hoffentlich final
This commit is contained in:
parent
3bae82eaf9
commit
2ef7cda1dd
1
.gitignore
vendored
1
.gitignore
vendored
@ -16,6 +16,7 @@ main-blx.bib
|
||||
*.tex~
|
||||
*#*.tex*
|
||||
*~
|
||||
*#*
|
||||
|
||||
# no pdfs
|
||||
*.pdf
|
||||
|
@ -1,19 +1,16 @@
|
||||
\section{Code...}
|
||||
In this ... the implementations of the models used in ... are
|
||||
given. The randomized shallow neural network used in CHAPTER... are
|
||||
implemented in Scala from ground up to ensure the model is exactly to
|
||||
... of Theorem~\ref{theo:main1}.
|
||||
\section{Implementations}
|
||||
In this section the implementations models used are given.
|
||||
The randomized shallow neural network used in Section~\ref{sec:conv} are
|
||||
implemented in Scala. No preexisting frameworks were used to ensure
|
||||
the implementation was according to the definitions used in Theorem~\ref{theo:main1}.
|
||||
|
||||
The neural networks used in CHAPTER are implemented in python using
|
||||
the Keras framework given in Tensorflow. Tensorflow is a library
|
||||
containing highly efficient GPU implementations of most important
|
||||
The neural networks used in Section~\ref{sec:cnn} are implemented in python using
|
||||
the Keras framework given in TensorFlow. TensorFlow is a library
|
||||
containing highly efficient GPU implementations of a wide variety
|
||||
tensor operations, such as convolution as well as efficient algorithms
|
||||
for training neural networks (computing derivatives, updating parameters).
|
||||
\begin{itemize}
|
||||
\item Code for randomized shallow neural network
|
||||
\item Code for keras
|
||||
\end{itemize}
|
||||
for training neural networks.% (computing derivatives, updating parameters).
|
||||
|
||||
\vspace*{-0.5cm}
|
||||
\begin{lstfloat}
|
||||
\begin{lstlisting}[language=iPython]
|
||||
import breeze.stats.distributions.Uniform
|
||||
@ -72,10 +69,11 @@ class RSNN(val n: Int, val gamma: Double = 0.001) {
|
||||
}
|
||||
\end{lstlisting}
|
||||
\caption{Scala code used to build and train the ridge penalized
|
||||
randomized shallow neural network in .... The parameter \textit{lam}
|
||||
in the train function represents the $\lambda$ parameter in the error
|
||||
function. The parameters \textit{n} and \textit{gamma} set the number
|
||||
of hidden nodes and the stepsize for training.}
|
||||
randomized shallow neural network in Section~\ref{sec:rsnn_sim}.}
|
||||
% The parameter \textit{lam}
|
||||
% in the train function represents the $\lambda$ parameter in the error
|
||||
% function. The parameters \textit{n} and \textit{gamma} set the number
|
||||
% of hidden nodes and the stepsize for training.}
|
||||
\label{lst:rsnn}
|
||||
\end{lstfloat}
|
||||
\clearpage
|
||||
@ -126,8 +124,8 @@ validation_data=(x_test, y_test),
|
||||
steps_per_epoch = x_train.shape[0]//50)
|
||||
|
||||
\end{lstlisting}
|
||||
\caption{Python code for the model used... the MNIST handwritten digits
|
||||
dataset.}
|
||||
\caption{Python code used to build the network modeling the MNIST
|
||||
handwritten digits data set.}
|
||||
\label{lst:handwriting}
|
||||
\end{lstfloat}
|
||||
\clearpage
|
||||
@ -163,11 +161,11 @@ model.add(tf.keras.layers.Dense(10, activation='softmax'))
|
||||
model.compile(optimizer=tf.keras.optimizers.Adam(lr = 1e-3), loss="categorical_crossentropy", metrics=["accuracy"])
|
||||
|
||||
datagen = ImageDataGenerator(
|
||||
rotation_range = 15,
|
||||
zoom_range = 0.1,
|
||||
rotation_range = 6,
|
||||
zoom_range = 0.15,
|
||||
width_shift_range=2,
|
||||
height_shift_range=2,
|
||||
shear_range = 0.5,
|
||||
shear_range = 0.15,
|
||||
fill_mode = 'constant',
|
||||
cval = 0)
|
||||
|
||||
@ -180,8 +178,8 @@ datagen = ImageDataGenerator(
|
||||
shuffle=True)
|
||||
|
||||
\end{lstlisting}
|
||||
\caption{Python code for the model used... the fashion MNIST
|
||||
dataset.}
|
||||
\caption[Python Code for fashion MNIST]{Python code
|
||||
used to build the network modeling the fashion MNIST data set.}
|
||||
\label{lst:fashion}
|
||||
\end{lstfloat}
|
||||
\clearpage
|
||||
@ -205,6 +203,418 @@ def get_random_sample(a, b, number_of_samples=10):
|
||||
\caption{Python code used to generate the datasets containing a
|
||||
certain amount of random datapoints per class.}
|
||||
\end{lstfloat}
|
||||
|
||||
\section{Additional Comparisons}
|
||||
\label{app:comp}
|
||||
In this section comparisons of cross entropy loss and training
|
||||
accuracy for the models trained in Section~\ref{sec:smalldata} are given.
