mammut commit of last two monts
parent
74113d5060
commit
46031fcd5d
@ -0,0 +1,26 @@
|
|||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras.callbacks import CSVLogger
|
||||||
|
mnist = tf.keras.datasets.mnist
|
||||||
|
|
||||||
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
|
||||||
|
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
|
||||||
|
x_train, x_test = x_train / 255.0, x_test / 255.0
|
||||||
|
|
||||||
|
y_train = tf.keras.utils.to_categorical(y_train)
|
||||||
|
y_test = tf.keras.utils.to_categorical(y_test)
|
||||||
|
|
||||||
|
model = tf.keras.models.Sequential()
|
||||||
|
model.add(tf.keras.layers.Conv2D(24,kernel_size=5,padding='same',activation='relu',
|
||||||
|
input_shape=(28,28,1)))
|
||||||
|
model.add(tf.keras.layers.MaxPool2D())
|
||||||
|
model.add(tf.keras.layers.Conv2D(64,kernel_size=5,padding='same',activation='relu'))
|
||||||
|
model.add(tf.keras.layers.MaxPool2D(padding='same'))
|
||||||
|
model.add(tf.keras.layers.Flatten())
|
||||||
|
model.add(tf.keras.layers.Dense(256, activation='relu'))
|
||||||
|
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
||||||
|
model.compile(optimizer=tf.keras.optimizers.SGD(), loss="categorical_crossentropy", metrics=["accuracy"])
|
||||||
|
|
||||||
|
|
||||||
|
csv_logger = CSVLogger('SGD_01_b32.log')
|
||||||
|
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size = 32, epochs=20, callbacks=[csv_logger])
|
@ -0,0 +1,22 @@
|
|||||||
|
import tensorflow as tf
|
||||||
|
mnist = tf.keras.datasets.mnist
|
||||||
|
|
||||||
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
x_train, x_test = x_train / 255.0, x_test / 255.0
|
||||||
|
|
||||||
|
model = tf.keras.models.Sequential([
|
||||||
|
tf.keras.layers.Flatten(input_shape=(28, 28)),
|
||||||
|
tf.keras.layers.Dense(128, activation='relu'),
|
||||||
|
tf.keras.layers.Dropout(0.2),
|
||||||
|
tf.keras.layers.Dense(10)
|
||||||
|
])
|
||||||
|
|
||||||
|
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||||
|
|
||||||
|
model.compile(optimizer='adam',
|
||||||
|
loss=loss_fn,
|
||||||
|
metrics=['accuracy'])
|
||||||
|
|
||||||
|
model.fit(x_train, y_train, epochs=10)
|
||||||
|
|
||||||
|
|
@ -0,0 +1,26 @@
|
|||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras.callbacks import CSVLogger
|
||||||
|
mnist = tf.keras.datasets.mnist
|
||||||
|
|
||||||
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
|
||||||
|
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
|
||||||
|
x_train, x_test = x_train / 255.0, x_test / 255.0
|
||||||
|
|
||||||
|
y_train = tf.keras.utils.to_categorical(y_train)
|
||||||
|
y_test = tf.keras.utils.to_categorical(y_test)
|
||||||
|
|
||||||
|
model = tf.keras.models.Sequential()
|
||||||
|
model.add(tf.keras.layers.Conv2D(24,kernel_size=5,padding='same',activation='relu',
|
||||||
|
input_shape=(28,28,1)))
|
||||||
|
model.add(tf.keras.layers.MaxPool2D())
|
||||||
|
model.add(tf.keras.layers.Conv2D(64,kernel_size=5,padding='same',activation='relu'))
|
||||||
|
model.add(tf.keras.layers.MaxPool2D(padding='same'))
|
||||||
|
model.add(tf.keras.layers.Flatten())
|
||||||
|
model.add(tf.keras.layers.Dense(256, activation='relu'))
|
||||||
|
model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
||||||
|
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.1), loss="categorical_crossentropy", metrics=["accuracy"])
|
||||||
|
|
||||||
|
|
||||||
|
csv_logger = CSVLogger('GD_1.log')
|
||||||
|
history = model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size = x_train.shape[0], epochs=20, callbacks=[csv_logger])
|
@ -0,0 +1,22 @@
|
|||||||
|
import tensorflow as tf
|
||||||
|
mnist = tf.keras.datasets.mnist
|
||||||
|
|
||||||
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
x_train, x_test = x_train / 255.0, x_test / 255.0
|
||||||
|
|
||||||
|
model = tf.keras.models.Sequential([
|
||||||
|
tf.keras.layers.Flatten(input_shape=(28, 28)),
|
||||||
|
tf.keras.layers.Dense(128, activation='relu'),
|
||||||
|
tf.keras.layers.Dropout(0.2),
|
||||||
|
tf.keras.layers.Dense(10)
|
||||||
|
])
|
||||||
|
|
||||||
|
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||||
|
|
||||||
|
model.compile(optimizer='adam',
|
||||||
|
loss=loss_fn,
|
||||||
|
metrics=['accuracy'])
|
||||||
|
|
||||||
|
model.fit(x_train, y_train, epochs=10)
|
||||||
|
|
||||||
|
|
@ -0,0 +1,10 @@
|
|||||||
|
#!/bin/bash -l
|
||||||
|
|
||||||
|
#SBATCH --job-name="Keras MNIST"
|
||||||
|
#SBATCH --ntasks=1
|
||||||
|
#SBATCH --ntasks-per-core=1
|
||||||
|
#SBATCH --time=0-00:10:00
|
||||||
|
#SBATCH --nodelist=node18
|
||||||
|
|
||||||
|
srun python3 mnist.py
|
||||||
|
|
@ -0,0 +1,10 @@
|
|||||||
|
#!/bin/bash -l
|
||||||
|
|
||||||
|
#SBATCH --job-name="Keras MNIST"
|
||||||
|
#SBATCH --ntasks=1
|
||||||
|
#SBATCH --ntasks-per-core=1
|
||||||
|
#SBATCH --time=0-00:10:00
|
||||||
|
#SBATCH --nodelist=node18
|
||||||
|
|
||||||
|
srun python3 mnist.py
|
||||||
|
|
@ -0,0 +1,59 @@
|
|||||||
|
x=seq(0, 2*pi,0.1)
|
||||||
|
y=sin(x)
|
||||||
|
plot(x,y)
|
||||||
|
x_i = x
|
||||||
|
y_i = y
|
||||||
|
x = x+rnorm(63,0,0.15)
|
||||||
|
y = y+rnorm(63,0,0.15)
|
||||||
|
plot(x, y)
|
||||||
|
x_d = x
|
||||||
|
y_d = y
|
||||||
|
|
||||||
|
for(i in 5:63){
|
||||||
|
x[i] = (sum(x_d[(i-4):i] * c(1/20,1/6,1/5,1/4,1/3)))
|
||||||
|
}
|
||||||
|
|
||||||
|
for(i in 5:63){
|
||||||
|
y[i] = (sum(y_d[(i-4):i] * c(1/20,1/6,1/5,1/4,1/3)))
|
||||||
|
}
|
||||||
|
#x[1:4] = NA
|
||||||
|
#y[1:4] = NA
|
||||||
|
|
||||||
|
plot(x[-(1:4)],y[-(1:4)])
|
||||||
|
|
||||||
|
|
||||||
|
image = image_read(path = "~/Masterarbeit/TeX/Plots/Data/klammern60_80.jpg")
|
||||||
|
kernel <- matrix(0, ncol = 3, nrow = 3)
|
||||||
|
kernel[c(1,3),1] = -1
|
||||||
|
kernel[c(1,3),3] = 1
|
||||||
|
kernel[2,1] = -2
|
||||||
|
kernel[2,3] = 2
|
||||||
|
kernel
|
||||||
|
|
||||||
|
kernel <- matrix(data = c(1,4,7,4,1,4,16,26,16,4,7,26,41,26,7,4,16,26,16,4,1,4,7,4,1),
|
||||||
|
ncol = 5, nrow=5)
|
||||||
|
kernel = kernel/273
|
||||||
|
|
||||||
|
n=11
|
||||||
|
s=4
|
||||||
|
kernel = matrix(0,nrow = n, ncol = n)
|
||||||
|
for(i in 1:n){
|
||||||
|
for(j in 1:n){
|
||||||
|
kernel[i,j] = 1/(2*pi*s) * exp(-(i+j)/(2*s))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
image_con <- image_convolve(image, (kernel))
|
||||||
|
image_con
|
||||||
|
image_write(image_con, "~/Masterarbeit/TeX/Plots/Data/image_conv11.png", format="png")
|
||||||
|
img <- readPNG("~/Masterarbeit/TeX/Plots/Data/image_conv11.png")
|
||||||
|
|
||||||
|
|
||||||
|
out <- matrix(0, ncol = 15, nrow=20)
|
||||||
|
for(j in 1:15){
|
||||||
|
for(i in 1:20){
|
||||||
|
out[i,j] = max(img[((i-1)*4 +1):((i-1)*4+4), ((j-1)*4 +1):((j-1)*4+4)])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
writePNG(out, target = "~/Masterarbeit/TeX/Plots/Data/image_conv12.png")
|
@ -0,0 +1,22 @@
|
|||||||
|
import tensorflow as tf
|
||||||
|
mnist = tf.keras.datasets.mnist
|
||||||
|
|
||||||
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
||||||
|
x_train, x_test = x_train / 255.0, x_test / 255.0
|
||||||
|
|
||||||
|
model = tf.keras.models.Sequential([
|
||||||
|
tf.keras.layers.Flatten(input_shape=(28, 28)),
|
||||||
|
tf.keras.layers.Dense(128, activation='relu'),
|
||||||
|
tf.keras.layers.Dropout(0.2),
|
||||||
|
tf.keras.layers.Dense(10)
|
||||||
|
])
|
||||||
|
|
||||||
|
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||||
|
|
||||||
|
model.compile(optimizer='adam',
|
||||||
|
loss=loss_fn,
|
||||||
|
metrics=['accuracy'])
|
||||||
|
|
||||||
|
model.fit(x_train, y_train, epochs=5)
|
||||||
|
|
||||||
|
|
@ -0,0 +1,17 @@
|
|||||||
|
x,y
|
||||||
|
-3.141592653589793,0.0802212608585366
|
||||||
|
-2.722713633111154,-0.3759376368887911
|
||||||
|
-2.303834612632515,-1.3264180339054117
|
||||||
|
-1.8849555921538759,-0.8971334213504949
|
||||||
|
-1.4660765716752369,-0.7724344034354425
|
||||||
|
-1.0471975511965979,-0.9501497164520739
|
||||||
|
-0.6283185307179586,-0.6224628757084738
|
||||||
|
-0.2094395102393194,-0.35622668982623207
|
||||||
|
0.2094395102393194,-0.18377660088356823
|
||||||
|
0.6283185307179586,0.7836770998126841
|
||||||
|
1.0471975511965974,0.5874762732054489
|
||||||
|
1.4660765716752362,1.0696991264956026
|
||||||
|
1.8849555921538759,1.1297065441952743
|
||||||
|
2.3038346126325155,0.7587275382323738
|
||||||
|
2.7227136331111543,-0.030547103790458163
|
||||||
|
3.1415926535897922,0.044327111895927106
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,101 @@
|
|||||||
|
x_n_5000_tl_0.1,y_n_5000_tl_0.1,x_n_5000_tl_1.0,y_n_5000_tl_1.0,x_n_5000_tl_3.0,y_n_5000_tl_3.0
|
||||||
|
-5.0,1.794615305950707,-5.0,0.3982406589003759,-5.0,-0.4811539502118497
|
||||||
|
-4.898989898989899,1.6984389486364895,-4.898989898989899,0.35719218031912614,-4.898989898989899,-0.48887996302459025
|
||||||
|
-4.797979797979798,1.6014200743009022,-4.797979797979798,0.3160182633093358,-4.797979797979798,-0.4966732473871599
|
||||||
|
-4.696969696969697,1.5040575427157106,-4.696969696969697,0.27464978660531225,-4.696969696969697,-0.5045073579233731
|
||||||
|
-4.595959595959596,1.4061194142774731,-4.595959595959596,0.23293440418365288,-4.595959595959596,-0.5123589845230747
|
||||||
|
-4.494949494949495,1.3072651356075136,-4.494949494949495,0.19100397829173557,-4.494949494949495,-0.5202738824510786
|
||||||
|
-4.393939393939394,1.2078259346207492,-4.393939393939394,0.1488314515422353,-4.393939393939394,-0.5282281154332915
|
||||||
|
-4.292929292929293,1.1079271590765678,-4.292929292929293,0.10646618526238515,-4.292929292929293,-0.536250283913464
|
||||||
|
-4.191919191919192,1.0073183089866045,-4.191919191919192,0.0637511521454329,-4.191919191919192,-0.5443068679044686
|
||||||
|
-4.090909090909091,0.9064682044248323,-4.090909090909091,0.020965778107027506,-4.090909090909091,-0.5524049731989601
|
||||||
|
-3.9898989898989896,0.805095064694333,-3.9898989898989896,-0.02200882631350869,-3.9898989898989896,-0.5605562335116703
|
||||||
|
-3.888888888888889,0.7032463151196859,-3.888888888888889,-0.06548644224881082,-3.888888888888889,-0.5687680272492979
|
||||||
|
-3.787878787878788,0.6007843964001714,-3.787878787878788,-0.10914135786185346,-3.787878787878788,-0.5770307386196555
|
||||||
|
-3.686868686868687,0.4978572358270573,-3.686868686868687,-0.15292201515712506,-3.686868686868687,-0.5853131654059709
|
||||||
|
-3.5858585858585856,0.39465522349482535,-3.5858585858585856,-0.19694472820060063,-3.5858585858585856,-0.593636189078738
|
||||||
|
-3.484848484848485,0.29091175104318323,-3.484848484848485,-0.24139115547918963,-3.484848484848485,-0.6019914655156898
|
||||||
|
-3.383838383838384,0.1868284306918275,-3.383838383838384,-0.28617728400089926,-3.383838383838384,-0.6103823599700093
|
||||||
|
-3.282828282828283,0.0817944681090728,-3.282828282828283,-0.33119615483860937,-3.282828282828283,-0.6188088888423856
|
||||||
|
-3.1818181818181817,-0.023670753859105602,-3.1818181818181817,-0.3764480559542342,-3.1818181818181817,-0.6272515625106694
|
||||||
|
-3.080808080808081,-0.1299349094939808,-3.080808080808081,-0.42202262988259276,-3.080808080808081,-0.6357221532633648
|
||||||
|
-2.9797979797979797,-0.2360705715363967,-2.9797979797979797,-0.467584017465408,-2.9797979797979797,-0.6440454918766952
|
||||||
|
-2.878787878787879,-0.34125419448980393,-2.878787878787879,-0.5126079284225549,-2.878787878787879,-0.65203614244987
|
||||||
|
-2.7777777777777777,-0.443504036212927,-2.7777777777777777,-0.5569084060463078,-2.7777777777777777,-0.6594896031012563
|
||||||
|
-2.676767676767677,-0.5411482698953787,-2.676767676767677,-0.6002683604183435,-2.676767676767677,-0.6661215834468585
|
||||||
|
-2.5757575757575757,-0.6363089624800997,-2.5757575757575757,-0.6396725440402657,-2.5757575757575757,-0.6715398637661353
|
||||||
|
-2.474747474747475,-0.725241414197713,-2.474747474747475,-0.6753456416248385,-2.474747474747475,-0.674565545688341
|
||||||
|
-2.3737373737373737,-0.8010191169999671,-2.3737373737373737,-0.7066964605752718,-2.3737373737373737,-0.6765307025278043
|
||||||
|
-2.272727272727273,-0.8626605255789729,-2.272727272727273,-0.7348121862404637,-2.272727272727273,-0.6766187567521622
|
||||||
|
-2.1717171717171717,-0.911435840482434,-2.1717171717171717,-0.7592451818361001,-2.1717171717171717,-0.6747200340049733
|
||||||
|
-2.070707070707071,-0.9518228090965052,-2.070707070707071,-0.7755022118880182,-2.070707070707071,-0.6711535886166349
|
||||||
|
-1.9696969696969697,-0.9791642715505677,-1.9696969696969697,-0.7889078495544403,-1.9696969696969697,-0.6653309071624213
|
||||||
|
-1.868686868686869,-0.9959505678135467,-1.868686868686869,-0.7978655263590677,-1.868686868686869,-0.6574048849245917
|
||||||
|
-1.7676767676767677,-1.0042572630521163,-1.7676767676767677,-0.8024926242661324,-1.7676767676767677,-0.6465258005011485
|
||||||
|
-1.6666666666666665,-1.0031374573437621,-1.6666666666666665,-0.8024786300118695,-1.6666666666666665,-0.6326231142587367
|
||||||
|
-1.5656565656565657,-0.9924082586558415,-1.5656565656565657,-0.7967021619463882,-1.5656565656565657,-0.6166476676023103
|
||||||
|
-1.4646464646464645,-0.9734669180157094,-1.4646464646464645,-0.7849942222838879,-1.4646464646464645,-0.5979735104135664
|
||||||
|
-1.3636363636363638,-0.9509454078185711,-1.3636363636363638,-0.7662349774950723,-1.3636363636363638,-0.5774876452737464
