac{1}{g_{\xi}}\Big|_{\supp(g_{\xi})}$ is uniformly
continous on $\supp(g_{\xi})$.
\item The conditional distribution $\mathcal{L}(v_k|\xi_k = x)$
is uniformly continous on $\supp(g_{\xi})$.
\item $\mathbb{E}\left[v_k^2\right] < \infty$.
\end{enumerate} \end{enumerate}
\end{Assumption} \end{Assumption}
\begin{Theorem}[Ridge weight penaltiy corresponds to adapted spline] As we will prove the prorpsition in the Sobolev space, we hereby
\label{theo:main1} introduce it and its inuced\todo{richtiges wort?} norm.
For arbitrary training data \(\left(x_i^{train}, y_i^{train}\right)\) it holds
\begin{Definition}[Sobolev Space]
For $K \subset \mathbb{R}^n$ open and $1 \leq p \leq \infty$ we
define the Sobolev space $W^{k,p}(K)$ as the space containing all
real valued functions $u \in L^p(K)$ such that for every multi-index
$\alpha \in \mathbb{N}^n$ with $\abs{\alpha} \leq
k$ the mixed parial derivatives
\[ \[
\plimn \norm{\mathcal{RN^{*, \tilde{\lambda}}} - f^{*, u^{(\alpha)} = \frac{\partial^{\abs{\alpha}} u}{\partial
\tilde{\lambda}}_{g, \pm}}_{W^{1,\infty}(K)} = 0. x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}
\] \]
exists in the weak sense and
With \[
\begin{align*} \norm{u^{(\alpha)}}_{L^p} < \infty.
\label{eq:1} \]
\tilde{\lambda} &\coloneqq \lambda n g(0), \\ \todo{feritg machen}
g(x) &\coloneqq
g_{\xi}(x)\mathbb{E}\left[ v_k^2 \vert \xi_k = x \right], \forall x
\in \mathbb{R}
\end{align*}
and \(RN^{*, \tilde{\lambda}}\), \(f^{*,\tilde{\lambda}}_{g, \pm}\)
as defined in ??? and ??? respectively.
\end{Theorem}
In order to proof Theo~\ref{theo:main1} we need to proof a number of
auxiliary Lemmata first.
\begin{Definition}[Sobolev Norm]
\label{def:sobonorm} \label{def:sobonorm}
The natural norm of the sobolev space is given by The natural norm of the sobolev space is given by
\[ \[
@ -191,7 +471,51 @@ auxiliary Lemmata first.
\] \]
\end{Definition} \end{Definition}
With these assumption in place we can formulate the main theorem.
\todo{Bezug Raum}
\begin{Theorem}[Ridge weight penaltiy corresponds to weighted regression spline]
\label{theo:main1}
For $N \in \mathbb{N}$ arbitrary training data
\(\left(x_i^{\text{train}}, y_i^{\text{train}}
\right)\) and $\mathcal{RN}^{*, \tilde{\lambda}}, f_g^{*, \lambda}$
according to Definition~\ref{def:rpnn} and Definition~\ref{def:wrs}
respectively with Assumption~\ref{ass:theo38} it holds
\begin{equation}
\label{eq:main1}
\plimn \norm{\mathcal{RN^{*, \tilde{\lambda}}} - f^{*,
\lambda}_{g}}_{W^{1,\infty}(K)} = 0.
\end{equation}
With
\begin{align*}
g(x) & \coloneqq g_{\xi}(x)\mathbb{E}\left[ v_k^2 \vert \xi_k = x
\right], \forall x \in \mathbb{R}, \\
\tilde{\lambda} & \coloneqq \lambda n g(0).
\end{align*}
\end{Theorem}
We will proof Theo~\ref{theo:main1} by showing that
\begin{equation}
\label{eq:main2}
\plimn \norm{\mathcal{RN}^{*, \tilde{\lambda}} - f^{w^*}}_{W^{1,
\infty}(K)} = 0
\end{equation}
and
\begin{equation}
\label{eq:main3}
\plimn \norm{f^{w^*} - f_g^{*, \lambda}}_{W^{1,\infty}(K)} = 0
\end{equation}
and then using the triangle inequality to follow (\ref{eq:main1}). In
order to prove (\ref{eq:main2}) and (\ref{eq:main3}) we will need to
introduce a number of auxiliary lemmmata, proves to these will be
provided in the appendix, as they would SPRENGEN DEN RAHMEN.
\begin{Lemma}[Poincar\'e typed inequality] \begin{Lemma}[Poincar\'e typed inequality]
\label{lem:pieq}
Let \(f:\mathbb{R} \to \mathbb{R}\) differentiable with \(f' : Let \(f:\mathbb{R} \to \mathbb{R}\) differentiable with \(f' :
\mathbb{R} \to \mathbb{R}\) Lesbeque integrable. Then for \(K=[a,b] \mathbb{R} \to \mathbb{R}\) Lesbeque integrable. Then for \(K=[a,b]
\subset \mathbb{R}\) with \(f(a)=0\) it holds that \subset \mathbb{R}\) with \(f(a)=0\) it holds that
@ -229,20 +553,21 @@ auxiliary Lemmata first.