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\small
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch},ylabel = {Test Loss}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 Sample per Class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch},ylabel = {Test Loss}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 Samples per Class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch}, ylabel = {Test Loss}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 Samples per Class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption[Mean Test Loss for Subsets of MNIST Handwritten
|
||||
Digits]{Mean test cross entropy loss of the models fitting the
|
||||
sampled subsets of MNIST
|
||||
handwritten digits over the 125 epochs of training.}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\small
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style =
|
||||
{draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch},ylabel = {Test Loss}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 Sample per Class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch},ylabel = {Test Loss}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}, ymin = {0.62}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 Samples per Class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch}, ylabel = {Test Loss}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 Samples per Class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption[Mean Test Accuracies for Subsets of Fashion MNIST]{Mean
|
||||
test cross entropy loss of the models fitting the sampled subsets
|
||||
of fashion MNIST
|
||||
over the 125 epochs of training.}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\small
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch},ylabel = {Training Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 Sample per Class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 Samples per Class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch}, ylabel = {Training Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}, ymin = {0.92}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 Samples per Class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption[Mean Training Accuracies for Subsets of MNIST Handwritten
|
||||
Digits]{Mean training accuracies of the models fitting the sampled
|
||||
subsets of MNIST
|
||||
handwritten digits over the 125 epochs of training.}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\small
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style =
|
||||
{draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch},ylabel = {Training Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 Sample per Class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch},ylabel = {Training Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}, ymin = {0.62}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 Samples per Class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch}, ylabel = {Training Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 Samples per Class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption[Mean Training Accuracies for Subsets of Fashion MNIST]{Mean
|
||||
training accuracies of the models fitting the sampled subsets of fashion MNIST
|
||||
over the 125 epochs of training.}
|
||||
\end{figure}
|
||||
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "main"
|
||||
|
@ -10,13 +10,14 @@ plot coordinates {
|
||||
}
|
||||
}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[b]{0.5\textwidth}
|
||||
\begin{subfigure}[b]{0.48\textwidth}
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
ytick = {-1, 0, 1, 2},
|
||||
yticklabels = {$-1$, $\phantom{-0.}0$, $1$, $2$},]
|
||||
yticklabels = {$-1$, $\phantom{-0.}0$, $1$, $2$},