|
||||||
|
-1.2626262626262625,-0.9231872651397443,-1.2626262626262625,-0.7433085627087517,-1.2626262626262625,-0.554712230754877
|
||||||
|
-1.1616161616161618,-0.8903321986477033,-1.1616161616161618,-0.7150493507052204,-1.1616161616161618,-0.5295933185437713
|
||||||
|
-1.0606060606060606,-0.8533989447900909,-1.0606060606060606,-0.6814643745239313,-1.0606060606060606,-0.5021785239088743
|
||||||
|
-0.9595959595959593,-0.8107636317978494,-0.9595959595959593,-0.6421615608115637,-0.9595959595959593,-0.472606158673678
|
||||||
|
-0.858585858585859,-0.7612745578549842,-0.858585858585859,-0.5973114244123007,-0.858585858585859,-0.4405007246413654
|
||||||
|
-0.7575757575757578,-0.7079734098301842,-0.7575757575757578,-0.5483264663676062,-0.7575757575757578,-0.4059991890198415
|
||||||
|
-0.6565656565656566,-0.6488963804386183,-0.6565656565656566,-0.49554278063844803,-0.6565656565656566,-0.3695525928005769
|
||||||
|
-0.5555555555555554,-0.5859222961089965,-0.5555555555555554,-0.4403758682478846,-0.5555555555555554,-0.33111757514282614
|
||||||
|
-0.45454545454545503,-0.5162955936688821,-0.45454545454545503,-0.38037108381900747,-0.45454545454545503,-0.28897806883385513
|
||||||
|
-0.3535353535353538,-0.4413321076045784,-0.3535353535353538,-0.31690399361617216,-0.3535353535353538,-0.24421776219711205
|
||||||
|
-0.2525252525252526,-0.3616414699818406,-0.2525252525252526,-0.25204481791119354,-0.2525252525252526,-0.19795939679257332
|
||||||
|
-0.15151515151515138,-0.2780916794094584,-0.15151515151515138,-0.18575713332565263,-0.15151515151515138,-0.15066195015784248
|
||||||
|
-0.050505050505050164,-0.18977454284683343,-0.050505050505050164,-0.11797643773197505,-0.050505050505050164,-0.10274021898431054
|
||||||
|
0.050505050505050164,-0.0969321739577506,0.050505050505050164,-0.049351343645831554,0.050505050505050164,-0.05414525935109969
|
||||||
|
0.15151515151515138,-4.4802289442360816E-4,0.15151515151515138,0.019464788799119597,0.15151515151515138,-0.005354051541524688
|
||||||
|
0.2525252525252526,0.09918485823776255,0.2525252525252526,0.08804193897553166,0.2525252525252526,0.0433816826222638
|
||||||
|
0.3535353535353538,0.1998735386668185,0.3535353535353538,0.15569793996298523,0.3535353535353538,0.09176342956997338
|
||||||
|
0.45454545454545414,0.2999169047201809,0.45454545454545414,0.2218157527002848,0.45454545454545414,0.13952481930457306
|
||||||
|
0.5555555555555554,0.3978204122760816,0.5555555555555554,0.2846069052305317,0.5555555555555554,0.18668380673527113
|
||||||
|
0.6565656565656566,0.49120659266814587,0.6565656565656566,0.34467300454040606,0.6565656565656566,0.23277011860523958
|
||||||
|
0.7575757575757578,0.5777980409414698,0.7575757575757578,0.40208229496894643,0.7575757575757578,0.27613740421328176
|
||||||
|
0.8585858585858581,0.6568213676446025,0.8585858585858581,0.45705882493784666,0.8585858585858581,0.316305372116494
|
||||||
|
0.9595959595959593,0.7305067401293432,0.9595959595959593,0.5066458373898202,0.9595959595959593,0.35343427932594923
|
||||||
|
1.0606060606060606,0.7966609096765547,1.0606060606060606,0.5516149744358979,1.0606060606060606,0.38717949746647334
|
||||||
|
1.1616161616161618,0.8521200140106753,1.1616161616161618,0.5878017101641295,1.1616161616161618,0.4170777567516486
|
||||||
|
1.262626262626262,0.8975259277901253,1.262626262626262,0.6168588441570951,1.262626262626262,0.4446516626376453
|
||||||
|
1.3636363636363633,0.9290861930067627,1.3636363636363633,0.6411836178298306,1.3636363636363633,0.46927636759559477
|
||||||
|
1.4646464646464645,0.9508521659740165,1.4646464646464645,0.6610795923876176,1.4646464646464645,0.4901812911280025
|
||||||
|
1.5656565656565657,0.9612143570080512,1.5656565656565657,0.6768219209716341,1.5656565656565657,0.5079918402617868
|
||||||
|
1.666666666666667,0.9590141254017294,1.666666666666667,0.6878304863477654,1.666666666666667,0.5233400296358803
|
||||||
|
1.7676767676767673,0.9434050911299104,1.7676767676767673,0.6925040592034013,1.7676767676767673,0.5351552186913862
|
||||||
|
1.8686868686868685,0.9166484175947194,1.8686868686868685,0.6900246131027935,1.8686868686868685,0.5441567759439713
|
||||||
|
1.9696969696969697,0.8762489440965586,1.9696969696969697,0.6764843940414706,1.9696969696969697,0.5496025817549586
|
||||||
|
2.070707070707071,0.821609113516158,2.070707070707071,0.6566284893291617,2.070707070707071,0.5536820874974513
|
||||||
|
2.1717171717171713,0.7581599898835192,2.1717171717171713,0.6308981649064993,2.1717171717171713,0.5533100035360206
|
||||||
|
2.2727272727272725,0.6877704486402438,2.2727272727272725,0.6016976467409065,2.2727272727272725,0.550251787575325
|
||||||
|
2.3737373737373737,0.610815603287697,2.3737373737373737,0.5704721438286479,2.3737373737373737,0.5445865851994449
|
||||||
|
2.474747474747475,0.5275282181728166,2.474747474747475,0.5362814307290142,2.474747474747475,0.537858723684707
|
||||||
|
2.5757575757575752,0.44098299617705367,2.5757575757575752,0.5007018478259194,2.5757575757575752,0.5301810557083476
|
||||||
|
2.6767676767676765,0.3535127269572474,2.6767676767676765,0.4635791072799046,2.6767676767676765,0.5214280506499815
|
||||||
|
2.7777777777777777,0.2669314340184933,2.7777777777777777,0.4252681214470508,2.7777777777777777,0.5119428002841875
|
||||||
|
2.878787878787879,0.18244774892195767,2.878787878787879,0.3860805361925665,2.878787878787879,0.5020280103571171
|
||||||
|
2.9797979797979792,0.10009287374461422,2.9797979797979792,0.34649978327862213,2.9797979797979792,0.4918997465440798
|
||||||
|
3.0808080808080813,0.01825358803182036,3.0808080808080813,0.3067456416075246,3.0808080808080813,0.48152164248236273
|
||||||
|
3.1818181818181817,-0.06257603867024951,3.1818181818181817,0.2670556605010131,3.1818181818181817,0.4710506406469346
|
||||||
|
3.282828282828282,-0.14256250037038515,3.282828282828282,0.22747478740583862,3.282828282828282,0.46061400021772264
|
||||||
|
3.383838383838384,-0.22183964093761221,3.383838383838384,0.18823442296238005,3.383838383838384,0.4502063176185161
|
||||||
|
3.4848484848484844,-0.3000530710681483,3.4848484848484844,0.14930923451816047,3.4848484848484844,0.43983195563012295
|
||||||
|
3.5858585858585865,-0.37715837046834677,3.5858585858585865,0.11064727810620513,3.5858585858585865,0.4294855408707603
|
||||||
|
3.686868686868687,-0.4535879015098929,3.686868686868687,0.0721761317620166,3.686868686868687,0.41918651120808587
|
||||||
|
3.787878787878787,-0.5295958753874862,3.787878787878787,0.03385158496402993,3.787878787878787,0.4089211108732785
|
||||||
|
3.8888888888888893,-0.605341954214415,3.8888888888888893,-0.004196426105451837,3.8888888888888893,0.3986849690078671
|
||||||
|
3.9898989898989896,-0.6805725256650321,3.9898989898989896,-0.04204424507819378,3.9898989898989896,0.3884698016669201
|
||||||
|
4.09090909090909,-0.7553382625080638,4.09090909090909,-0.0795288839270637,4.09090909090909,0.37826736472008937
|
||||||
|
4.191919191919192,-0.8294318073700058,4.191919191919192,-0.11675718948094181,4.191919191919192,0.36808861016948324
|
||||||
|
4.292929292929292,-0.9025671571505313,4.292929292929292,-0.15379169226972225,4.292929292929292,0.3579396881040081
|
||||||
|
4.3939393939393945,-0.9751233932017581,4.3939393939393945,-0.19069301489402432,4.3939393939393945,0.3478279422102407
|
||||||
|
4.494949494949495,-1.0471623188798242,4.494949494949495,-0.227426975503073,4.494949494949495,0.3377388026398381
|
||||||
|
4.595959595959595,-1.1187532876284094,4.595959595959595,-0.263878605240927,4.595959595959595,0.32767338817749475
|
||||||
|
4.696969696969697,-1.189660915888889,4.696969696969697,-0.3001960056492053,4.696969696969697,0.3176530967513947
|
||||||
|
4.797979797979798,-1.2601246569645388,4.797979797979798,-0.3363281464377301,4.797979797979798,0.3076778013243957
|
||||||
|
4.8989898989899,-1.3303637186847002,4.8989898989899,-0.37225330321499334,4.8989898989899,0.29772768053304777
|
||||||
|
5.0,-1.4004134094571867,5.0,-0.4080316669473787,5.0,0.2878184725593889
|
|
@ -0,0 +1,101 @@
|
|||||||
|
x_n_50_tl_0.0,y_n_50_tl_0.0,x_n_500_tl_0.0,y_n_500_tl_0.0,x_n_5000_tl_0.0,y_n_5000_tl_0.0,x_n_50_tl_1.0,y_n_50_tl_1.0,x_n_500_tl_1.0,y_n_500_tl_1.0,x_n_5000_tl_1.0,y_n_5000_tl_1.0,x_n_50_tl_3.0,y_n_50_tl_3.0,x_n_500_tl_3.0,y_n_500_tl_3.0,x_n_5000_tl_3.0,y_n_5000_tl_3.0
|
||||||
|
-5.0,-0.8599583057554976,-5.0,1.6797068787192495,-5.0,1.7379689606223239,-5.0,-0.42741272499487776,-5.0,0.23661838590976328,-5.0,0.20399386816229978,-5.0,0.13095951218866275,-5.0,-0.46242184829078237,-5.0,-0.41058629664051305
|
||||||
|
-4.898989898989899,-0.8456047840536887,-4.898989898989899,1.5940442438460278,-4.898989898989899,1.6472202329485999,-4.898989898989899,-0.4276431031893983,-4.898989898989899,0.20862681459226723,-4.898989898989899,0.17824071850107404,-4.898989898989899,0.10539057470765349,-4.898989898989899,-0.4609018322257037,-4.898989898989899,-0.4110599614729015
|
||||||
|
-4.797979797979798,-0.8312512623518801,-4.797979797979798,1.5066655952530659,-4.797979797979798,1.5560370024912986,-4.797979797979798,-0.42787348138391906,-4.797979797979798,0.18056404254218186,-4.797979797979798,0.1523309553054011,-4.797979797979798,0.07982163722664384,-4.797979797979798,-0.4593800781031771,-4.797979797979798,-0.41155161184122596
|
||||||
|
-4.696969696969697,-0.8168977406500709,-4.696969696969697,1.4192486056640365,-4.696969696969697,1.4641612521550218,-4.696969696969697,-0.42810385957843955,-4.696969696969697,0.1524990189306639,-4.696969696969697,0.1262143553005724,-4.696969696969697,0.05464380509332076,-4.696969696969697,-0.4578583174084625,-4.696969696969697,-0.41205688060740875
|
||||||
|
-4.595959595959596,-0.8025442189482614,-4.595959595959596,1.3308076153149195,-4.595959595959596,1.3718747642404912,-4.595959595959596,-0.42833423777296026,-4.595959595959596,0.12443399531914556,-4.595959595959596,0.10000299804643913,-4.595959595959596,0.029720704709016,-4.595959595959596,-0.45633655338498746,-4.595959595959596,-0.4126005212950324
|
||||||
|
-4.494949494949495,-0.788190697246453,-4.494949494949495,1.2408764237610932,-4.494949494949495,1.2794547935729972,-4.494949494949495,-0.42856461596748074,-4.494949494949495,0.09628036393480953,-4.494949494949495,0.07370213597938947,-4.494949494949495,0.004797604324711557,-4.494949494949495,-0.45481454100468904,-4.494949494949495,-0.41317280828652125
|
||||||
|
-4.393939393939394,-0.7757194193374484,-4.393939393939394,1.150777108936673,-4.393939393939394,1.1865984175078124,-4.393939393939394,-0.4287949941620015,-4.393939393939394,0.06803799087458409,-4.393939393939394,0.047353868838267546,-4.393939393939394,-0.019952866294811474,-4.393939393939394,-0.4532902682540511,-4.393939393939394,-0.41378088791316736
|
||||||
|
-4.292929292929293,-0.7635428572249876,-4.292929292929293,1.0606777941122512,-4.292929292929293,1.0935156155193826,-4.292929292929293,-0.42902537235652216,-4.292929292929293,0.039745189354681264,-4.292929292929293,0.020863777423783696,-4.292929292929293,-0.04424719286600705,-4.292929292929293,-0.45176167641583376,-4.292929292929293,-0.41441903123033147
|
||||||
|
-4.191919191919192,-0.7514991436388702,-4.191919191919192,0.9705784792878309,-4.191919191919192,0.9999451479756023,-4.191919191919192,-0.42925575055104276,-4.191919191919192,0.01144626171509771,-4.191919191919192,-0.005903721047402898,-4.191919191919192,-0.06854151943720274,-4.191919191919192,-0.4502329821869361,-4.191919191919192,-0.415076548381381
|
||||||
|
-4.090909090909091,-0.7396941691045894,-4.090909090909091,0.8798554638230421,-4.090909090909091,0.9059203084364202,-4.090909090909091,-0.42948612874556336,-4.090909090909091,-0.016952280979816926,-4.090909090909091,-0.03298925765732338,-4.090909090909091,-0.09283584600839848,-4.090909090909091,-0.44869972853751156,-4.090909090909091,-0.4157629995846106
|
||||||
|
-3.9898989898989896,-0.7279252765177078,-3.9898989898989896,0.7884244803113447,-3.9898989898989896,0.811474387051809,-3.9898989898989896,-0.42971650694008423,-3.9898989898989896,-0.04548036359257723,-3.9898989898989896,-0.06017986522111469,-3.9898989898989896,-0.11713017257959416,-3.9898989898989896,-0.44715472797022665,-3.9898989898989896,-0.41647096691012625
|
||||||
|
-3.888888888888889,-0.7161580919866168,-3.888888888888889,0.6966140451148786,-3.888888888888889,0.7168906385054419,-3.888888888888889,-0.4299468851346048,-3.888888888888889,-0.07408610945271141,-3.888888888888889,-0.0874709084540591,-3.888888888888889,-0.14142449915078953,-3.888888888888889,-0.4456015995456161,-3.888888888888889,-0.4171930364234525
|
||||||
|
-3.787878787878788,-0.7043909074555256,-3.787878787878788,0.604803249010758,-3.787878787878788,0.6219712537736367,-3.787878787878788,-0.4301772633291252,-3.787878787878788,-0.10285723661640957,-3.787878787878788,-0.11503695886523099,-3.787878787878788,-0.16571882572198493,-3.787878787878788,-0.4440477592686527,-3.787878787878788,-0.41792735866227004
|
||||||
|
-3.686868686868687,-0.6926237229244344,-3.686868686868687,0.512070766385858,-3.686868686868687,0.5265347560169878,-3.686868686868687,-0.4304076415236461,-3.686868686868687,-0.13176620357773466,-3.686868686868687,-0.1429497539600965,-3.686868686868687,-0.19001315229318066,-3.686868686868687,-0.44249216926013074,-3.686868686868687,-0.4186788950692494