% get (\ref{eq:pti1}). % get (\ref{eq:pti1}).
% By using the Hölder inequality, we can proof the second claim. % By using the Hölder inequality, we can proof the second claim.
% \begin{align*} % \begin{align*}
% \norm{f'}_{L^{\infty}(K)} &= \sup_{x \in K} \abs{\int_a^bf''(y) % \norm{f'}_{L^{\infty}(K)} &= \sup_{x \in K} \abs{\int_a^bf''(y)
% \mathds{1}_{[a,x]}(y)dy} \leq \sup_{x \in % \mathds{1}_{[a,x]}(y)dy} \leq \sup_{x \in
% K}\norm{f''\mathds{1}_{[a,x]}}_{L^1(K)}\\ % K}\norm{f''\mathds{1}_{[a,x]}}_{L^1(K)}\\
% &\hspace{-6pt} \stackrel{\text{Hölder}}{\leq} sup_{x % &\hspace{-6pt} \stackrel{\text{Hölder}}{\leq} sup_{x
% \in % \in
% K}\norm{f''}_{L^2(K)}\norm{\mathds{1}_{[a,x]}}_{L^2(K)} % K}\norm{f''}_{L^2(K)}\norm{\mathds{1}_{[a,x]}}_{L^2(K)}
% = \abs{b-a}\norm{f''}_{L^2(K)}. % = \abs{b-a}\norm{f''}_{L^2(K)}.
% \end{align*} % \end{align*}
% Thus (\ref{eq:pti2}) follows with \(C_K^2 \coloneqq % Thus (\ref{eq:pti2}) follows with \(C_K^2 \coloneqq
% \abs{b-a}C_K^{\infty}\). % \abs{b-a}C_K^{\infty}\).
% \qed % \qed
\end{Lemma} \end{Lemma}
\begin{Lemma} \begin{Lemma}
\label{lem:cnvh}
Let $\mathcal{RN}$ be a shallow Neural network. For \(\varphi : Let $\mathcal{RN}$ be a shallow Neural network. For \(\varphi :
\mathbb{R}^2 \to \mathbb{R}\) uniformly continous such that \mathbb{R}^2 \to \mathbb{R}\) uniformly continous such that
\[ \[
@ -252,68 +577,221 @@ auxiliary Lemmata first.
it holds, that it holds, that
\[ \[
\plimn \sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k) \plimn \sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
\frac{\bar{h}_k}{2} h_{k,n}
=\int_{max\left\{C_{g_{\xi}}^l,T\right\}}^{min\left\{C_{g_{\xi}}^u,T\right\}} =\int_{\min\left\{C_{g_{\xi}}^l, T\right\}}^{min\left\{C_{g_{\xi}}^u,T\right\}}
\mathbb{E}\left[\varphi(\xi, v) \vert \xi = x \right] dx \mathbb{E}\left[\varphi(\xi, v) \vert \xi = x \right] dx
\] \]
uniformly in \(T \in K\). uniformly in \(T \in K\).