|
||||
restrict x to domain=-4:4, enlarge x limits = {0.1}]
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Figures/Data/sin_6.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col
|
||||
@ -33,7 +34,7 @@ plot coordinates {
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}
|
||||
\begin{axis}[restrict x to domain=-4:4, enlarge x limits = {0.1}]
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Figures/Data/sin_6.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_1.csv};
|
||||
@ -49,7 +50,7 @@ plot coordinates {
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}
|
||||
\begin{axis}[restrict x to domain=-4:4, enlarge x limits = {0.1}]
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Figures/Data/sin_6.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_3.csv};
|
||||
@ -63,13 +64,14 @@ plot coordinates {
|
||||
\caption{$\lambda = 3.0$}
|
||||
\end{subfigure}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[b]{0.5\textwidth}
|
||||
\begin{subfigure}[b]{0.48\textwidth}
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.245\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
ytick = {-2,-1, 0, 1, 2},
|
||||
yticklabels = {$-2$,$-1$, $\phantom{-0.}0$, $1$, $2$},]
|
||||
yticklabels = {$-2$,$-1$, $\phantom{-0.}0$, $1$, $2$},
|
||||
restrict x to domain=-4:4, enlarge x limits = {0.1}]
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Figures/Data/data_sin_d_t.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_sin_d_01.csv};
|
||||
@ -85,7 +87,7 @@ plot coordinates {
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}
|
||||
\begin{axis}[restrict x to domain=-4:4, enlarge x limits = {0.1}]
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Figures/Data/data_sin_d_t.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_sin_d_1.csv};
|
||||
@ -101,7 +103,7 @@ plot coordinates {
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}
|
||||
\begin{axis}[restrict x to domain=-4:4, enlarge x limits = {0.1}]
|
||||
\addplot table [x=x, y=y, col sep=comma, only marks,
|
||||
forget plot] {Figures/Data/data_sin_d_t.csv};
|
||||
\addplot [black, line width=2pt] table [x=x, y=y, col sep=comma, mark=none] {Figures/Data/matlab_sin_d_3.csv};
|
||||
@ -115,8 +117,8 @@ plot coordinates {
|
||||
\caption{$\lambda = 3.0$}
|
||||
\end{subfigure}
|
||||
\end{subfigure}
|
||||
\caption[Comparison of shallow neural networks and regression
|
||||
splines]{% In these Figures the behaviour stated in ... is
|
||||
\caption[Comparison of Shallow Neural Networks and Regression
|
||||
Splines] {% In these Figures the behaviour stated in ... is
|
||||
% visualized
|
||||
% in two exaples. For $(a), (b), (c)$ six values of sinus equidistantly
|
||||
% spaced on $[-\pi, \pi]$ have been used as training data. For
|
||||
|
@ -4,28 +4,32 @@ legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.0cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.0cm,0cm) %% default is (0.6cm,0cm)
|
||||
(0.15cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.3cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[h!]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth,
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.975\textwidth,
|
||||
height = 0.6\textwidth, legend
|
||||
style={at={(0.0125,0.7)},anchor=north west},
|
||||
xlabel = {Epoch}, ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt, mark = *, mark size=1pt},
|
||||
xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||
xticklabels = {$2$, $4$, $6$, $8$,
|
||||
$10$,$12$,$14$,$16$,$18$,$20$},
|
||||
xlabel = {training epoch}, ylabel = {classification accuracy}]
|
||||
$10$,$12$,$14$,$16$,$18$,$20$}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma] {Figures/Data/GD_01.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma] {Figures/Data/GD_05.log};