|
||||||
|
-3.5858585858585856,-0.680856538393343,-3.5858585858585856,0.418341406261733,-3.5858585858585856,0.43037422799158725,-3.5858585858585856,-0.43063801971816673,-3.5858585858585856,-0.16072772857488207,-3.5858585858585856,-0.17103810603915154,-3.5858585858585856,-0.21430747886437626,-3.5858585858585856,-0.44093657925160834,-3.5858585858585856,-0.41944890491602094
|
||||||
|
-3.484848484848485,-0.6690893538622519,-3.484848484848485,0.3230008626762439,-3.484848484848485,0.33347359833985296,-3.484848484848485,-0.43086839791268744,-3.484848484848485,-0.189786562504877,-3.484848484848485,-0.1992640699299042,-3.484848484848485,-0.238601805435572,-3.484848484848485,-0.4393809892430859,-3.484848484848485,-0.4202525693559286
|
||||||
|
-3.383838383838384,-0.6573221693311603,-3.383838383838384,0.22755806300474243,-3.383838383838384,0.23599152727957395,-3.383838383838384,-0.4310987761072079,-3.383838383838384,-0.21885301172451227,-3.383838383838384,-0.22770533404467666,-3.383838383838384,-0.2628961320067672,-3.383838383838384,-0.43781693796746485,-3.383838383838384,-0.4210766722370822
|
||||||
|
-3.282828282828283,-0.6455549848000697,-3.282828282828283,0.13172938749299176,-3.282828282828283,0.13785071540835,-3.282828282828283,-0.4313291543017285,-3.282828282828283,-0.24792012144222308,-3.282828282828283,-0.25633384693349226,-3.282828282828283,-0.28719045857796294,-3.282828282828283,-0.4362515901030497,-3.282828282828283,-0.42192705020460003
|
||||||
|
-3.1818181818181817,-0.6337878002689783,-3.1818181818181817,0.03583960513370717,-3.1818181818181817,0.03926297085619488,-3.1818181818181817,-0.43155953249624923,-3.1818181818181817,-0.2770868438988566,-3.1818181818181817,-0.28512064843139634,-3.1818181818181817,-0.3114847851491585,-3.1818181818181817,-0.4346861097486259,-3.1818181818181817,-0.42279043662854426
|
||||||
|
-3.080808080808081,-0.6219933944673289,-3.080808080808081,-0.06005017722557655,-3.080808080808081,-0.05953650043486377,-3.080808080808081,-0.4317899106907698,-3.080808080808081,-0.30634202732953336,-3.080808080808081,-0.3140197227479732,-3.080808080808081,-0.33577911172035446,-3.080808080808081,-0.4331124443470669,-3.080808080808081,-0.42366980349780375
|
||||||
|
-2.9797979797979797,-0.6084802589111126,-2.9797979797979797,-0.15590935392992944,-2.9797979797979797,-0.15810366579897028,-2.9797979797979797,-0.4320202888852905,-2.9797979797979797,-0.33549678779642544,-2.9797979797979797,-0.3430021282671825,-2.9797979797979797,-0.3600734382915496,-2.9797979797979797,-0.4315218307109141,-2.9797979797979797,-0.42449207343700956
|
||||||
|
-2.878787878787879,-0.5891232690738096,-2.878787878787879,-0.24713180817765498,-2.878787878787879,-0.2552003497036097,-2.878787878787879,-0.43225066707981114,-2.878787878787879,-0.36352866123332933,-2.878787878787879,-0.3716002292573769,-2.878787878787879,-0.38436776486274526,-2.878787878787879,-0.42982012082652077,-2.878787878787879,-0.4251380414134998
|
||||||
|
-2.7777777777777777,-0.5636588831509095,-2.7777777777777777,-0.33701300990207655,-2.7777777777777777,-0.35066910453142525,-2.7777777777777777,-0.4324810452743318,-2.7777777777777777,-0.3911342117000581,-2.7777777777777777,-0.39951657101606874,-2.7777777777777777,-0.4086620914339411,-2.7777777777777777,-0.42794280685642583,-2.7777777777777777,-0.4254095546530059
|
||||||
|
-2.676767676767677,-0.538194497228009,-2.676767676767677,-0.4265304961947721,-2.676767676767677,-0.4419057912445846,-2.676767676767677,-0.4295143886441945,-2.676767676767677,-0.41758811768544335,-2.676767676767677,-0.4264377612958712,-2.676767676767677,-0.4329564180051365,-2.676767676767677,-0.4251801800597513,-2.676767676767677,-0.42514350551302893
|
||||||
|
-2.5757575757575757,-0.5127301113051083,-2.5757575757575757,-0.5160338868263108,-2.5757575757575757,-0.530562896182845,-2.5757575757575757,-0.4209813938653777,-2.5757575757575757,-0.4421888684751682,-2.5757575757575757,-0.4521958194404763,-2.5757575757575757,-0.4572507445763323,-2.5757575757575757,-0.4220835438175992,-2.5757575757575757,-0.42424941235712643
|
||||||
|
-2.474747474747475,-0.48726572538220836,-2.474747474747475,-0.6045443334592155,-2.474747474747475,-0.615529859161848,-2.474747474747475,-0.4124483990865609,-2.474747474747475,-0.4657884717671948,-2.474747474747475,-0.4762840194362591,-2.474747474747475,-0.480179747245649,-2.474747474747475,-0.4184871960008546,-2.474747474747475,-0.4227211360179997
|
||||||
|
-2.3737373737373737,-0.4618013394593081,-2.3737373737373737,-0.6866461198443653,-2.3737373737373737,-0.6916556206405179,-2.3737373737373737,-0.4039154043077441,-2.3737373737373737,-0.4872175481179362,-2.3737373737373737,-0.49664688375599,-2.3737373737373737,-0.5021327343044837,-2.3737373737373737,-0.4148617786025484,-2.3737373737373737,-0.42058969704823307
|
||||||
|
-2.272727272727273,-0.4363369535364072,-2.272727272727273,-0.7664221699283893,-2.272727272727273,-0.76211944205629,-2.272727272727273,-0.3953824095289272,-2.272727272727273,-0.5066515567337302,-2.272727272727273,-0.5156479697413601,-2.272727272727273,-0.5240857213633179,-2.272727272727273,-0.4101489198915738,-2.272727272727273,-0.41773244666508813
|
||||||
|
-2.1717171717171717,-0.41087256761350716,-2.1717171717171717,-0.8294863656303931,-2.1717171717171717,-0.8275864122047706,-2.1717171717171717,-0.38684941475011053,-2.1717171717171717,-0.5248642081767847,-2.1717171717171717,-0.5320776321494358,-2.1717171717171717,-0.5460387084221523,-2.1717171717171717,-0.40386935734460455,-2.1717171717171717,-0.41386532161191136
|
||||||
|
-2.070707070707071,-0.38540818169060687,-2.070707070707071,-0.8777818560548117,-2.070707070707071,-0.8828614286116081,-2.070707070707071,-0.37790597680581006,-2.070707070707071,-0.5419305295559403,-2.070707070707071,-0.5450192204063132,-2.070707070707071,-0.5535021346303699,-2.070707070707071,-0.3970390682426877,-2.070707070707071,-0.40816135821642785
|
||||||
|
-1.9696969696969697,-0.3599437957677064,-1.9696969696969697,-0.9240065596308831,-1.9696969696969697,-0.9252381701217932,-1.9696969696969697,-0.3679210297690768,-1.9696969696969697,-0.5515520831674893,-1.9696969696969697,-0.5532507694312989,-1.9696969696969697,-0.5395642887779512,-1.9696969696969697,-0.3899536977126602,-1.9696969696969697,-0.4010221140801823
|
||||||
|
-1.868686868686869,-0.3344794098448062,-1.868686868686869,-0.9642081153190732,-1.868686868686869,-0.9553319880266173,-1.868686868686869,-0.3579360827323437,-1.868686868686869,-0.5596849243269256,-1.868686868686869,-0.556146459781286,-1.868686868686869,-0.5226399861377664,-1.868686868686869,-0.38238093755017905,-1.868686868686869,-0.3924834151653046
|
||||||
|
-1.7676767676767677,-0.3090150239219054,-1.7676767676767677,-1.0007396420666628,-1.7676767676767677,-0.9785388909278812,-1.7676767676767677,-0.34795113569561026,-1.7676767676767677,-0.5614467949548656,-1.7676767676767677,-0.556098671354368,-1.7676767676767677,-0.4982759643499402,-1.7676767676767677,-0.37323932215085087,-1.7676767676767677,-0.3822790688909727
|
||||||
|
-1.6666666666666665,-0.2835506379990052,-1.6666666666666665,-1.0187333297343348,-1.6666666666666665,-0.990642179129256,-1.6666666666666665,-0.3378404050890797,-1.6666666666666665,-0.5581030917440444,-1.6666666666666665,-0.5516597526410076,-1.6666666666666665,-0.47067804898067184,-1.6666666666666665,-0.3614402633008814,-1.6666666666666665,-0.37030436851426224
|
||||||
|
-1.5656565656565657,-0.2580862520761052,-1.5656565656565657,-1.0247628857811257,-1.5656565656565657,-0.9908786897501635,-1.5656565656565657,-0.32764529263529574,-1.5656565656565657,-0.5521110428952534,-1.5656565656565657,-0.543054168961121,-1.5656565656565657,-0.44308013361140386,-1.5656565656565657,-0.34868249075072216,-1.5656565656565657,-0.35699361568660476
|
||||||
|
-1.4646464646464645,-0.2326218661532044,-1.4646464646464645,-1.0034906902849632,-1.4646464646464645,-0.9791175953628313,-1.4646464646464645,-0.3174501801815117,-1.4646464646464645,-0.5459322825614802,-1.4646464646464645,-0.5306579767422843,-1.4646464646464645,-0.41548221824213516,-1.4646464646464645,-0.3311832422822113,-1.4646464646464645,-0.3422960409489238
|
||||||
|
-1.3636363636363638,-0.20715748023030392,-1.3636363636363638,-0.9673348570651019,-1.3636363636363638,-0.9595107779813504,-1.3636363636363638,-0.30725506772772765,-1.3636363636363638,-0.5358046337748493,-1.3636363636363638,-0.5149935986561597,-1.3636363636363638,-0.3878843028728669,-1.3636363636363638,-0.3132121589299601,-1.3636363636363638,-0.32640862478895577
|
||||||
|
-1.2626262626262625,-0.1816930943074038,-1.2626262626262625,-0.9225014127525308,-1.2626262626262625,-0.9337929369785798,-1.2626262626262625,-0.29705995527394363,-1.2626262626262625,-0.5219865374295057,-1.2626262626262625,-0.49551878203869837,-1.2626262626262625,-0.3602863875035988,-1.2626262626262625,-0.2946441284959401,-1.2626262626262625,-0.3093875165551468
|
||||||
|
-1.1616161616161618,-0.15622870838450328,-1.1616161616161618,-0.8751043056611054,-1.1616161616161618,-0.8989581380947891,-1.1616161616161618,-0.2868560938657385,-1.1616161616161618,-0.5034750880272445,-1.1616161616161618,-0.47203943335323734,-1.1616161616161618,-0.33268847213433056,-1.1616161616161618,-0.274883632364574,-1.1616161616161618,-0.290930041718859
|
||||||
|
-1.0606060606060606,-0.13076432246160322,-1.0606060606060606,-0.821606899074672,-1.0606060606060606,-0.8584249497008333,-1.0606060606060606,-0.27660353819390815,-1.0606060606060606,-0.48270847299437897,-1.0606060606060606,-0.44464074915622404,-1.0606060606060606,-0.3050905567650622,-1.0606060606060606,-0.25396600066040825,-1.0606060606060606,-0.27118022111102713
|
||||||
|
-0.9595959595959593,-0.1052999365387022,-0.9595959595959593,-0.7640740662013277,-0.9595959595959593,-0.8091349495541134,-0.9595959595959593,-0.2663509825220778,-0.9595959595959593,-0.4531496187924299,-0.9595959595959593,-0.4131252245857649,-0.9595959595959593,-0.2774926413957938,-0.9595959595959593,-0.2325608605277687,-0.9595959595959593,-0.24999263682664583
|
||||||
|
-0.858585858585859,-0.07983555061580246,-0.858585858585859,-0.6997648036121712,-0.858585858585859,-0.7481101580520273,-0.858585858585859,-0.24945014324598108,-0.858585858585859,-0.4128551081137216,-0.858585858585859,-0.3783375004573455,-0.858585858585859,-0.24988890615957382,-0.858585858585859,-0.20970608424200354,-0.858585858585859,-0.22760758480332924
|
||||||
|
-0.7575757575757578,-0.054371164692902076,-0.7575757575757578,-0.6349094271338603,-0.7575757575757578,-0.6820384544330558,-0.7575757575757578,-0.22976061598357173,-0.7575757575757578,-0.37194755761368214,-0.7575757575757578,-0.34125536540984164,-0.7575757575757578,-0.22211577202959193,-0.7575757575757578,-0.18612295967753525,-0.7575757575757578,-0.20435972492122192
|
||||||
|
-0.6565656565656566,-0.028906778770001355,-0.6565656565656566,-0.5675463340257147,-0.6565656565656566,-0.6095055279444694,-0.6565656565656566,-0.21007108872116223,-0.6565656565656566,-0.33089771921954814,-0.6565656565656566,-0.3018873155488892,-0.6565656565656566,-0.193901705770251,-0.6565656565656566,-0.16215648653127196,-0.6565656565656566,-0.17931671250996567
|
||||||
|
-0.5555555555555554,-0.003442392847101086,-0.5555555555555554,-0.4979737843441253,-0.5555555555555554,-0.5294156894319434,-0.5555555555555554,-0.17756203711819088,-0.5555555555555554,-0.28543993548509355,-0.5555555555555554,-0.26041062451302716,-0.5555555555555554,-0.1652647608815763,-0.5555555555555554,-0.13697108727984195,-0.5555555555555554,-0.15330854213602407
|
||||||
|
-0.45454545454545503,0.022021993075799252,-0.45454545454545503,-0.41446378537016554,-0.45454545454545503,-0.44063136513918405,-0.45454545454545503,-0.14370193132078618,-0.45454545454545503,-0.2395445410097954,-0.45454545454545503,-0.21652789115320525,-0.45454545454545503,-0.13529651419425484,-0.45454545454545503,-0.11162353028803523,-0.45454545454545503,-0.12623393965312618
|
||||||
|
-0.3535353535353538,0.047486378998699605,-0.3535353535353538,-0.32279891003383887,-0.3535353535353538,-0.3477046435373429,-0.3535353535353538,-0.10934683153775412,-0.3535353535353538,-0.19101529776271153,-0.3535353535353538,-0.17035416577174828,-0.3535353535353538,-0.10509845793132169,-0.3535353535353538,-0.08626013443382194,-0.3535353535353538,-0.0984136402387288
|
||||||
|
-0.2525252525252526,0.07295076492159988,-0.2525252525252526,-0.2310925448666578,-0.2525252525252526,-0.25069145628093464,-0.2525252525252526,-0.07491795886312486,-0.2525252525252526,-0.14150481827496786,-0.2525252525252526,-0.12255925867115473,-0.2525252525252526,-0.07490040166838845,-0.2525252525252526,-0.060434579838324495,-0.2525252525252526,-0.07006332009798681
|
||||||
|
-0.15151515151515138,0.09843047923373265,-0.15151515151515138,-0.13636354870852932,-0.15151515151515138,-0.15095910699954188,-0.15151515151515138,-0.040306119685216676,-0.15151515151515138,-0.08982558834407159,-0.15151515151515138,-0.07398207558396772,-0.15151515151515138,-0.044702345405455264,-0.15151515151515138,-0.033631412543263274,-0.15151515151515138,-0.04141233375856603
|
||||||
|