% \proof % \proof
% For \(T \leq C_{g_{\xi}}^l\) both sides equal 0, so it is sufficient to % For \(T \leq C_{g_{\xi}}^l\) both sides equal 0, so it is sufficient to
% consider \(T > C_{g_{\xi}}^l\). With \(\varphi\) and % consider \(T > C_{g_{\xi}}^l\). With \(\varphi\) and
% \(\nicefrac{1}{g_{\xi}}\) uniformly continous in \(\xi\), % \(\nicefrac{1}{g_{\xi}}\) uniformly continous in \(\xi\),
% \begin{equation} % \begin{equation}
% \label{eq:psi_stet} % \label{eq:psi_stet}
% \forall \varepsilon > 0 : \exists \delta(\varepsilon) : \forall % \forall \varepsilon > 0 : \exists \delta(\varepsilon) : \forall
% \abs{\xi - \xi'} < \delta(\varepsilon) : \abs{\varphi(\xi, v) % \abs{\xi - \xi'} < \delta(\varepsilon) : \abs{\varphi(\xi, v)
% \frac{1}{g_{\xi}(\xi)} - \varphi(\xi', v) % \frac{1}{g_{\xi}(\xi)} - \varphi(\xi', v)
% \frac{1}{g_{\xi}(\xi')}} < \varepsilon % \frac{1}{g_{\xi}(\xi')}} < \varepsilon
% \end{equation} % \end{equation}
% uniformly in \(v\). In order to % uniformly in \(v\). In order to
% save space we use the notation \((a \wedge b) \coloneqq \min\{a,b\}\) for $a$ and $b % save space we use the notation \((a \wedge b) \coloneqq \min\{a,b\}\) for $a$ and $b
% \in \mathbb{R}$. W.l.o.g. assume \(\sup(g_{\xi})\) in an % \in \mathbb{R}$. W.l.o.g. assume \(\sup(g_{\xi})\) in an
% intervall. By splitting the interval in disjoint strips of length \(\delta % intervall. By splitting the interval in disjoint strips of length \(\delta
% \leq \delta(\varepsilon)\) we get: % \leq \delta(\varepsilon)\) we get:
% \[ % \[
% \underbrace{\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k) % \underbrace{\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
% \frac{\bar{h}_k}{2}}_{\circled{1}} = % \frac{\bar{h}_k}{2}}_{\circled{1}} =
% \underbrace{\sum_{l \in \mathbb{Z}: % \underbrace{\sum_{l \in \mathbb{Z}:
% \left[\delta l, \delta (l + 1)\right] \subseteq % \left[\delta l, \delta (l + 1)\right] \subseteq
% \left[C_{g_{\xi}}^l, C_{g_{\xi}}^u \wedge T % \left[C_{g_{\xi}}^l, C_{g_{\xi}}^u \wedge T
% \right]}}_{\coloneqq \, l \in I_{\delta}} \left( \, \sum_{\substack{k \in \kappa\\ % \right]}}_{\coloneqq \, l \in I_{\delta}} \left( \, \sum_{\substack{k \in \kappa\\
% \xi_k \in \left[\delta l, \delta (l + 1)\right]}} % \xi_k \in \left[\delta l, \delta (l + 1)\right]}}
% \varphi\left(\xi_k, v_k\right)\frac{\bar{h}_k}{2} \right) % \varphi\left(\xi_k, v_k\right)\frac{\bar{h}_k}{2} \right)
% \] % \]
% Using (\ref{eq:psi_stet}) we can approximate $\circled{1}$ by % Using (\ref{eq:psi_stet}) we can approximate $\circled{1}$ by
% \begin{align*} % \begin{align*}
% \circled{1} & \approx \sum_{l \in I_{\delta}} \left( \, \sum_{\substack{k \in \kappa\\ % \circled{1} & \approx \sum_{l \in I_{\delta}} \left( \, \sum_{\substack{k \in \kappa\\
% \xi_k \in \left[\delta l, \delta (l + 1)\right]}} % \xi_k \in \left[\delta l, \delta (l + 1)\right]}}
% \left(\varphi\left(l\delta, v_k\right)\frac{1}{g_{\xi}(l\delta)} % \left(\varphi\left(l\delta, v_k\right)\frac{1}{g_{\xi}(l\delta)}
% \pm \varepsilon\right)\frac{1}{n} \underbrace{\frac{\abs{\left\{m \in % \pm \varepsilon\right)\frac{1}{n} \underbrace{\frac{\abs{\left\{m \in
% \kappa : \xi_m \in [\delta l, \delta(l + 1)]\right\}}}{\abs{\left\{m \in % \kappa : \xi_m \in [\delta l, \delta(l + 1)]\right\}}}{\abs{\left\{m \in
% \kappa : \xi_m \in [\delta l, \delta(l + 1)]\right\}}}}_{= % \kappa : \xi_m \in [\delta l, \delta(l + 1)]\right\}}}}_{=
% 1}\right) \\ % 1}\right) \\
% % \intertext{} % % \intertext{}