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = *] {Figures/Data/GD_05.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma] {Figures/Data/GD_1.log};
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = *] {Figures/Data/GD_1.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma]
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = *]
|
||||
{Figures/Data/SGD_01_b32.log};
|
||||
|
||||
\addlegendentry{GD$_{0.01}$}
|
||||
@ -34,59 +38,65 @@ plot coordinates {
|
||||
\addlegendentry{SGD$_{0.01}$}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
%\caption{Classification accuracy}
|
||||
\caption{Test accuracy during training.}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[b]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth,
|
||||
ytick = {0, 1, 2, 3, 4},
|
||||
yticklabels = {$0$, $1$, $\phantom{0.}2$, $3$, $4$},
|
||||
xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||
xticklabels = {$2$, $4$, $6$, $8$,
|
||||
$10$,$12$,$14$,$16$,$18$,$20$},
|
||||
xlabel = {training epoch}, ylabel = {error measure\vphantom{fy}}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma] {Figures/Data/GD_01.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma] {Figures/Data/GD_05.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma] {Figures/Data/GD_1.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma] {Figures/Data/SGD_01_b32.log};
|
||||
% \begin{subfigure}[b]{\textwidth}
|
||||
% \begin{tikzpicture}
|
||||
% \begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
% height = 0.6\textwidth,
|
||||
% ytick = {0, 1, 2, 3, 4},
|
||||
% yticklabels = {$0$, $1$, $\phantom{0.}2$, $3$, $4$},
|
||||
% xtick = {1, 3, 5,7,9,11,13,15,17,19},
|
||||
% xticklabels = {$2$, $4$, $6$, $8$,
|
||||
% $10$,$12$,$14$,$16$,$18$,$20$},
|
||||
% xlabel = {training epoch}, ylabel = {error measure\vphantom{fy}}]
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_loss, col sep=comma] {Figures/Data/GD_01.log};
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_loss, col sep=comma] {Figures/Data/GD_05.log};
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_loss, col sep=comma] {Figures/Data/GD_1.log};
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_loss, col sep=comma] {Figures/Data/SGD_01_b32.log};
|
||||
|
||||
\addlegendentry{GD$_{0.01}$}
|
||||
\addlegendentry{GD$_{0.05}$}
|
||||
\addlegendentry{GD$_{0.1}$}
|
||||
\addlegendentry{SGD$_{0.01}$}
|
||||
% \addlegendentry{GD$_{0.01}$}
|
||||
% \addlegendentry{GD$_{0.05}$}
|
||||
% \addlegendentry{GD$_{0.1}$}
|
||||
% \addlegendentry{SGD$_{0.01}$}
|
||||
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{Performance metrics during training}
|
||||
\end{subfigure}
|
||||
% \end{axis}
|
||||
% \end{tikzpicture}
|
||||
% \caption{Performance metrics during training}
|
||||
% \end{subfigure}
|
||||
% \\~\\
|
||||
\caption[Performance comparison of SDG and GD]{The neural network
|
||||
|
||||
\begin{subfigure}[b]{1.0\linewidth}
|
||||
\begin{tabu} to \textwidth {@{} *4{X[c]}c*4{X[c]} @{}}
|
||||
\multicolumn{4}{c}{Test Accuracy}
|
||||
&~&\multicolumn{4}{c}{Test Loss}
|
||||
\\\cline{1-4}\cline{6-9}
|
||||
GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$
|
||||
\\\cline{1-4}\cline{6-9}
|
||||
0.265&0.633&0.203&0.989&&2.267&1.947&3.911&0.032 \\
|
||||
\multicolumn{4}{c}{Training Accuracy}
|
||||
&~&\multicolumn{4}{c}{Training Loss}
|
||||
\\\cline{1-4}\cline{6-9}
|
||||
GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$
|
||||
\\\cline{1-4}\cline{6-9}
|
||||
0.250&0.599&0.685&0.996&&2.271&1.995&1.089&0.012 \\
|
||||
\end{tabu}
|
||||
\caption{Performance metrics after 20 training epochs.}
|
||||
\label{table:sgd_vs_gd}
|
||||
\end{subfigure}