-0.050505050505050164,0.12391212075429944,-0.050505050505050164,-0.03941345742250633,-0.050505050505050164,-0.04947445191778734,-0.050505050505050164,-0.005694280507308445,-0.050505050505050164,-0.03797674651308919,-0.050505050505050164,-0.025080464074353173,-0.050505050505050164,-0.014504289142522105,-0.050505050505050164,-0.006446181090338347,-0.050505050505050164,-0.012381418678247798
|
||||||
|
0.050505050505050164,0.14939376227486617,0.050505050505050164,0.056551574802519614,0.050505050505050164,0.0525838784102356,0.050505050505050164,0.028911158365061536,0.050505050505050164,0.013973891774473416,0.050505050505050164,0.023794553267499748,0.050505050505050164,0.01583885016218507,0.050505050505050164,0.021038028372213642,0.050505050505050164,0.016846741994686543
|
||||||
|
0.15151515151515138,0.17487540379543332,0.15151515151515138,0.15017264202689645,0.15151515151515138,0.15408973105493792,0.15151515151515138,0.062183868537649845,0.15151515151515138,0.06589471730593952,0.15151515151515138,0.07245763138776953,0.15151515151515138,0.046508129166361926,0.15151515151515138,0.04842915541973139,0.15151515151515138,0.04601083462340586
|
||||||
|
0.2525252525252526,0.2003570453160002,0.2525252525252526,0.24151055338001104,0.2525252525252526,0.2530277286116801,0.2525252525252526,0.09533027991528796,0.2525252525252526,0.11633887943820748,0.2525252525252526,0.11992049316059605,0.2525252525252526,0.07717740817053882,0.2525252525252526,0.07538338916654858,0.2525252525252526,0.07493657104851133
|
||||||
|
0.3535353535353538,0.22583868683656727,0.3535353535353538,0.3245702345293225,0.3535353535353538,0.3487077570947679,0.3535353535353538,0.12847669129292608,0.3535353535353538,0.1661606781018032,0.3535353535353538,0.16626942811591283,0.3535353535353538,0.10784668717471575,0.3535353535353538,0.10205978943459323,0.3535353535353538,0.10356289911566637
|
||||||
|
0.45454545454545414,0.25132032835713397,0.45454545454545414,0.4042440047834261,0.45454545454545414,0.4412637068427958,0.45454545454545414,0.15705349698246504,0.45454545454545414,0.21489012650224273,0.45454545454545414,0.21055873443432177,0.45454545454545414,0.1385159661788923,0.45454545454545414,0.12849799626750344,0.45454545454545414,0.13171638145035697
|
||||||
|
0.5555555555555554,0.2768019698777009,0.5555555555555554,0.48386343064481413,0.5555555555555554,0.5292644209820558,0.5555555555555554,0.1822941322301175,0.5555555555555554,0.26332131026810235,0.5555555555555554,0.25282542280637477,0.5555555555555554,0.16918524518306918,0.5555555555555554,0.1537986605041808,0.5555555555555554,0.15885558014342485
|
||||||
|
0.6565656565656566,0.30228361139826787,0.6565656565656566,0.5582703975525269,0.6565656565656566,0.6095279265110211,0.6565656565656566,0.20753476747777022,0.6565656565656566,0.311752494033962,0.6565656565656566,0.2926908500466596,0.6565656565656566,0.1998545241872461,0.6565656565656566,0.17827793057103108,0.6565656565656566,0.18425901109338033
|
||||||
|
0.7575757575757578,0.3276630675001063,0.7575757575757578,0.6240165672599972,0.7575757575757578,0.6817170975194252,0.7575757575757578,0.23277540272542308,0.7575757575757578,0.35585725421977105,0.7575757575757578,0.32990973382338223,0.7575757575757578,0.23052380319142296,0.7575757575757578,0.19993717433313357,0.7575757575757578,0.20856541522380753
|
||||||
|
0.8585858585858581,0.35294340046326517,0.8585858585858581,0.6832251591090945,0.8585858585858581,0.7490023509530548,0.8585858585858581,0.2580160379730755,0.8585858585858581,0.39411574874383437,0.8585858585858581,0.3646086605463153,0.8585858585858581,0.2611930821955996,0.8585858585858581,0.21959645347898898,0.8585858585858581,0.2319021251050189
|
||||||
|
0.9595959595959593,0.3782237334264241,0.9595959595959593,0.7379264665053952,0.9595959595959593,0.8101967957597399,0.9595959595959593,0.28325667322072823,0.9595959595959593,0.4295026011065611,0.9595959595959593,0.39755496473819213,0.9595959595959593,0.2918623611997765,0.9595959595959593,0.23923560012200779,0.9595959595959593,0.25414437767202697
|
||||||
|
1.0606060606060606,0.40350406638958297,1.0606060606060606,0.7921580999576039,1.0606060606060606,0.865038072851208,1.0606060606060606,0.3013557830052828,1.0606060606060606,0.4622992830762259,1.0606060606060606,0.4264742505103137,1.0606060606060606,0.3225316402039533,1.0606060606060606,0.2583177367004956,1.0606060606060606,0.27509011865395333
|
||||||
|
1.1616161616161618,0.4287843993527419,1.1616161616161618,0.8463753861957045,1.1616161616161618,0.9101530745705552,1.1616161616161618,0.30890687222540525,1.1616161616161618,0.4901351365169132,1.1616161616161618,0.45319808589043276,1.1616161616161618,0.35276108409396234,1.1616161616161618,0.27725858987652097,1.1616161616161618,0.29560030900846
|
||||||
|
1.262626262626262,0.4540647323159006,1.262626262626262,0.897495878378595,1.262626262626262,0.9417185837581196,1.262626262626262,0.3164579614455276,1.262626262626262,0.5145846409490937,1.262626262626262,0.4780296455205537,1.262626262626262,0.3794404038170447,1.262626262626262,0.2943968389517317,1.262626262626262,0.3152556528081
|
||||||
|
1.3636363636363633,0.47934506527905946,1.3636363636363633,0.9371746663372353,1.3636363636363633,0.9683350572505884,1.3636363636363633,0.32400905066565,1.3636363636363633,0.5362370529858077,1.3636363636363633,0.49985847015098533,1.3636363636363633,0.4061135157391696,1.3636363636363633,0.31086438420332474,1.3636363636363633,0.33319398921001137
|
||||||
|
1.4646464646464645,0.5046253982422182,1.4646464646464645,0.9707358108138878,1.4646464646464645,0.9850292043911345,1.4646464646464645,0.3315601398857724,1.4646464646464645,0.5531019255981576,1.4646464646464645,0.5181848921010453,1.4646464646464645,0.43278662766129444,1.4646464646464645,0.32679862313827224,1.4646464646464645,0.34908318351734496
|
||||||
|
1.5656565656565657,0.519310758600954,1.5656565656565657,0.9906032176938914,1.5656565656565657,0.9918397190961462,1.5656565656565657,0.3391112291058948,1.5656565656565657,0.5659801950328859,1.5656565656565657,0.5323498791465002,1.5656565656565657,0.4511009412793216,1.5656565656565657,0.34162587661768695,1.5656565656565657,0.3628958484057042
|
||||||
|
1.666666666666667,0.51401635833774,1.666666666666667,1.005715077214144,1.666666666666667,0.9899656142606021,1.666666666666667,0.346662318326017,1.666666666666667,0.575829702298404,1.666666666666667,0.541260149475436,1.666666666666667,0.4674803110925756,1.666666666666667,0.35601920704359724,1.666666666666667,0.37572761649169056
|
||||||
|
1.7676767676767673,0.5060676795476615,1.7676767676767673,1.0131883048070176,1.7676767676767673,0.9786887428475383,1.7676767676767673,0.35421340754613934,1.7676767676767673,0.5828151703640635,1.7676767676767673,0.5455395874048847,1.7676767676767673,0.4838510153495891,1.7676767676767673,0.3703169330810678,1.7676767676767673,0.38781035405087
|
||||||
|
1.8686868686868685,0.495017206229559,1.8686868686868685,0.9802541539054102,1.8686868686868685,0.9559310588882513,1.8686868686868685,0.3617644967662619,1.8686868686868685,0.5839088497682434,1.8686868686868685,0.5467157898697311,1.8686868686868685,0.49835864007261943,1.8686868686868685,0.38410765063343066,1.8686868686868685,0.3977196343512365
|
||||||
|
1.9696969696969697,0.48396673291145637,1.9696969696969697,0.9263388630289161,1.9696969696969697,0.9221166683929235,1.9696969696969697,0.36931558598638414,1.9696969696969697,0.5804936028756624,1.9696969696969697,0.5450082343452209,1.9696969696969697,0.5115510651058692,1.9696969696969697,0.39647206872026003,1.9696969696969697,0.4057110985660076
|
||||||
|
2.070707070707071,0.4729162595933537,2.070707070707071,0.8698358861835761,2.070707070707071,0.8764481362001709,2.070707070707071,0.3768666752065065,2.070707070707071,0.574716686049867,2.070707070707071,0.5394474878302619,2.070707070707071,0.5097127295818997,2.070707070707071,0.4049032898801099,2.070707070707071,0.41126316053027995
|
||||||
|
2.1717171717171713,0.46186578627525116,2.1717171717171713,0.8081407617658106,2.1717171717171713,0.8224404974364862,2.1717171717171713,0.38441776442662906,2.1717171717171713,0.5655375705620478,2.1717171717171713,0.5300324428024472,2.1717171717171713,0.49554940844796147,2.1717171717171713,0.4101839304627971,2.1717171717171713,0.4155357725301964
|
||||||
|
2.2727272727272725,0.4491770446280175,2.2727272727272725,0.7442526428212628,2.2727272727272725,0.7592323649828391,2.2727272727272725,0.391968853646751,2.2727272727272725,0.552350323381661,2.2727272727272725,0.5163813504127768,2.2727272727272725,0.48094925798793925,2.2727272727272725,0.413936941837358,2.2727272727272725,0.41843071308941276
|
||||||
|
2.3737373737373737,0.43609986761848685,2.3737373737373737,0.675405575107383,2.3737373737373737,0.6874741372997285,2.3737373737373737,0.39951994286687353,2.3737373737373737,0.5335539998256553,2.3737373737373737,0.49865541506871236,2.3737373737373737,0.4655571015656922,2.3737373737373737,0.4173906236056948,2.3737373737373737,0.42027249977934045
|
||||||
|
2.474747474747475,0.4066895271847391,2.474747474747475,0.5978840366507735,2.474747474747475,0.6073682995880296,2.474747474747475,0.40692119452733155,2.474747474747475,0.5117177142842388,2.474747474747475,0.4784532511364369,2.474747474747475,0.4501649451434452,2.474747474747475,0.4206585025597512,2.474747474747475,0.4213399238172195
|
||||||
|
2.5757575757575752,0.3749622763477891,2.5757575757575752,0.5099585586540418,2.5757575757575752,0.5223271133442401,2.5757575757575752,0.41415264022012394,2.5757575757575752,0.4850415148130571,2.5757575757575752,0.4567094947730761,2.5757575757575752,0.43458555601387144,2.5757575757575752,0.42158324745022285,2.5757575757575752,0.42181632222498416
|
||||||
|
2.6767676767676765,0.3432350255108388,2.6767676767676765,0.4205365946887392,2.6767676767676765,0.432906236858961,2.6767676767676765,0.4199131836378292,2.6767676767676765,0.45218830888592937,2.6767676767676765,0.4332394825941561,2.6767676767676765,0.41774264448225407,2.6767676767676765,0.42145613907090707,2.6767676767676765,0.4215504924390677
|
||||||
|
2.7777777777777777,0.3115077746738885,2.7777777777777777,0.32930350370842715,2.7777777777777777,0.3412321347424227,2.7777777777777777,0.42274639662898705,2.7777777777777777,0.4163402713183856,2.7777777777777777,0.40851950219775013,2.7777777777777777,0.40089973295063663,2.7777777777777777,0.4209228617300304,2.7777777777777777,0.4203590184673923
|
||||||
|
2.878787878787879,0.27978052383693824,2.878787878787879,0.23807041272811588,2.878787878787879,0.24760314946640188,2.878787878787879,0.42557960962014507,2.878787878787879,0.3802049595409251,2.878787878787879,0.383057999391408,2.878787878787879,0.3840568214190192,2.878787878787879,0.41938009129458526,2.878787878787879,0.41854626446476473
|
||||||
|
2.9797979797979792,0.24805327299998842,2.9797979797979792,0.14646854757187647,2.9797979797979792,0.15264712621771054,2.9797979797979792,0.428104678899817,2.9797979797979792,0.3432577786602793,2.9797979797979792,0.35694448241628624,2.9797979797979792,0.367213909887402,2.9797979797979792,0.41773298189050795,2.9797979797979792,0.4163510447804036
|
||||||
|
3.0808080808080813,0.21632602216303798,3.0808080808080813,0.05456143993271787,3.0808080808080813,0.057336396951423035,3.0808080808080813,0.42910204221273207,3.0808080808080813,0.30602019255320434,3.0808080808080813,0.3305660520102483,3.0808080808080813,0.3503709983557844,3.0808080808080813,0.41593157838764133,3.0808080808080813,0.41396474245507225
|
||||||
|
3.1818181818181817,0.18459877132608776,3.1818181818181817,-0.03733538955626138,3.1818181818181817,-0.03779843888287274,3.1818181818181817,0.4300994055256468,3.1818181818181817,0.26873960102765904,3.1818181818181817,0.30419224859801247,3.1818181818181817,0.3335280868241671,3.1818181818181817,0.41409475876758717,3.1818181818181817,0.41152646064562604
|
||||||
|
3.282828282828282,0.15287152048913782,3.282828282828282,-0.12920906194738088,3.282828282828282,-0.13249853932321157,3.282828282828282,0.43099899837317435,3.282828282828282,0.2314874157056526,3.282828282828282,0.27788417508140784,3.282828282828282,0.3164995410780566,3.282828282828282,0.4122620364061852,3.282828282828282,0.40912247673587887
|
||||||
|
3.383838383838384,0.12114426965218736,3.383838383838384,-0.22108273433850145,3.383838383838384,-0.22672866959540386,3.383838383838384,0.4318917322435721,3.383838383838384,0.19424068277399548,3.383838383838384,0.25176947991950477,3.383838383838384,0.2992528546417876,3.383838383838384,0.41043205422405316,3.383838383838384,0.40674183306733336
|
||||||
|
3.4848484848484844,0.08941701881523752,3.4848484848484844,-0.3129564067296208,3.4848484848484844,-0.3204339220693533,3.4848484848484844,0.43278446611396965,3.4848484848484844,0.15713787053146627,3.4848484848484844,0.22587592408322044,3.4848484848484844,0.2820061682055188,3.4848484848484844,0.4086021011097265,3.4848484848484844,0.4043698847877142
|
||||||
|
3.5858585858585865,0.058162275193419995,3.5858585858585865,-0.40462815693660914,3.5858585858585865,-0.41324795154433747,3.5858585858585865,0.4336771999843675,3.5858585858585865,0.12019800234358827,3.5858585858585865,0.20009983185318994,3.5858585858585865,0.2647594817692496,3.5858585858585865,0.4067722514909233,3.5858585858585865,0.40203120630187705
|
||||||
|
3.686868686868687,0.027654025225499562,3.686868686868687,-0.49422269067564845,3.686868686868687,-0.505293720158625,3.686868686868687,0.43456993385476517,3.686868686868687,0.08338176166505175,3.686868686868687,0.17451220690194294,3.686868686868687,0.24694025624429472,3.686868686868687,0.40494401437700783,3.686868686868687,0.39972779600606