% &= \sum_{l \in I_{\delta}} \left( \frac{ \sum_{ \substack{k \in \kappa\\ % &= \sum_{l \in I_{\delta}} \left( \frac{ \sum_{ \substack{k \in \kappa\\
% \xi_k \in \left[\delta l, \delta (l + 1)\right]}} % \xi_k \in \left[\delta l, \delta (l + 1)\right]}}
% \varphi\left(l\delta, v_k\right)} % \varphi\left(l\delta, v_k\right)}
% {\abs{\left\{m \in % {\abs{\left\{m \in
% \kappa : \xi_m \in [\delta l, \delta(l + 1)]\right\}}}\frac{\abs{\left\{m \in % \kappa : \xi_m \in [\delta l, \delta(l + 1)]\right\}}}\frac{\abs{\left\{m \in
% \kappa : \xi_m \in [\delta l, \delta(l + % \kappa : \xi_m \in [\delta l, \delta(l +
% 1)]\right\}}}{ng_{\xi}(l\delta)}\right) \pm \varepsilon .\\ % 1)]\right\}}}{ng_{\xi}(l\delta)}\right) \pm \varepsilon .\\
% \intertext{We use the mean to approximate the number of kinks in % \intertext{We use the mean to approximate the number of kinks in
% each $\delta$-strip, as it follows a bonomial distribution this % each $\delta$-strip, as it follows a bonomial distribution this
% amounts to % amounts to
% \[ % \[
% \mathbb{E}\left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l, % \mathbb{E}\left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
% \delta(l + 1)]\right\}\right]} = n \int_{[\delta l, \delta (l + % \delta(l + 1)]\right\}\right]} = n \int_{[\delta l, \delta (l +
% 1)]} g_{\xi}(x)dx \approx n (\delta g_{\xi}(l\delta) \pm % 1)]} g_{\xi}(x)dx \approx n (\delta g_{\xi}(l\delta) \pm
% \tilde{\varepsilon}). % \tilde{\varepsilon}).
% \] % \]
% Bla Bla Bla $v_k$} % Bla Bla Bla $v_k$}
% \circled{1} & \approx % \circled{1} & \approx
% \end{align*} % \end{align*}
\end{Lemma}
\begin{Lemma}[Step 0]
For any $\lambda > 0$, training data $(x_i^{\text{train}}
y_i^{\text{train}}) \in \mathbb{R}^2$, with $ i \in
\left\{1,\dots,N\right\}$ and subset $K \subset \mathbb{R}$ the spline approximating randomized
shallow neural network $\mathcal{RN}_{\tilde{w}}$ converges to the
regression spline $f^{*, \lambda}_g$ in
$\norm{.}_{W^{1,\infty}(K)}$ as the node count $n$ increases,
\begin{equation}
\label{eq:s0}
\plimn \norm{\mathcal{RN}_{\tilde{w}} - f^{*, \lambda}_g}_{W^{1,
\infty}(K)} = 0
\end{equation}
\proof
Using Lemma~\ref{lem:pieq} it is sufficient to show
\[
\plimn \norm{\mathcal{RN}_{\tilde{w}}' - (f^{*,
\lambda}_g)'}_{L^{\infty}} = 0.
\]
This can be achieved by using Lemma~\ref{lem:cnvh} with $\varphi(\xi_k,
v_k) = \frac{v_k^2}{\mathbb{E}[v^2|\xi = z]} (f^{*, \lambda}_w)''(\xi_k) $
thus obtaining
\begin{align*}
\plimn \frac{\partial \mathcal{RN}_{\tilde{w}}}{\partial x}
\stackrel{(\ref{eq:derivnn})}{=}
& \plimn \sum_{\substack{k \in \mathbb{N} \\
\xi_k < x}} \frac{v_k^2}{\mathbb{E}[v^2 \vert \xi
= \xi_k]} (f_g^{*, \lambda})''(\xi_k) h_{k,n}
\stackrel{\text{Lemma}~\ref{lem:cnvh}}{=} \\
\stackrel{\phantom{(\ref{eq:derivnn})}}{=}
&
\int_{\min\left\{C_{g_{\xi}}^l,T\right\}}^{min\left\{C_{g_{\xi}}^u,T\right\}}
\mathbb{E}\left[\frac{v^2}{\mathbb{E}[v^2|\xi = z]} (f^{*,
\lambda}_w)''(\xi) \vert
\xi = x \right] dx \equals^{\text{Tower-}}_{\text{property}} \\
\stackrel{\phantom{(\ref{eq:derivnn})}}{=}
&
\int_{\min\left\{C_{g_{\xi}}^l,
T\right\}}^{min\left\{C_{g_{\xi}}^u,T\right\}}(f^{*,\lambda}_w)''(x)
dx.
\end{align*}
By the fundamental theorem of calculus and $\supp(f') \subset
\supp(f)$, (\ref{eq:s0}) follows with Lemma~\ref{lem:pieq}.
\qed
\end{Lemma} \end{Lemma}
\begin{Lemma}[Step 2]
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, we have
\[
\plimn F^{\tilde{\lambda}}_n(\mathcal{RN}_{\tilde{w}}) =
F^{\lambda, g}(f^{*, \lambda}_g) = 0.