|
||||
|
||||
\caption[Performance Comparison of SDG and GD]{The neural network
|
||||
given in Figure~\ref{fig:mnist_architecture} trained with different
|
||||
algorithms on the MNIST handwritten digits data set. For gradient
|
||||
descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{\cdot}$). For
|
||||
descent the learning rated 0.01, 0.05, and 0.1 are (GD$_{\cdot}$). For
|
||||
stochastic gradient descend a batch size of 32 and learning rate
|
||||
of 0.01 is used (SDG$_{0.01}$).}
|
||||
\label{fig:sgd_vs_gd}
|
||||
\end{figure}
|
||||
|
||||
\begin{table}[h]
|
||||
\begin{tabu} to \textwidth {@{} *4{X[c]}c*4{X[c]} @{}}
|
||||
\multicolumn{4}{c}{Classification Accuracy}
|
||||
&~&\multicolumn{4}{c}{Error Measure}
|
||||
\\\cline{1-4}\cline{6-9}
|
||||
GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$&&GD$_{0.01}$&GD$_{0.05}$&GD$_{0.1}$&SGD$_{0.01}$
|
||||
\\\cline{1-4}\cline{6-9}
|
||||
0.265&0.633&0.203&0.989&&2.267&1.947&3.91&0.032
|
||||
\end{tabu}
|
||||
\caption{Performance metrics of the networks trained in
|
||||
Figure~\ref{fig:sgd_vs_gd} after 20 training epochs.}
|
||||
\label{table:sgd_vs_gd}
|
||||
\end{table}
|
||||
%%% Local Variables:
|
||||
%%% mode: latex
|
||||
%%% TeX-master: "../main"
|
||||
|
@ -40,11 +40,11 @@
|
||||
\includegraphics[width=\textwidth]{Figures/Data/fashion_mnist9.pdf}
|
||||
\caption{Ankle boot}
|
||||
\end{subfigure}
|
||||
\caption[Fashion MNIST data set]{The fashtion MNIST data set contains 70.000 images of
|
||||
\caption[Fashion MNIST Data Set]{The fashtion MNIST data set contains 70.000 images of
|
||||
preprocessed product images from Zalando, which are categorized as
|
||||
T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
|
||||
Sneaker, Bag, Ankle boot. Of these images 60.000 are used as training images, while
|
||||
the rest are used to validate the models trained.}
|
||||
the rest is used to validate the models trained.}
|
||||
\label{fig:fashionMNIST}
|
||||
\end{figure}
|
||||
%%% Local Variables:
|
||||
|
@ -16,7 +16,7 @@ plot coordinates {
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.975\textwidth,
|
||||
height = 0.6\textwidth, ymin = 0.988, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch}, ylabel = {Classification Accuracy}, cycle
|
||||
xlabel = {Epoch}, ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width =1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
@ -45,18 +45,18 @@ plot coordinates {
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{Classification accuracy}
|
||||
\caption{Test Accuracy}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{1.0\linewidth}
|
||||
\begin{tabu} to \textwidth {@{}lc*5{X[c]}@{}}
|
||||
\Tstrut \Bstrut & \textsc{\,Adam\,} & D. 0.2 & D. 0.4 & G. &G.+D.\,0.2 & G.+D.\,0.4 \\
|
||||
\Tstrut \Bstrut & Default & D. 0.2 & D. 0.4 & G. &G.+D.\,0.2 & G.+D.\,0.4 \\
|
||||
\hline
|
||||
\multicolumn{7}{c}{Test Accuracy}\Bstrut \\
|
||||
\cline{2-7}
|
||||
mean \Tstrut & 0.9914 & 0.9923 & 0.9930 & 0.9937 & 0.9938 & 0.9943 \\
|
||||
max & 0.9926 & 0.9930 & 0.9934 & 0.9946 & 0.9955 & 0.9956 \\
|
||||
min & 0.9887 & 0.9909 & 0.9922 & 0.9929 & 0.9929 & 0.9934 \\
|
||||
mean \Tstrut & 0.9914 & 0.9923 & 0.9930 & 0.9937 & 0.9943 & 0.9944 \\
|
||||
max & 0.9926 & 0.9930 & 0.9934 & 0.9946 & 0.9957 & 0.9956 \\
|
||||
min & 0.9887 & 0.9909 & 0.9922 & 0.9929 & 0.9930 & 0.9934 \\
|
||||
\hline
|
||||
\multicolumn{7}{c}{Training Accuracy}\Bstrut \\
|
||||
\cline{2-7}
|
||||
@ -64,15 +64,16 @@ plot coordinates {
|
||||
max & 0.9996 & 0.9996 & 0.9992 & 0.9979 & 0.9971 & 0.9937 \\
|
||||
min & 0.9992 & 0.9990 & 0.9984 & 0.9947 & 0.9926 & 0.9908 \\
|
||||
\end{tabu}
|
||||
\caption{Mean and maximum accuracy after 48 epochs of training.}
|
||||