|
||||||
|
3.787878787878787,-0.0028542247424208616,3.787878787878787,-0.5825355853286744,3.787878787878787,-0.5971159649192432,3.787878787878787,0.4354626677251625,3.787878787878787,0.04665044899957155,3.787878787878787,0.14916273839002891,3.787878787878787,0.22899283485249716,3.787878787878787,0.40312179798093106,3.787878787878787,0.39746202764807126
|
||||||
|
3.8888888888888893,-0.03336247471034154,3.8888888888888893,-0.6703463394238872,3.8888888888888893,-0.68824406601414,3.8888888888888893,0.4363554015955604,3.8888888888888893,0.009919136334091362,3.8888888888888893,0.12414842115967273,3.8888888888888893,0.21104541346069938,3.8888888888888893,0.4013011021954902,3.8888888888888893,0.3952295870367829
|
||||||
|
3.9898989898989896,-0.06387072467826214,3.9898989898989896,-0.7575928168757736,3.9898989898989896,-0.7784133912470257,3.9898989898989896,0.437248135465958,3.9898989898989896,-0.026722390982327433,3.9898989898989896,0.09939234299162882,3.9898989898989896,0.19309799206890174,3.9898989898989896,0.399484052282032,3.9898989898989896,0.3930265651896393
|
||||||
|
4.09090909090909,-0.0943789746461824,4.09090909090909,-0.8443788481067765,4.09090909090909,-0.8681309126980375,4.09090909090909,0.43814086933635565,4.09090909090909,-0.06308596529257729,4.09090909090909,0.07491765400345742,4.09090909090909,0.1750164743635475,4.09090909090909,0.39766754707663343,4.09090909090909,0.3908577509521082
|
||||||
|
4.191919191919192,-0.12488722461410334,4.191919191919192,-0.9297917533069101,4.191919191919192,-0.9573364023412008,4.191919191919192,0.4390336032067535,4.191919191919192,-0.09929539509789244,4.191919191919192,0.05074971564267564,4.191919191919192,0.1568727764842795,4.191919191919192,0.3958543351530404,4.191919191919192,0.38872432233841003
|
||||||
|
4.292929292929292,-0.15539547458202363,4.292929292929292,-1.0140884125491687,4.292929292929292,-1.0459165238042567,4.292929292929292,0.4399263370771512,4.292929292929292,-0.1349334585206603,4.292929292929292,0.02675516616820918,4.292929292929292,0.13872907860501169,4.292929292929292,0.3940418892740997,4.292929292929292,0.38661923148208605
|
||||||
|
4.3939393939393945,-0.18590372454994458,4.3939393939393945,-1.0972974392893766,4.3939393939393945,-1.1342383379633272,4.3939393939393945,0.4408190709475487,4.3939393939393945,-0.16982980680843562,4.3939393939393945,0.002964652994963484,4.3939393939393945,0.11796054958424437,4.3939393939393945,0.3922298874756054,4.3939393939393945,0.3845302650106349
|
||||||
|
4.494949494949495,-0.216411974517865,4.494949494949495,-1.179182894055243,4.494949494949495,-1.2221355458185688,4.494949494949495,0.44032091498508585,4.494949494949495,-0.20469748939648835,4.494949494949495,-0.0206002794035424,4.494949494949495,0.09701325884395126,4.494949494949495,0.39041788567711144,4.494949494949495,0.38248614430609396
|
||||||
|
4.595959595959595,-0.24692022448578524,4.595959595959595,-1.2601894992373368,4.595959595959595,-1.3091379548259912,4.595959595959595,0.4390119198940737,4.595959595959595,-0.239564339118166,4.595959595959595,-0.044064215802437315,4.595959595959595,0.07606596810365834,4.595959595959595,0.38861853091288373,4.595959595959595,0.3804739406387159
|
||||||
|
4.696969696969697,-0.2774284744537062,4.696969696969697,-1.3408190143954206,4.696969696969697,-1.395667382198044,4.696969696969697,0.4377029248030613,4.696969696969697,-0.2744311888398445,4.696969696969697,-0.06739710896332894,4.696969696969697,0.05511867736336504,4.696969696969697,0.38683625018149875,4.696969696969697,0.37848669218529357
|
||||||
|
4.797979797979798,-0.3079367244216266,4.797979797979798,-1.4214485295534998,4.797979797979798,-1.4814148159277154,4.797979797979798,0.436393929712049,4.797979797979798,-0.3092980385615221,4.797979797979798,-0.09057526494106827,4.797979797979798,0.034171386623072064,4.797979797979798,0.3850542123238927,4.797979797979798,0.37652869146057905
|
||||||
|
4.8989898989899,-0.3384449743895474,4.8989898989899,-1.5019215376311323,4.8989898989899,-1.5662892316768398,4.8989898989899,0.4350560618496009,4.8989898989899,-0.34416306870335767,4.8989898989899,-0.11357143325279366,4.8989898989899,0.013224095882778591,4.8989898989899,0.383272237289863,4.8989898989899,0.37460430584833954
|
||||||
|
5.0,-0.3689532243574676,5.0,-1.5820215750973248,5.0,-1.6508596672714462,5.0,0.43307940950570034,5.0,-0.37879161071248096,5.0,-0.13636462992911846,5.0,-0.007723194857514326,5.0,0.38149127984729847,5.0,0.37272620912380855
|
|
@ -0,0 +1,7 @@
|
|||||||
|
x,y
|
||||||
|
-3.14159265358979 , -1.22464679914735e-16
|
||||||
|
-1.88495559215388 , -0.951056516295154
|
||||||
|
-0.628318530717959 , -0.587785252292473
|
||||||
|
0.628318530717959 , 0.587785252292473
|
||||||
|
1.88495559215388 , 0.951056516295154
|
||||||
|
3.14159265358979 , 1.22464679914735e-16
|
|
@ -0,0 +1,64 @@
|
|||||||
|
,x_i,y_i,x_d,y_d,x,y
|
||||||
|
"1",0,0,-0.251688505259414,-0.109203329280437,-0.0838961684198045,-0.0364011097601456
|
||||||
|
"2",0.1,0.0998334166468282,0.216143831477992,0.112557051753147,0.00912581751114394,0.0102181849309398
|
||||||
|
"3",0.2,0.198669330795061,0.351879533708722,0.52138915851383,0.120991434720523,0.180094983253476
|
||||||
|
"4",0.3,0.29552020666134,-0.0169121548298757,0.0870956013269369,0.0836131805695847,0.163690012207993
|
||||||
|
"5",0.4,0.389418342308651,0.278503661037003,0.464752686490904,0.182421968363305,0.294268636359638
|
||||||
|
"6",0.5,0.479425538604203,0.241783494554983,0.521480762031938,0.216291763003623,0.399960258238722
|
||||||
|
"7",0.6,0.564642473395035,0.67288177436767,0.617435509386938,0.35521581484916,0.469717955748659
|
||||||
|
"8",0.7,0.644217687237691,0.692239292735764,0.395366561077235,0.492895242512842,0.472257444593698
|
||||||
|
"9",0.8,0.717356090899523,0.779946606884677,0.830045203984444,0.621840812496715,0.609161571471379
|
||||||
|
"10",0.9,0.783326909627483,0.796987424421658,0.801263132114778,0.723333122197902,0.682652280249237
|
||||||
|
"11",1,0.841470984807897,1.06821012817873,0.869642838589798,0.860323524382936,0.752971972337735
|
||||||
|
"12",1.1,0.891207360061435,1.50128637982775,0.899079529605641,1.09148187598916,0.835465707990221
|
||||||
|
"13",1.2,0.932039085967226,1.1194263347154,0.906626360727432,1.13393429991233,0.875953352580199
|
||||||
|
"14",1.3,0.963558185417193,1.24675170552299,1.07848030956084,1.2135821540696,0.950969562327306
|
||||||
|
"15",1.4,0.98544972998846,1.32784804980202,0.76685418220594,1.2818141129714,0.899892140468108
|
||||||
|
"16",1.5,0.997494986604054,1.23565831982523,1.07310713979952,1.2548338349408,0.961170357331681
|
||||||
|
"17",1.6,0.999573603041505,1.90289281875567,0.88003153305018,1.47254506382487,0.94006950203764
|
||||||
|
"18",1.7,0.991664810452469,1.68871194985252,1.01829329437246,1.56940444551462,0.955793455192302
|
||||||
|
"19",1.8,0.973847630878195,1.72179983981017,1.02268013575533,1.64902528694529,0.988666907865147
|
||||||
|
"20",1.9,0.946300087687414,2.0758716236832,0.805032560816536,1.83908127693465,0.928000158917177
|
||||||
|
"21",2,0.909297426825682,2.11118945422405,1.0134691646089,1.94365432453739,0.957334347939419
|
||||||
|
"22",2.1,0.863209366648874,2.00475777514698,0.86568986134637,1.9826265174693,0.924298444442167
|
||||||
|
"23",2.2,0.80849640381959,2.40773948766051,0.667018023975934,2.15807575978944,0.826761739840873
|
||||||
|
"24",2.3,0.74570521217672,2.14892522112975,0.872704236332415,2.17485332420928,0.839957045849706
|
||||||
|
"25",2.4,0.675463180551151,2.41696701330131,0.253955021611832,2.26412064248401,0.631186439537074
|
||||||
|
"26",2.5,0.598472144103957,2.4087686184711,0.49450592290142,2.33847747374241,0.557319074033222
|
||||||
|
"27",2.6,0.515501371821464,2.55312145187913,0.343944677655963,2.4151672191424,0.467867318187242
|
||||||
|
"28",2.7,0.42737988023383,2.6585492172135,0.528990826178838,2.51649125567521,0.447178678139147
|
||||||
|
"29",2.8,0.334988150155905,2.86281283456189,0.311400289332401,2.65184232661008,0.399952143417531
|
||||||
|
"30",2.9,0.239249329213982,2.74379162744449,0.501282616227342,2.70796893413474,0.432791852065713
|
||||||
|
"31",3,0.141120008059867,2.95951338295806,0.241385538727577,2.81576254355573,0.373424929745113
|
||||||
|
"32",3.1,0.0415806624332905,2.87268165585702,0.0764217470113609,2.85626015646841,0.264426413128825
|
||||||
|
"33",3.2,-0.0583741434275801,3.29898326143096,-0.272500742891131,3.0101734240017,0.0756660807058224
|
||||||
|
"34",3.3,-0.157745694143249,3.64473302259565,-0.24394459655987,3.24463496592626,-0.0688606479078372
|
||||||
|
"35",3.4,-0.255541102026832,3.46698556586598,-0.184272732807665,3.35339770834784,-0.15210430721581
|
||||||
|
"36",3.5,-0.35078322768962,3.67208160089566,-0.119933071489115,3.51318482264886,-0.176430496141549
|
||||||
|
"37",3.6,-0.442520443294852,3.73738883546162,-0.486197268315415,3.62961845872181,-0.283186040443485
|
||||||
|
"38",3.7,-0.529836140908493,3.77209072631297,-0.70275845349803,3.68619468325631,-0.422698101171958
|
||||||
|
"39",3.8,-0.611857890942719,3.66424718733509,-0.482410535792735,3.69727905622484,-0.462935060857071
|
||||||
|
"40",3.9,-0.687766159183974,3.72257849834575,-0.58477261395861,3.71784166083333,-0.543108060927685
|
||||||
|
"41",4,-0.756802495307928,3.85906293918747,-0.703015362823377,3.76539960460785,-0.618449987254768
|
||||||
|
"42",4.1,-0.818277111064411,4.0131961543859,-0.900410257326814,3.84632588679948,-0.708384794580195
|
||||||
|
"43",4.2,-0.871575772413588,4.0263131749378,-0.906044808231391,3.92085812717095,-0.789303202089581
|
||||||
|
"44",4.3,-0.916165936749455,4.77220075671212,-0.530827398816399,4.22925719163087,-0.729943577630504
|
||||||
|
"45",4.4,-0.951602073889516,4.4795636311648,-1.26672674728111,4.35331987391088,-0.921377204806384
|
||||||
|
"46",4.5,-0.977530117665097,4.5088210845027,-0.886168448505782,4.44898342417679,-0.914264630323723
|
||||||
|
"47",4.6,-0.993691003633465,4.70645816063034,-1.1082213336257,4.58861983576766,-0.97806804633887
|
||||||
|
"48",4.7,-0.999923257564101,4.48408312008838,-0.98352521226689,4.55827710678399,-1.01979325501755
|
||||||
|
"49",4.8,-0.996164608835841,4.97817348334347,-1.03043977928678,4.69715193557134,-1.02203657500247
|
||||||
|
"50",4.9,-0.982452612624332,5.09171179984929,-0.948912592308037,4.8484480091335,-0.999631162740658
|
||||||
|
"51",5,-0.958924274663138,4.87710566000798,-0.825224506141761,4.87693462801326,-0.937722874707385
|
||||||
|
"52",5.1,-0.925814682327732,5.04139294635392,-0.718936957124138,4.97198282698482,-0.856650521199568
|
||||||
|
"53",5.2,-0.883454655720153,4.94893136398377,-0.992753696742329,4.98294046406006,-0.885371127105841
|
||||||
|
"54",5.3,-0.832267442223901,5.38128555915899,-0.717434652733088,5.10670981664685,-0.816103747160468
|
||||||
|
"55",5.4,-0.772764487555987,5.46192736637355,-0.724060934669406,5.2398375587704,-0.780347098915984
|
||||||
|
"56",5.5,-0.705540325570392,5.30834840605735,-0.721772537926303,5.28807996342596,-0.766498807502665
|
||||||
|
"57",5.6,-0.631266637872321,5.53199687756185,-0.583133415115471,5.40779902870202,-0.688843253413245
|
||||||
|
"58",5.7,-0.550685542597638,5.9238064899769,-0.541063721566544,5.59865656961444,-0.627040990301198
|
||||||
|
"59",5.8,-0.464602179413757,5.8067999294844,-0.43156566524513,5.68077207716296,-0.552246304884294
|
||||||
|
"60",5.9,-0.373876664830236,5.93089453525347,-0.604056792592816,5.80084302534748,-0.550733954237757
|
||||||
|
"61",6,-0.279415498198926,6.02965160059402,-0.234452930170458,5.91786841211583,-0.434812265604247
|
||||||
|
"62",6.1,-0.182162504272095,5.88697419016579,-0.135764844759742,5.91990685000071,-0.323660336266941
|
||||||
|
"63",6.2,-0.0830894028174964,5.91445270773648,-0.0073552500992853,5.92798052258888,-0.205537962618181
|
|
@ -0,0 +1,138 @@
|
|||||||
|
\pgfplotsset{
|
||||||
|
compat=1.11,
|
||||||
|
legend image code/.code={
|
||||||
|
\draw[mark repeat=2,mark phase=2]
|
||||||
|
plot coordinates {
|
||||||
|
(0cm,0cm)
|
||||||
|
(0.075cm,0cm) %% default is (0.3cm,0cm)
|
||||||
|
(0.15cm,0cm) %% default is (0.6cm,0cm)
|
||||||
|
};%
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\begin{figure}
|
||||||
|
\begin{subfigure}[b]{0.5\textwidth}
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[
|
||||||
|
ytick = {-1, 0, 1, 2},
|
||||||
|
yticklabels = {$-1$, $\phantom{-0.}0$, $1$, $2$},]
|
||||||
|
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||||
|
forget plot] {Plots/Data/sin_6.csv};
|
||||||
|
\addplot [black, line width=2pt] table [x=x, y=y, col
|
||||||
|
sep=comma, mark=none] {Plots/Data/matlab_0.csv};
|
||||||
|
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.0,
|
||||||
|
y=y_n_5000_tl_0.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
|
||||||
|
\addlegendentry{$f_1^{*, 0.1}$};
|
||||||
|
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{$\lambda = 0.1$}
|
||||||
|
\end{subfigure}\\
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}
|
||||||
|
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||||
|
forget plot] {Plots/Data/sin_6.csv};
|
||||||
|
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_1.csv};
|
||||||
|