\]
\proof
This can be prooven by showing
\end{Lemma}
\begin{Lemma}[Step 3]
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, with $w^*$ and $\tilde{\lambda}$ as
defined in Definition~\ref{def:rpnn} and Theroem~\ref{theo:main1}
respectively, it holds
\[
\plimn \norm{\mathcal{RN}^{*,\tilde{\lambda}} -
f^{w*, \tilde{\lambda}}}_{W^{1,\infty}(K)} = 0.
\]
\end{Lemma}
\begin{Lemma}[Step 4]
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, with $w^*$ and $\tilde{\lambda}$ as
defined in Definition~\ref{def:rpnn} and Theroem~\ref{theo:main1}
respectively, it holds
\[
\plimn \abs{F_n^{\lambda}(\mathcal{RN}^{*,\tilde{\lambda}}) -
F^{\lambda, g}(f^{w*, \tilde{\lambda}})} = 0.
\]
\end{Lemma}
\begin{Lemma}[Step 7]
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
\left\{1,\dots,N\right\}$, for any sequence of functions $f^n \in
W^{2,2}$ with
\[
\plimn F^{\lambda, g} (f^n) = F^{\lambda, g}(f^{*, \lambda}),
\]
it follows
\[
\plimn \norm{f^n - f^{*, \lambda}} = 0.
\]
\end{Lemma}
\textcite{heiss2019} further show a link between ridge penalized
networks and randomized shallow neural networks which are trained with
gradient descent which is stopped after a certain amount of iterations.
\newpage
\subsection{Simulations}
In the following the behaviour described in Theorem~\ref{theo:main1}
is visualized in a simulated example. For this two sets of training
data have been generated.
\begin{itemize}
\item $\text{data}_A = (x_{i, A}^{\text{train}},
y_{i,A}^{\text{train}})$ with
\begin{align*}
x_{i, A}^{\text{train}} &\coloneqq -\pi + \frac{2 \pi}{5} (i - 1),
i \in \left\{1, \dots, 6\right\}, \\
y_{i, A}^{\text{train}} &\coloneqq \sin( x_{i, A}^{\text{train}}). \phantom{(i - 1),
i \in \left\{1, \dots, 6\right\}}
\end{align*}
\item $\text{data}_b = (x_{i, B}^{\text{train}}, y_{i,
B}^{\text{train}})$ with
\begin{align*}
x_{i, B}^{\text{train}} &\coloneqq \pi\frac{i - 8}{7},
i \in \left\{1, \dots, 15\right\}, \\
y_{i, B}^{\text{train}} &\coloneqq \sin( x_{i, B}^{\text{train}}). \phantom{(i - 1),
i \in \left\{1, \dots, 6\right\}}
\end{align*}
\end{itemize}
For the $\mathcal{RN}$ the random weights are distributed
as follows
\begin{align*}
\xi_i &\stackrel{i.i.d.}{\sim} \text{Unif}(-5,5), \\
v_i &\stackrel{i.i.d.}{\sim} \mathcal{N}(0, 5), \\
b_i &\stackrel{\phantom{i.i.d.}}{\sim} -\xi_i v_i.
\end{align*}
Note that by the choices for the distributions $g$ as defined in
Theorem~\ref{theo:main1}
would equate to $g(x) = \frac{\mathbb{E}[v_k^2|\xi_k = x]}{10}$. In
order to utilize the
smoothing spline implemented in Mathlab, $g$ has been simplified to $g
\equiv \frac{1}{10}$ instead. For all figures $f_1^{*, \lambda}$ has
been calculated with Matlab's ..... As ... minimizes
\[
\bar{\lambda} \sum_{i=1}^N(y_i^{train} - f(x_i^{train}))^2 + (1 -
\bar{\lambda}) \int (f''(x))^2 dx
\]
the smoothing parameter used for fittment is $\bar{\lambda} =
\frac{1}{1 + \lambda}$. The parameter $\tilde{\lambda}$ for training
the networks is chosen as defined in Theorem~\ref{theo:main1} and each
one is trained on the full training data for 5000 iterations using
gradient descent. The
results are given in Figure~\ref{blblb}, here it can be seen that in
the intervall of the traing data $[-\pi, \pi]$ the neural network and
smoothing spline are nearly identical, coinciding with the proposition.
\input{Plots/RN_vs_RS}
%%% Local Variables: %%% Local Variables:
%%% mode: latex %%% mode: latex
%%% TeX-master: "main" %%% TeX-master: "main"

Loading…
Cancel
Save