\caption{Mean, maximum and minimum accuracy after 50 epochs of training.}
|
||||
\label{fig:gen_dropout_b}
|
||||
\end{subfigure}
|
||||
\caption[Performance comparison of overfitting measures]{Accuracy for the net given in ... with Dropout (D.),
|
||||
\caption[Performance Comparison of Overfitting Measures]{Accuracy
|
||||
for the net given in Figure~\ref{fig:mnist_architecture} with Dropout (D.),
|
||||
data generation (G.), a combination, or neither (Default) implemented and trained
|
||||
with \textsc{Adam}. For each epoch the 60.000 training samples
|
||||
were used, or for data generation 10.000 steps with each using
|
||||
batches of 60 generated data points. For each configuration the
|
||||
model was trained 5 times and the average accuracies at each epoch
|
||||
model was trained five times and the average accuracies at each epoch
|
||||
are given in (a). Mean, maximum and minimum values of accuracy on
|
||||
the test and training set are given in (b).}
|
||||
\label{fig:gen_dropout}
|
||||
|
@ -30,9 +30,10 @@
|
||||
\begin{subfigure}{0.19\textwidth}
|
||||
\includegraphics[width=\textwidth]{Figures/Data/mnist9.pdf}
|
||||
\end{subfigure}
|
||||
\caption[MNIST data set]{The MNIST data set contains 70.000 images of preprocessed handwritten
|
||||
\caption[MNIST Database of Handwritten Digits]{The MNIST database of handwritten
|
||||
digits contains 70.000 images of preprocessed handwritten
|
||||
digits. Of these images 60.000 are used as training images, while
|
||||
the rest are used to validate the models trained.}
|
||||
the rest is used to validate the models trained.}
|
||||
\label{fig:MNIST}
|
||||
\end{figure}
|
||||
%%% Local Variables:
|
||||
|
@ -4,34 +4,56 @@ legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.0cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.0cm,0cm) %% default is (0.6cm,0cm)
|
||||
(0.15cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.3cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{figure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth, ymin = 0.92, legend style={at={(0.9825,0.75)},anchor=north east},
|
||||
xlabel = {epoch}, ylabel = {Classification Accuracy}]
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.975\textwidth,
|
||||
height = 0.6\textwidth, ymin = 0.885, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {Epoch}, ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
% [tick style = {draw = none}, width = \textwidth,
|
||||
% height = 0.6\textwidth, ymin = 0.905, legend style={at={(0.9825,0.75)},anchor=north east},
|
||||
% xlabel = {epoch}, ylabel = {Classification Accuracy}]
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
% {Figures/Data/adagrad.log};
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
% {Figures/Data/adadelta.log};
|
||||
% \addplot table
|
||||
% [x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
% {Figures/Data/adam.log};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adagrad.log};
|
||||
{Figures/Data/Adagrad.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adadelta.log};
|
||||
{Figures/Data/Adadelta.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam.log};
|
||||
{Figures/Data/Adam.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/SGD_00.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/SGD_09.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{ADAGRAD}}
|
||||
\addlegendentry{\footnotesize{ADADELTA}}
|
||||
\addlegendentry{\footnotesize{ADAM}}
|
||||
\addlegendentry{SGD$_{0.01}$}
|
||||
\addlegendentry{\footnotesize{\textsc{AdaGrad}}}
|
||||
\addlegendentry{\footnotesize{\textsc{Adadelta}}}
|
||||
\addlegendentry{\footnotesize{\textsc{Adam}}}
|
||||
\addlegendentry{\footnotesize{\textsc{Sgd}}}
|
||||
\addlegendentry{\footnotesize{Momentum}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