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0,
|
||||||
|
y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
|
||||||
|
\addlegendentry{$f_1^{*, 1.0}$};
|
||||||
|
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{$\lambda = 1.0$}
|
||||||
|
\end{subfigure}\\
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}
|
||||||
|
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||||
|
forget plot] {Plots/Data/sin_6.csv};
|
||||||
|
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_3.csv};
|
||||||
|
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0,
|
||||||
|
y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Plots/Data/scala_out_sin.csv};
|
||||||
|
\addlegendentry{$f_1^{*, 3.0}$};
|
||||||
|
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{$\lambda = 3.0$}
|
||||||
|
\end{subfigure}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}[b]{0.5\textwidth}
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{adjustbox}{width=\textwidth, height=0.245\textheight}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[
|
||||||
|
ytick = {-2,-1, 0, 1, 2},
|
||||||
|
yticklabels = {$-2$,$-1$, $\phantom{-0.}0$, $1$, $2$},]
|
||||||
|
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||||
|
forget plot] {Plots/Data/data_sin_d_t.csv};
|
||||||
|
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_01.csv};
|
||||||
|
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_0.1,
|
||||||
|
y=y_n_5000_tl_0.1, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
|
||||||
|
\addlegendentry{$f_1^{*, 0.1}$};
|
||||||
|
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{$\lambda = 0.1$}
|
||||||
|
\end{subfigure}\\
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}
|
||||||
|
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||||
|
forget plot] {Plots/Data/data_sin_d_t.csv};
|
||||||
|
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_1.csv};
|
||||||
|
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_1.0,
|
||||||
|
y=y_n_5000_tl_1.0, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
|
||||||
|
\addlegendentry{$f_1^{*, 1.0}$};
|
||||||
|
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda},*}$};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{$\lambda = 1.0$}
|
||||||
|
\end{subfigure}\\
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}
|
||||||
|
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||||
|
forget plot] {Plots/Data/data_sin_d_t.csv};
|
||||||
|
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Plots/Data/matlab_sin_d_3.csv};
|
||||||
|
\addplot [red, line width = 1.5pt, dashed] table [x=x_n_5000_tl_3.0,
|
||||||
|
y=y_n_5000_tl_3.0, col sep=comma, mark=none] {Plots/Data/scala_out_d_1_t.csv};
|
||||||
|
\addlegendentry{$f_1^{*, 3.0}$};
|
||||||
|
\addlegendentry{$\mathcal{RN}_w^{\tilde{\lambda}}$};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{$\lambda = 3.0$}
|
||||||
|
\end{subfigure}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{% In these Figures the behaviour stated in ... is visualized
|
||||||
|
% in two exaples. For $(a), (b), (c)$ six values of sinus equidistantly
|
||||||
|
% spaced on $[-\pi, \pi]$ have been used as training data. For
|
||||||
|
% $(d),(e),(f)$ 15 equidistand values have been used, where
|
||||||
|
% $y_i^{train} = \sin(x_i^{train}) + \varepsilon_i$ and
|
||||||
|
% $\varepsilon_i \sim \mathcal{N}(0, 0.3)$. For
|
||||||
|
% $\mathcal{RN}_w^{\tilde{\lambda, *}}$ the random weights are
|
||||||
|
% distributed as follows
|
||||||
|
% \begin{align*}
|
||||||
|
% \xi_k &\sim
|
||||||
|
% \end{align*}
|
||||||
|
Ridge Penalized Neural Network compared to Regression Spline,
|
||||||
|
with them being trained on $\text{data}_A$ in a), b), c) and on
|
||||||
|
$\text{data}_B$ in d), e), f).
|
||||||
|
The Parameters of each are given above.
|
||||||
|
}
|
||||||
|
\end{figure}
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master:
|
||||||
|
%%% End:
|
@ -0,0 +1,91 @@
|
|||||||
|
\pgfplotsset{
|
||||||
|
compat=1.11,
|
||||||
|
legend image code/.code={
|
||||||
|
\draw[mark repeat=2,mark phase=2]
|
||||||
|
plot coordinates {
|
||||||
|
(0cm,0cm)
|
||||||
|
(0.0cm,0cm) %% default is (0.3cm,0cm)
|
||||||
|
(0.0cm,0cm) %% default is (0.6cm,0cm)
|
||||||
|
};%
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\begin{figure}
|
||||||
|
\begin{subfigure}[h!]{\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||||
|
height = 0.65\textwidth,
|
||||||
|
xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||||
|
xticklabels = {$2$, $4$, $6$, $8$,
|
||||||
|
$10$,$12$,$14$,$16$,$18$,$20$},
|
||||||
|
xlabel = {training epoch}, ylabel = {classification accuracy}]
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_01.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_05.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma] {Plots/Data/GD_1.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma]
|
||||||
|
{Plots/Data/SGD_01_b32.log};
|
||||||
|
|
||||||
|
\addlegendentry{GD$_{0.01}$}
|
||||||
|
\addlegendentry{GD$_{0.05}$}
|
||||||
|
\addlegendentry{GD$_{0.1}$}
|
||||||
|
\addlegendentry{SGD$_{0.01}$}
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
%\caption{Classification accuracy}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||||
|
height = 0.65\textwidth,
|
||||||
|
ytick = {0, 1, 2, 3, 4},
|
||||||
|
yticklabels = {$0$, $1$, $\phantom{0.}2$, $3$, $4$},
|
||||||
|
xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||||
|
xticklabels = {$2$, $4$, $6$, $8$,
|
||||||
|
$10$,$12$,$14$,$16$,$18$,$20$},
|
||||||
|
xlabel = {training epoch}, ylabel = {error measure}]
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_01.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_05.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/GD_1.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_loss, col sep=comma] {Plots/Data/SGD_01_b32.log};
|
||||||
|
|
||||||
|
\addlegendentry{GD$_{0.01}$}
|
||||||
|
\addlegendentry{GD$_{0.05}$}
|
||||||
|
\addlegendentry{GD$_{0.1}$}
|
||||||
|
\addlegendentry{SGD$_{0.01}$}
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\caption{Performance metrics during training}
|
||||||
|
\end{subfigure}
|
||||||
|
% \\~\\
|
||||||
|
\caption{The neural network given in ?? trained with different
|
||||||
|
algorithms on the MNIST handwritten digits data set. For gradient
|
||||||
|
descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{\cdot}$). For
|
||||||
|
stochastic gradient descend a batch size of 32 and learning rate
|
||||||
|
of 0.01 is used (SDG$_{0.01}$).}
|
||||||
|
\label{fig:sgd_vs_gd}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{table}
|
||||||
|
\begin{tabu} to \textwidth {@{} *4{X[c]}c*4{X[c]} @{}}
|
||||||
|
\multicolumn{4}{c}{Classification Accuracy}
|
||||||
|
&~&\multicolumn{4}{c}{Error Measure}
|
||||||
|
\\\cline{1-4}\cline{6-9}
|
||||||
|
GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$
|
||||||
|
\\\cline{1-4}\cline{6-9}
|
||||||
|
1&1&1&1&&1&1&1&1
|
||||||
|
\end{tabu}
|
||||||
|
\caption{Performace metrics of the networks trained in
|
||||||
|
Figure~\ref{ref:sdg_vs_gd} after 20 training epochs.}
|
||||||
|
\end{table}
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "../main"
|
||||||
|
%%% End:
|
@ -0,0 +1,71 @@
|
|||||||
|
\message{ !name(pfg_test.tex)}\documentclass{article}
|
||||||
|
\usepackage{pgfplots}
|
||||||
|
\usepackage{filecontents}
|
||||||
|
\usepackage{subcaption}
|
||||||
|
\usepackage{adjustbox}
|
||||||
|
\usepackage{xcolor}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usetikzlibrary{calc, 3d}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\message{ !name(pfg_test.tex) !offset(6) }
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{True position (\textcolor{red}{red}), distorted data (black)}
|
||||||
|
\end{figure}
|
||||||
|
\begin{center}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Data/klammern.jpg}
|
||||||
|
\caption{Original Picure}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Data/image_conv4.png}
|
||||||
|
\caption{test}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Data/image_conv5.png}
|
||||||
|
\caption{test}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Data/image_conv6.png}
|
||||||
|
\caption{test}
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\begin{adjustbox}{width=\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
|
||||||
|
\node[canvas is xy plane at z=0, transform shape] at (0,0)
|
||||||
|
{\includegraphics[width=5cm]{Data/klammern_r.jpg}};
|
||||||
|
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
|
||||||
|
{\includegraphics[width=5cm]{Data/klammern_g.jpg}};
|
||||||
|
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
|
||||||
|
{\includegraphics[width=5cm]{Data/klammern_b.jpg}};
|
||||||
|
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
|
||||||
|
{\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
|
||||||
|
\end{scope}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{On the right the red, green and blue chanels of the picture
|
||||||
|
are displayed. In order to better visualize the color channes the
|
||||||
|
black and white picture of each channel has been colored in the
|
||||||
|
respective color. Combining the layers results in the image on the
|
||||||
|
left}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\message{ !name(pfg_test.tex) !offset(3) }
|
||||||
|
|
||||||
|
\end{document}
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: t
|
||||||
|
%%% End:
|
@ -0,0 +1,146 @@
|
|||||||
|
\documentclass{article}
|
||||||
|
\usepackage{pgfplots}
|
||||||
|
\usepackage{filecontents}
|
||||||
|
\usepackage{subcaption}
|
||||||
|
\usepackage{adjustbox}
|
||||||
|
\usepackage{xcolor}
|
||||||
|
\usepackage{tabu}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usetikzlibrary{calc, 3d}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\pgfplotsset{
|
||||||
|
compat=1.11,
|
||||||
|
legend image code/.code={
|
||||||
|
\draw[mark repeat=2,mark phase=2]
|
||||||
|
plot coordinates {
|
||||||
|
(0cm,0cm)
|
||||||
|
(0.0cm,0cm) %% default is (0.3cm,0cm)
|
||||||
|
(0.0cm,0cm) %% default is (0.6cm,0cm)
|
||||||
|
};%
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\begin{figure}
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||||
|
height = 0.7\textwidth,
|
||||||
|
xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||||
|
xticklabels = {$2$, $4$, $6$, $8$,
|
||||||
|
$10$,$12$,$14$,$16$,$18$,$20$},
|
||||||
|
xlabel = {epoch}, ylabel = {Classification Accuracy}]
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma] {Data/GD_01.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma] {Data/GD_05.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma] {Data/GD_1.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_accuracy, col sep=comma]
|
||||||
|
{Data/SGD_01_b32.log};
|
||||||
|
|
||||||
|
\addlegendentry{GD$_{0.01}$}
|
||||||
|
\addlegendentry{GD$_{0.05}$}
|
||||||
|
\addlegendentry{GD$_{0.1}$}
|
||||||
|
\addlegendentry{SGD$_{0.01}$}
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
%\caption{Classification accuracy}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}[b]{\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||||
|
height = 0.7\textwidth,
|
||||||
|
ytick = {0, 1, 2, 3, 4},
|
||||||
|
yticklabels = {$0$, $1$, $\phantom{0.}2$, $3$, $4$},
|
||||||
|
xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||||
|
xticklabels = {$2$, $4$, $6$, $8$,
|
||||||
|
$10$,$12$,$14$,$16$,$18$,$20$},
|
||||||
|
xlabel = {epoch}, ylabel = {Error Measure}]
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_loss, col sep=comma] {Data/GD_01.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_loss, col sep=comma] {Data/GD_05.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_loss, col sep=comma] {Data/GD_1.log};
|
||||||
|
\addplot table
|
||||||
|
[x=epoch, y=val_loss, col sep=comma] {Data/SGD_01_b32.log};
|
||||||
|
|
||||||
|
\addlegendentry{GD$_{0.01}$}
|
||||||
|
\addlegendentry{GD$_{0.05}$}
|
||||||
|
\addlegendentry{GD$_{0.1}$}
|
||||||
|
\addlegendentry{SGD$_{0.01}$}
|
||||||
|
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\caption{Performance metrics during training}
|
||||||
|
\end{subfigure}
|
||||||
|
\\~\\
|
||||||
|
\begin{subfigure}[b]{1.0\linewidth}
|
||||||
|
\begin{tabu} to \textwidth {@{} *4{X[c]}c*4{X[c]} @{}}
|
||||||
|
\multicolumn{4}{c}{Classification Accuracy}
|
||||||
|
&~&\multicolumn{4}{c}{Error Measure}
|
||||||
|
\\\cline{1-4}\cline{6-9}
|
||||||
|
GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$
|
||||||
|
\\\cline{1-4}\cline{6-9}
|
||||||
|
1&1&1&1&&1&1&1&1
|
||||||
|
\end{tabu}
|
||||||
|
\caption{Performace metrics after 20 epochs}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{The neural network given in ?? trained with different
|
||||||
|
algorithms on the MNIST handwritten digits data set. For gradient
|
||||||
|
descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{\text{rate}}$). For
|
||||||
|
stochastic gradient descend a batch size of 32 and learning rate
|
||||||
|
of 0.01 is used (SDG$_{0.01}$)}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Data/klammern.jpg}
|
||||||
|
\caption{Original Picure}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Data/image_conv4.png}
|
||||||
|
\caption{test}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Data/image_conv5.png}
|
||||||
|
\caption{test}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.49\textwidth}
|
||||||
|
\includegraphics[width=\textwidth]{Data/image_conv6.png}
|
||||||
|
\caption{test}
|
||||||
|
\end{subfigure}
|
||||||
|
\end{figure}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\begin{adjustbox}{width=\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
|
||||||
|
\node[canvas is xy plane at z=0, transform shape] at (0,0)
|
||||||
|
{\includegraphics[width=5cm]{Data/klammern_r.jpg}};
|
||||||
|
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
|
||||||
|
{\includegraphics[width=5cm]{Data/klammern_g.jpg}};
|
||||||
|
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
|
||||||
|
{\includegraphics[width=5cm]{Data/klammern_b.jpg}};
|
||||||
|
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
|
||||||
|
{\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
|
||||||
|
\end{scope}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{On the right the red, green and blue chanels of the picture
|
||||||
|
are displayed. In order to better visualize the color channes the
|
||||||
|
black and white picture of each channel has been colored in the
|
||||||
|
respective color. Combining the layers results in the image on the
|
||||||
|
left}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: t
|
||||||
|
%%% End:
|
@ -0,0 +1,64 @@
|
|||||||
|
"","x_i","y_i","x_d","y_d","x","y"
|
||||||
|
"1",0,0,0.0815633019993375,0.095134925029757,0.0815633019993375,0.095134925029757
|
||||||
|
"2",0.1,0.0998334166468282,-0.137539012603596,0.503920419784276,-0.137539012603596,0.503920419784276
|
||||||
|
"3",0.2,0.198669330795061,0.219868163218743,0.32022289024623,0.219868163218743,0.32022289024623
|
||||||
|
"4",0.3,0.29552020666134,0.378332723534869,0.474906286765401,0.378332723534869,0.474906286765401
|
||||||
|
"5",0.4,0.389418342308651,0.286034335293811,0.422891394375764,0.215056588291437,0.412478430748051
|
||||||
|
"6",0.5,0.479425538604203,-0.109871707385461,0.229661026779107,0.122574532557623,0.353221043330047
|
||||||
|
"7",0.6,0.564642473395035,0.91036951450573,0.56079130435097,0.451160317716352,0.452893574072324
|
||||||
|
"8",0.7,0.644217687237691,0.899001194675409,0.714355793051917,0.491731451724399,0.514477919331008
|
||||||
|
"9",0.8,0.717356090899523,0.733791390723896,0.694085383523086,0.488943974889845,0.530054084580656
|
||||||
|
"10",0.9,0.783326909627483,0.893642943873427,0.739792642916928,0.599785378272423,0.575149967162231
|
||||||
|
"11",1,0.841470984807897,0.895913227983752,0.658288213778898,0.650886140047209,0.577618711891772
|
||||||
|
"12",1.1,0.891207360061435,1.01252219752013,0.808981437684505,0.726263244907525,0.643161394030218
|
||||||
|
"13",1.2,0.932039085967226,1.30930912337975,1.04111824066026,0.872590842152803,0.745714536528734
|
||||||
|
"14",1.3,0.963558185417193,1.0448292335495,0.741250429230841,0.850147062957694,0.687171673021914
|
||||||
|
"15",1.4,0.98544972998846,1.57369086195552,1.17277927321094,1.06520673597544,0.847936751231165
|
||||||
|
"16",1.5,0.997494986604054,1.61427415976939,1.3908361301708,1.15616745244604,0.969474391592075
|
||||||
|
"17",1.6,0.999573603041505,1.34409615749122,0.976992098566069,1.13543598207093,0.889434319996364
|
||||||
|
"18",1.7,0.991664810452469,1.79278028030419,1.02939764179765,1.33272772191879,0.935067381106346
|
||||||
|
"19",1.8,0.973847630878195,1.50721559744085,0.903076361857071,1.30862923824728,0.91665506605512
|
||||||
|
"20",1.9,0.946300087687414,1.835014641556,0.830477479204284,1.45242210409837,0.889715842048808
|
||||||
|
"21",2,0.909297426825682,1.98589997236352,0.887302138185342,1.56569111721857,0.901843632635883
|
||||||
|
"22",2.1,0.863209366648874,2.31436634488224,0.890096618924313,1.73810390755555,0.899632162941341
|
||||||
|
"23",2.2,0.80849640381959,2.14663445612581,0.697012453130415,1.77071083163663,0.831732978616874
|
||||||
|
"24",2.3,0.74570521217672,2.17162372560288,0.614243640399509,1.84774268936257,0.787400621584077
|
||||||
|
"25",2.4,0.675463180551151,2.2488591417345,0.447664288915269,1.93366609303299,0.707449056213168
|
||||||
|
"26",2.5,0.598472144103957,2.56271588872389,0.553368843490625,2.08922735802261,0.702402440783529
|
||||||
|
"27",2.6,0.515501371821464,2.60986205081511,0.503762006272682,2.17548673152621,0.657831176057599
|
||||||
|
"28",2.7,0.42737988023383,2.47840649766003,0.215060732402894,2.20251747034638,0.533903400086802
|
||||||
|
"29",2.8,0.334988150155905,2.99861119922542,0.28503285049582,2.43015164462239,0.512492561673074
|
||||||
|
"30",2.9,0.239249329213982,3.09513467852082,0.245355736487949,2.54679545455398,0.461447717313721
|
||||||
|
"31",3,0.141120008059867,2.86247369846558,0.0960140633436418,2.55274767368554,0.371740588261606
|
||||||
|
"32",3.1,0.0415806624332905,2.79458017090243,-0.187923650913249,2.59422388058738,0.234694070506915
|
||||||
|
"33",3.2,-0.0583741434275801,3.6498183243501,-0.186738431858275,2.9216851043241,0.173308072295566
|
||||||
|
"34",3.3,-0.157745694143249,3.19424275971809,-0.221908035274934,2.86681135711315,0.101325637659584
|
||||||
|
"35",3.4,-0.255541102026832,3.53166785156005,-0.295496842654793,3.03827050777863,0.0191967841533109
|
||||||
|
"36",3.5,-0.35078322768962,3.53250700922714,-0.364585027403596,3.12709094619305,-0.0558446366563474
|
||||||
|
"37",3.6,-0.442520443294852,3.52114271616751,-0.363845774016092,3.18702722489489,-0.10585071711408
|
||||||
|
"38",3.7,-0.529836140908493,3.72033580551176,-0.386489608468821,3.31200591645168,-0.158195730190865
|
||||||
|
"39",3.8,-0.611857890942719,4.0803717995796,-0.64779795182054,3.49862620703954,-0.284999326812438
|
||||||
|
"40",3.9,-0.687766159183974,3.88351729419721,-0.604406622894426,3.51908925124143,-0.324791870057922
|
||||||
|
"41",4,-0.756802495307928,3.9941257036697,-0.8061112437715,3.62222513609486,-0.438560071688316
|
||||||
|
"42",4.1,-0.818277111064411,3.81674488816054,-0.548538951165239,3.63032709398802,-0.41285438330036
|
||||||
|
"43",4.2,-0.871575772413588,4.47703348424544,-0.998992385231986,3.88581748102334,-0.592305016590357
|
||||||
|
"44",4.3,-0.916165936749455,4.46179199544059,-0.969288921090897,3.96444243944485,-0.643076376622242
|
||||||
|
"45",4.4,-0.951602073889516,4.15184730382548,-1.11987501275525,3.93838897981045,-0.743258835859858
|
||||||
|
"46",4.5,-0.977530117665097,4.64522916494355,-0.772872365801468,4.15504805602606,-0.691414328153313
|
||||||
|
"47",4.6,-0.993691003633465,4.68087925098283,-0.650422764094352,4.24176417425486,-0.675107584174976
|
||||||
|
"48",4.7,-0.999923257564101,5.00475403211142,-0.922605880059771,4.41432228408005,-0.770625346502085
|
||||||
|
"49",4.8,-0.996164608835841,4.71428836112322,-1.14280193223997,4.41279031790692,-0.861010494025717
|
||||||
|
"50",4.9,-0.982452612624332,5.02115518218406,-0.9819618243158,4.57449352886454,-0.843786948015608
|
||||||
|
"51",5,-0.958924274663138,4.92057344952522,-0.872931430146499,4.61418118503201,-0.836318916150308
|
||||||
|
"52",5.1,-0.925814682327732,5.37277893732831,-0.91444926304078,4.81555148166217,-0.864686555983682
|
||||||
|
"53",5.2,-0.883454655720153,5.19524942845082,-1.41169784739596,4.84152902094499,-1.03768305406186
|
||||||
|
"54",5.3,-0.832267442223901,5.4432222181271,-0.726481337519931,4.98565483155961,-0.856094353978009
|
||||||
|
"55",5.4,-0.772764487555987,4.98285013865449,-0.692803346852181,4.90897053115903,-0.838425020062396
|
||||||
|
"56",5.5,-0.705540325570392,5.33298025214155,-0.343702005257262,5.0497327607228,-0.711573964373115
|
||||||
|
"57",5.6,-0.631266637872321,5.49935694796791,-0.828968673188174,5.15036520204232,-0.816467931201244
|
||||||
|
"58",5.7,-0.550685542597638,5.69204187550805,-0.481580461165225,5.26232964126231,-0.689500817105975
|
||||||
|
"59",5.8,-0.464602179413757,5.84391772412888,-0.20453899468884,5.38069867877875,-0.564365367144995
|
||||||
|
"60",5.9,-0.373876664830236,5.48166674139637,-0.597796931577294,5.3357436834558,-0.649913835818738
|
||||||
|
"61",6,-0.279415498198926,5.77474590863769,-0.280234463056808,5.46956415981143,-0.524503219480344
|
||||||
|
"62",6.1,-0.182162504272095,6.36764321572312,-0.0996286988755344,5.7169871104113,-0.422854073705143
|
||||||
|
"63",6.2,-0.0830894028174964,6.46175133910451,-0.025702847911482,5.83540227044819,-0.355719019286555
|
|
@ -0,0 +1,45 @@
|
|||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\begin{subfigure}[b]{0.49\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[tick style = {draw = none}, xticklabel = \empty,
|
||||||
|
yticklabel=\empty]
|
||||||
|
\addplot [mark options={scale = 0.7}, mark = o] table
|
||||||
|
[x=x_d,y=y_d, col sep = comma] {Plots/Data/sin_conv.csv};
|
||||||
|
\addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Plots/Data/sin_conv.csv};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{True position (\textcolor{red}{red}), distorted position data (black)}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}[b]{0.49\textwidth}
|
||||||
|
\centering
|
||||||
|
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}[tick style = {draw = none}, xticklabel = \empty,
|
||||||
|
yticklabel=\empty]
|
||||||
|
\addplot [mark options={scale = 0.7}, mark = o] table [x=x,y=y, col
|
||||||
|
sep = comma] {Plots/Data/sin_conv.csv};
|
||||||
|
\addplot [red, mark=x] table [x=x_i, y=y_i, col sep=comma, color ='black'] {Plots/Data/sin_conv.csv};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{True position (\textcolor{red}{red}), filtered position data (black)}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{Example for noise reduction using convolution with simulated
|
||||||
|
positional data. As filter
|
||||||
|
$g(i)=\left(\nicefrac{1}{3},\nicefrac{1}{4},\nicefrac{1}{5},\nicefrac{1}{6},\nicefrac{1}{20}\right)_{(i-1)}$
|
||||||
|
is chosen and applied to the $x$ and $y$ coordinate
|
||||||
|
data seperately. The convolution of both signals with $g$
|
||||||
|
improves the MSE of the positions from 0.196 to 0.170 and
|
||||||
|
visibly smoothes the data.
|
||||||
|
}
|
||||||
|
\label{fig:sin_conv}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "../main"
|
||||||
|
%%% End:
|
@ -0,0 +1,5 @@
|
|||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "../main"
|
||||||
|
%%% End:
|
@ -0,0 +1,33 @@
|
|||||||
|
|
||||||
|
\newpage
|
||||||
|
\begin{appendices}
|
||||||
|
\section{Proofs for sone Lemmata in ...}
|
||||||
|
In the following there will be proofs for some important Lemmata in
|
||||||
|
Section~\ref{sec:theo38}. Further proofs not discussed here can be
|
||||||
|
found in \textcite{heiss2019}
|
||||||
|
\begin{Theorem}[Proof of Lemma~\ref{theo38}]
|
||||||
|
\end{Theorem}
|
||||||
|
|
||||||
|
\begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}_k}{v_k}\approx\mathcal{O}(\frac{1}{n})$]
|
||||||
|
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
|
||||||
|
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
|
||||||
|
\left\{1,\dots,N\right\}$, we have
|
||||||
|
\[
|
||||||
|
\max_{k \in \left\{1,\dots,n\right\}} \frac{w^{*,
|
||||||
|
\tilde{\lambda}}_k}{v_k} = \po_{n\to\infty}
|
||||||
|
\]
|
||||||
|
|
||||||
|
|
||||||
|
\end{Lemma}
|
||||||
|
\end{appendices}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "main"
|
||||||
|
%%% End:
|
||||||
|
|
@ -0,0 +1,329 @@
|
|||||||
|
\section{Application of NN to higher complexity Problems}
|
||||||
|
|
||||||
|
As neural networks are applied to problems of higher complexity often
|
||||||
|
resulting in higher dimensionality of the input the amount of
|
||||||
|
parameters in the network rises drastically. For example a network
|
||||||
|
with ...
|
||||||
|
A way to combat the
|
||||||
|
|
||||||
|
\subsection{Convolution}
|
||||||
|
|
||||||
|
Convolution is a mathematical operation, where the product of two
|
||||||
|
functions is integrated after one has been reversed and shifted.
|
||||||
|
|
||||||
|
\[
|
||||||
|
(f * g) (t) \coloneqq \int_{-\infty}^{\infty} f(t-s) g(s) ds.
|
||||||
|
\]
|
||||||
|
|
||||||
|
This operation can be described as a filter-function $g$ being applied
|
||||||
|
to $f$,
|
||||||
|
as values $f(t)$ are being replaced by an average of values of $f$
|
||||||
|
weighted by $g$ in position $t$.
|
||||||
|
The convolution operation allows plentiful manipulation of data, with
|
||||||
|
a simple example being smoothing of real-time data. Consider a sensor
|
||||||
|
measuring the location of an object (e.g. via GPS). We expect the
|
||||||
|
output of the sensor to be noisy as a result of a number of factors
|
||||||
|
that will impact the accuracy. In order to get a better estimate of
|
||||||
|
the actual location we want to smooth
|
||||||
|
the data to reduce the noise. Using convolution for this task, we
|
||||||
|
can control the significance we want to give each data-point. We
|
||||||
|
might want to give a larger weight to more recent measurements than
|
||||||
|
older ones. If we assume these measurements are taken on a discrete
|
||||||
|
timescale, we need to introduce discrete convolution first. Let $f$,
|
||||||
|
$g: \mathbb{Z} \to \mathbb{R}$ then
|
||||||
|
|
||||||
|
\[
|
||||||
|
(f * g)(t) = \sum_{i \in \mathbb{Z}} f(t-i) g(i).