%\caption{Classification accuracy}
|
||||
\caption{Test accuracies during training}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
% \begin{subfigure}[b]{\textwidth}
|
||||
@ -58,18 +80,27 @@ plot coordinates {
|
||||
% \vspace{.25cm}
|
||||
% \end{subfigure}
|
||||
\begin{subfigure}[b]{1.0\linewidth}
|
||||
\begin{tabu} to \textwidth {@{} *3{X[c]}c*3{X[c]} @{}}
|
||||
\multicolumn{3}{c}{Classification Accuracy}
|
||||
&~&\multicolumn{3}{c}{Error Measure}
|
||||
\\\cline{1-3}\cline{5-7}
|
||||
\textsc{AdaGad}&\textsc{AdaDelta}&\textsc{Adam}&&\textsc{AdaGrad}&\textsc{AdaDelta}&\textsc{Adam}
|
||||
\\\cline{1-3}\cline{5-7}
|
||||
1&1&1&&1&1&1
|
||||
\begin{tabu} to \textwidth {@{}l*5{X[c]}@{}}
|
||||
\Tstrut \Bstrut &\textsc{AdaGrad}& \textsc{AdaDelta}&
|
||||
\textsc{Adam} & \textsc{Sgd} & Momentum \\
|
||||
\hline
|
||||
\Tstrut Accuracy &0.9870 & 0.9562 & 0.9925 & 0.9866 & 0.9923 \\
|
||||
\Tstrut Loss &0.0404 & 0.1447 & 0.0999 & 0.0403 & 0.0246 \\
|
||||
\end{tabu}
|
||||
\caption{Performace metrics after 20 epochs}
|
||||
% \begin{tabu} to \textwidth {@{} *3{X[c]}c*3{X[c]} @{}}
|
||||
% \multicolumn{3}{c}{Classification Accuracy}
|
||||
% &~&\multicolumn{3}{c}{Error Measure}
|
||||
% \\\cline{1-3}\cline{5-7}
|
||||
% \textsc{AdaGad}&\textsc{AdaDelta}&\textsc{Adam}&&\textsc{AdaGrad}&\textsc{AdaDelta}&\textsc{Adam}
|
||||
% \\\cline{1-3}\cline{5-7}
|
||||
% 1&1&1&&1&1&1
|
||||
% \end{tabu}
|
||||
\caption{Performace metrics after 50 epochs}
|
||||
\end{subfigure}
|
||||
\caption[Performance comparison of training algorithms]{Classification accuracy on the test set and ...Performance metrics of the network given in ... trained
|
||||
with different optimization algorithms}
|
||||
\caption[Performance Comparison of Training Algorithms]{
|
||||
Average performance metrics of the neural network given in
|
||||
Figure~\ref{fig:mnist_architecture} trained 5 times for 50 epochs
|
||||
using different optimization algorithms.}
|
||||
\label{fig:comp_alg}
|
||||
\end{figure}
|
||||
%%% Local Variables:
|
||||
|
@ -14,6 +14,7 @@
|
||||
\end{adjustbox}
|
||||
\caption{True position (\textcolor{red}{red}), distorted position data (black)}
|
||||
\end{subfigure}
|
||||
\hfill
|
||||
\begin{subfigure}[b]{0.49\textwidth}
|
||||
\centering
|
||||
\begin{adjustbox}{width=\textwidth, height=0.25\textheight}
|
||||
@ -28,7 +29,7 @@
|
||||
\end{adjustbox}
|
||||
\caption{True position (\textcolor{red}{red}), filtered position data (black)}
|
||||
\end{subfigure}
|
||||
\caption[Signal smoothing using convolution]{Example for noise reduction using convolution with simulated
|
||||
\caption[Signal Smoothing Using Convolution]{Example for noise reduction using convolution with simulated
|
||||
positional data. As filter
|
||||
$g(i)=\left(\nicefrac{1}{3},\nicefrac{1}{4},\nicefrac{1}{5},\nicefrac{1}{6},\nicefrac{1}{20}\right)_{(i-1)}$
|
||||
is chosen and applied to the $x$ and $y$ coordinate
|
||||
|
@ -2,216 +2,330 @@
|
||||
\newpage
|
||||
\begin{appendices}
|
||||
\counterwithin{lstfloat}{section}
|
||||
\section{Proofs for sone Lemmata in ...}
|
||||
In the following there will be proofs for some important Lemmata in
|
||||
Section~\ref{sec:theo38}. Further proofs not discussed here can be
|
||||
found in \textcite{heiss2019}
|
||||
The proves in this section are based on \textcite{heiss2019}. Slight
|
||||
alterations have been made to accommodate for not splitting $f$ into
|
||||
$f_+$ and $f_-$.
|
||||
\begin{Theorem}[Proof of Lemma~\ref{theo38}]
|
||||
\end{Theorem}
|
||||
\section{Notes on Proofs of Lemmata in Section~\ref{sec:conv}}
|
||||
\label{appendix:proofs}
|
||||
Contrary to \textcite{heiss2019} we do not make the distinction between $f_+$ and
|
||||
$f_-$.