|
||||||
|
\]
|
||||||
|
Applying this on the data with the filter $g$ chosen accordingly we
|
||||||
|
are
|
||||||
|
able to improve the accuracy, which can be seen in
|
||||||
|
Figure~\ref{fig:sin_conv}.
|
||||||
|
\input{Plots/sin_conv.tex}
|
||||||
|
This form of discrete convolution can also be applied to functions
|
||||||
|
with inputs of higher dimensionality. Let $f$, $g: \mathbb{Z}^d \to
|
||||||
|
\mathbb{R}$ then
|
||||||
|
|
||||||
|
\[
|
||||||
|
(f * g)(x_1, \dots, x_d) = \sum_{i \in \mathbb{Z}^d} f(x_1 - i_1,
|
||||||
|
\dots, x_d - i_d) g(i_1, \dots, i_d)
|
||||||
|
\]
|
||||||
|
This will prove to be a useful framework for image manipulation but
|
||||||
|
in order to apply convolution to images we need to discuss
|
||||||
|
representation of image data first. Most often images are represented
|
||||||
|
by each pixel being a mixture of base colors these base colors define
|
||||||
|
the color-space in which the image is encoded. Often used are
|
||||||
|
color-spaces RGB (red,
|
||||||
|
blue, green) or CMYK (cyan, magenta, yellow, black). An example of an
|
||||||
|
image split in its red, green and blue channel is given in
|
||||||
|
Figure~\ref{fig:rgb} Using this
|
||||||
|
encoding of the image we can define a corresponding discrete function
|
||||||
|
describing the image, by mapping the coordinates $(x,y)$ of an pixel
|
||||||
|
and the
|
||||||
|
channel (color) $c$ to the respective value $v$
|
||||||
|
|
||||||
|
\begin{align}
|
||||||
|
\begin{split}
|
||||||
|
I: \mathbb{N}^3 & \to \mathbb{R}, \\
|
||||||
|
(x,y,c) & \mapsto v.
|
||||||
|
\end{split}
|
||||||
|
\label{def:I}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\begin{adjustbox}{width=\textwidth}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
|
||||||
|
\node[canvas is xy plane at z=0, transform shape] at (0,0)
|
||||||
|
{\includegraphics[width=5cm]{Plots/Data/klammern_r.jpg}};
|
||||||
|
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
|
||||||
|
{\includegraphics[width=5cm]{Plots/Data/klammern_g.jpg}};
|
||||||
|
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
|
||||||
|
{\includegraphics[width=5cm]{Plots/Data/klammern_b.jpg}};
|
||||||
|
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
|
||||||
|
{\includegraphics[width=5.3cm]{Plots/Data/klammern_rgb.jpg}};
|
||||||
|
\end{scope}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{adjustbox}
|
||||||
|
\caption{On the right the red, green and blue chances of the picture
|
||||||
|
are displayed. In order to better visualize the color channels the
|
||||||
|
black and white picture of each channel has been colored in the
|
||||||
|
respective color. Combining the layers results in the image on the
|
||||||
|
left.}
|
||||||
|
\label{fig:rgb}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
With this representation of an image as a function, we can apply
|
||||||
|
filters to the image using convolution for multidimensional functions
|
||||||
|
as described above. In order to simplify the notation we will write
|
||||||
|
the function $I$ given in (\ref{def:I}) as well as the filter-function $g$
|
||||||
|
as a tensor from now on, resulting in the modified notation of
|
||||||
|
convolution
|
||||||
|
|
||||||
|
\[
|
||||||
|
(I * g)_{x,y,c} = \sum_{i,j,l \in \mathbb{Z}} I_{x-i,y-j,c-l} g_{i,j,l}.
|
||||||
|
\]
|
||||||
|
|
||||||
|
Simple examples for image manipulation using
|
||||||
|
convolution are smoothing operations or
|
||||||
|
rudimentary detection of edges in grayscale images, meaning they only
|
||||||
|
have one channel. A popular filter for smoothing images
|
||||||
|
is the Gauss-filter which for a given $\sigma \in \mathbb{R}_+$ and
|
||||||
|
size $s \in \mathbb{N}$ is
|
||||||
|
defined as
|
||||||
|
\[
|
||||||
|
G_{x,y} = \frac{1}{2 \pi \sigma^2} e^{-\frac{x^2 + y^2}{2
|
||||||
|
\sigma^2}}, ~ x,y \in \left\{1,\dots,s\right\}.
|
||||||
|
\]
|
||||||
|
|
||||||
|
For edge detection purposes the Sobel operator is widespread. Here two
|
||||||
|
filters are applied to the
|
||||||
|
image $I$ and then combined. Edges in the $x$ direction are detected
|
||||||
|
by convolution with
|
||||||
|
\[
|
||||||
|
G =\left[
|
||||||
|
\begin{matrix}
|
||||||
|
-1 & 0 & 1 \\
|
||||||
|
-2 & 0 & 2 \\
|
||||||
|
-1 & 0 & 1
|
||||||
|
\end{matrix}\right],
|
||||||
|
\]
|
||||||
|
and edges is the y direction by convolution with $G^T$, the final
|
||||||
|
output is given by
|
||||||
|
|
||||||
|
\[
|
||||||
|
O = \sqrt{(I * G)^2 + (I*G^T)^2}
|
||||||
|
\]
|
||||||
|
where $\sqrt{\cdot}$ and $\cdot^2$ are applied component
|
||||||
|
wise. Examples of convolution with both kernels are given in Figure~\ref{fig:img_conv}.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\begin{subfigure}{0.3\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/klammern.jpg}
|
||||||
|
\caption{Original Picture}
|
||||||
|
\label{subf:OrigPicGS}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.3\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/image_conv9.png}
|
||||||
|
\caption{Gaussian Blur $\sigma^2 = 1$}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.3\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/image_conv10.png}
|
||||||
|
\caption{Gaussian Blur $\sigma^2 = 4$}
|
||||||
|
\end{subfigure}\\
|
||||||
|
\begin{subfigure}{0.3\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/image_conv4.png}
|
||||||
|
\caption{Sobel Operator $x$-direction}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.3\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/image_conv5.png}
|
||||||
|
\caption{Sobel Operator $y$-direction}
|
||||||
|
\end{subfigure}
|
||||||
|
\begin{subfigure}{0.3\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{Plots/Data/image_conv6.png}
|
||||||
|
\caption{Sobel Operator combined}
|
||||||
|
\end{subfigure}
|
||||||
|
% \begin{subfigure}{0.24\textwidth}
|
||||||
|
% \centering
|
||||||
|
% \includegraphics[width=\textwidth]{Plots/Data/image_conv6.png}
|
||||||
|
% \caption{test}
|
||||||
|
% \end{subfigure}
|
||||||
|
\caption{Convolution of original greyscale Image (a) with different
|
||||||
|
kernels. In (b) and (c) Gaussian kernels of size 11 and stated
|
||||||
|
$\sigma^2$ are used. In (d) - (f) the above defined Sobel Operator
|
||||||
|
kernels are used.}
|
||||||
|
\label{fig:img_conv}
|
||||||
|
\end{figure}
|
||||||
|
\clearpage
|
||||||
|
\newpage
|
||||||
|
\subsection{Convolutional NN}
|
||||||
|
|
||||||
|
In conventional neural networks as described in chapter ... all layers
|
||||||
|
are fully connected, meaning each output node in a layer is influenced
|
||||||
|
by all inputs. For $i$ inputs and $o$ output nodes this results in $i
|
||||||
|
+ 1$ variables at each node (weights and bias) and a total $o(i + 1)$
|
||||||
|
variables. For large inputs like image data the amount of variables
|
||||||
|
that have to be trained in order to fit the model can get excessive
|
||||||
|
and hinder the ability to train the model due to memory and
|
||||||
|
computational restrictions. By using convolution we can extract
|
||||||
|
meaningful information such as edges in an image with a kernel of a
|
||||||
|
small size $k$ in the tens or hundreds independent of the size of the
|
||||||
|
original image. Thus for a large image $k \cdot i$ can be several
|
||||||
|
orders of magnitude smaller than $o\cdot i$ .
|
||||||
|
|
||||||
|
|
||||||
|
As seen convolution lends itself for image manipulation. In this
|
||||||
|
chapter we will explore how we can incorporate convolution in neural
|
||||||
|
networks, and how that might be beneficial.
|
||||||
|
|
||||||
|
Convolutional Neural Networks as described by ... are made up of
|
||||||
|
convolutional layers, pooling layers, and fully connected ones. The
|
||||||
|
fully connected layers are layers in which each input node is
|
||||||
|
connected to each output node which is the structure introduced in
|
||||||
|
chapter ...
|
||||||
|
|
||||||
|
In a convolutional layer instead of combining all input nodes for each
|
||||||
|
output node, the input nodes are interpreted as a tensor on which a
|
||||||
|
kernel is applied via convolution, resulting in the output. Most often
|
||||||
|
multiple kernels are used, resulting in multiple output tensors. These
|
||||||
|
kernels are the variables, which can be altered in order to fit the
|
||||||
|
model to the data. Using multiple kernels it is possible to extract
|
||||||
|
different features from the image (e.g. edges -> sobel). As this
|
||||||
|
increases dimensionality even further which is undesirable as it
|
||||||
|
increases the amount of variables in later layers of the model, a convolutional layer
|
||||||
|
is often followed by a pooling one. In a pooling layer the input is
|
||||||
|
reduced in size by extracting a single value from a
|
||||||
|
neighborhood \todo{moving...}... . The resulting output size is dependent on
|
||||||
|
the offset of the neighborhoods used. Popular is max-pooling where the
|
||||||
|
largest value in a neighborhood is used or.
|
||||||
|
|
||||||
|
This construct allows for extraction of features from the input while
|
||||||
|
using far less input variables.
|
||||||
|
|
||||||
|
... \todo{Beispiel mit kleinem Bild, am besten das von oben}
|
||||||
|
|
||||||
|
\subsubsection{Parallels to the Visual Cortex in Mammals}
|
||||||
|
|
||||||
|
The choice of convolution for image classification tasks is not
|
||||||
|
arbitrary. ... auge... bla bla
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Limitations of the Gradient Descent Algorithm}
|
||||||
|
|
||||||
|
-Hyperparameter guesswork
|
||||||
|
-Problems navigating valleys -> momentum
|
||||||
|
-Different scale of gradients for vars in different layers -> ADAdelta
|
||||||
|
|
||||||
|
\subsection{Stochastic Training Algorithms}
|
||||||
|
|
||||||
|
For many applications in which neural networks are used such as
|
||||||
|
image classification or segmentation, large training data sets become
|
||||||
|
detrimental to capture the nuances of the
|
||||||
|
data. However as training sets get larger the memory requirement
|
||||||
|
during training grows with it.
|
||||||
|
In order to update the weights with the gradient descent algorithm
|
||||||
|
derivatives of the network with respect for each
|
||||||
|
variable need to be calculated for all data points in order to get the
|
||||||
|
full gradient of the error of the network.
|
||||||
|
Thus the amount of memory and computing power available limits the
|
||||||
|
size of the training data that can be efficiently used in fitting the
|
||||||
|
network. A class of algorithms that augment the gradient descent
|
||||||
|
algorithm in order to lessen this problem are stochastic gradient
|
||||||
|
descent algorithms. Here the premise is that instead of using the whole
|
||||||
|
dataset a (different) subset of data is chosen to
|
||||||
|
compute the gradient in each iteration.
|
||||||
|
The amount of iterations until each data point has been considered in
|
||||||
|
updating the parameters is commonly called a ``epoch''.
|
||||||
|
This reduces the amount of memory and computing power required for
|
||||||
|
each iteration. This allows for use of very large training
|
||||||
|
sets. Additionally the noise introduced on the gradient can improve
|
||||||
|
the accuracy of the fit as stochastic gradient descent algorithms are
|
||||||
|
less likely to get stuck on local extrema.
|
||||||
|
|
||||||
|
\input{Plots/SGD_vs_GD.tex}
|
||||||
|
|
||||||
|
Another benefit of using subsets even if enough memory is available to
|
||||||
|
use the whole dataset is that depending on the size of the subsets the
|
||||||
|
gradient can be calculated far quicker which allows to make more steps
|
||||||
|
in the same time. If the approximated gradient is close enough to the
|
||||||
|
``real'' one this can drastically cut down the time required for
|
||||||
|
training the model.
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item ADAM
|
||||||
|
\item momentum
|
||||||
|
\item ADADETLA \textcite{ADADELTA}
|
||||||
|
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% \subsubsubsection{Stochastic Gradient Descent}
|
||||||
|
|
||||||
|
\subsection{Combating Overfitting}
|
||||||
|
|
||||||
|
% As in many machine learning applications if the model is overfit in
|
||||||
|
% the data it can drastically reduce the generalization of the model. In
|
||||||
|
% many machine learning approaches noise introduced in the learning
|
||||||
|
% algorithm in order to reduce overfitting. This results in a higher
|
||||||
|
% bias of the model but the trade off of lower variance of the model is
|
||||||
|
% beneficial in many cases. For example the regression tree model
|
||||||
|
% ... benefits greatly from restricting the training algorithm on
|
||||||
|
% randomly selected features in every iteration and then averaging many
|
||||||
|
% such trained trees inserted of just using a single one. \todo{noch
|
||||||
|
% nicht sicher ob ich das nehmen will} For neural networks similar
|
||||||
|
% strategies exist. A popular approach in regularizing convolutional neural network
|
||||||
|
% is \textit{dropout} which has been first introduced in
|
||||||
|
% \cite{Dropout}
|
||||||
|
|
||||||
|
Similarly to shallow networks overfitting still can impact the quality of
|
||||||
|
convolutional neural networks. A popular way to combat this problem is
|
||||||
|
by introducing noise into the training of the model. This is a
|
||||||
|
successful strategy for ofter models as well, the a conglomerate of
|
||||||
|
descision trees grown on bootstrapped trainig samples benefit greatly
|
||||||
|
of randomizing the features available to use in each training
|
||||||
|
iteration (Hastie, Bachelorarbeit??). The way noise is introduced into
|
||||||
|
the model is by deactivating certain nodes (setting the output of the
|
||||||
|
node to 0) in the fully connected layers of the convolutional neural
|
||||||
|
networks. The nodes are chosen at random and change in every
|
||||||
|
iteration, this practice is called Dropout and was introduced by
|
||||||
|
\textcite{Dropout}.
|
||||||
|
|
||||||
|
\todo{Vergleich verschiedene dropout größen auf MNSIT o.ä.}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "main"
|
||||||
|
%%% End:
|
@ -0,0 +1,10 @@
|
|||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: "main"
|
||||||
|
%%% End:
|
@ -0,0 +1,25 @@
|
|||||||
|
\documentclass{article}
|
||||||
|
\usepackage{pgfplots}
|
||||||
|
\usepackage{filecontents}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}
|
||||||
|
\addplot+ [mark options={scale = 0.7}, mark = o] table [x=x,y=y, col sep = comma,
|
||||||
|
only marks] {data_sin_d_t.csv};
|
||||||
|
\addplot [black] table [x=x, y=y, col sep=comma, mark=none, color = 'black'] {matlab_sin_d_01.csv};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\begin{axis}
|
||||||
|
\addplot table [x=x, y=y, col sep=comma, only marks] {data_sin_d_t.csv};
|
||||||
|
\addplot table [black, x=x, y=y, col sep=comma, mark=none, color = 'black'] {matlab_sin_d_01.csv};
|
||||||
|
\end{axis}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{document}
|
||||||
|
|
||||||
|
%%% Local Variables:
|
||||||
|
%%% mode: latex
|
||||||
|
%%% TeX-master: t
|
||||||
|
%%% End:
|
Loading…
Reference in New Issue