|
||||
This results in some alterations in the proofs being necessary. In
|
||||
the following the affected proofs and the required changes are given.
|
||||
% Because of that slight alterations are needed in the proofs of
|
||||
% .. auxiliary lemmata.
|
||||
% Alterations that go beyond substituting $F_{+-}^{}$
|
||||
% As the proofs are ... for the most part only
|
||||
% the alterations needed are specified.
|
||||
|
||||
|
||||
\begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}_k}{v_k}\approx\mathcal{O}(\frac{1}{n})$]
|
||||
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
|
||||
\left\{1,\dots,N\right\}$, we have
|
||||
\[
|
||||
\max_{k \in \left\{1,\dots,n\right\}} \frac{w^{*,
|
||||
\tilde{\lambda}}_k}{v_k} = \po_{n\to\infty}
|
||||
\]
|
||||
|
||||
|
||||
% In the following there will be proofs for some important Lemmata in
|
||||
% Section~\ref{sec:theo38}. Further proofs not discussed here can be
|
||||
% found in \textcite{heiss2019}
|
||||
% The proves in this section are based on \textcite{heiss2019}. Slight
|
||||
% alterations have been made to accommodate for not splitting $f$ into
|
||||
% $f_+$ and $f_-$.
|
||||
% \begin{Theorem}[Proof of Lemma~\ref{theo38}]
|
||||
% \end{Theorem}
|
||||
|
||||
% \begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}_k}{v_k}\approx\mathcal{O}(\frac{1}{n})$]
|
||||
% For any $\lambda > 0$ and training data $(x_i^{\text{train}},
|
||||
% y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
|
||||
% \left\{1,\dots,N\right\}$, we have
|
||||
% \[
|
||||
% \max_{k \in \left\{1,\dots,n\right\}} \frac{w^{*,
|
||||
% \tilde{\lambda}}_k}{v_k} = \po_{n\to\infty}
|
||||
% \]
|
||||
|
||||
|
||||
\end{Lemma}
|
||||
% \end{Lemma}
|
||||
|
||||
\begin{Proof}[Proof of Lemma~\ref{lem:s3}]
|
||||
\[
|
||||
\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
|
||||
h_{k,n} = \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
|
||||
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
|
||||
\left(\sum_{\substack{k \in \kappa \\ \xi_k \in
|
||||
[\delta l , \delta(l+1))}} \varphi(\xi_k, v_k)
|
||||
h_{k,n}\right) \approx
|
||||
\]
|
||||
\[
|
||||
\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
|
||||
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
|
||||
\left(\sum_{\substack{k \in \kappa \\ \xi_k \in
|
||||
[\delta l , \delta(l+1))}} \left(\varphi(\delta l, v_k)
|
||||
\frac{1}{n g_\xi (\delta l)} \pm \frac{\varepsilon}{n}\right)
|
||||
\frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
|
||||
\delta(l+1))\right\}}}{\abs{\left\{m \in \kappa : \xi_m
|
||||
\in [\delta l, \delta(l+1))\right\}}}\right)
|
||||
\]
|
||||
\[
|
||||
\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
|
||||
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
|
||||
\left(\frac{\sum_{\substack{k \in \kappa \\ \xi_k \in
|
||||
[\delta l , \delta(l+1))}}\varphi(\delta l,
|
||||
v_k)}{\abs{\left\{m \in \kappa : \xi_m
|
||||
\in [\delta l, \delta(l+1))\right\}}}
|
||||
\frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
|
||||
\delta(l+1))\right\}}}{n g_\xi (\delta l)}\right) \pm \varepsilon
|
||||
\]
|
||||
The amount of kinks in a given interval of length $\delta$ follows a
|
||||
binomial distribution,
|
||||
\[
|
||||
\mathbb{E} \left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
|
||||
\begin{Proof}[Heiss, Teichmann, and Wutte (2019, Lemma A.9)]~\\\noindent
|
||||
\label{proof:lem9}
|
||||
With $\tilde{\lambda} \coloneqq \lambda n g(0)$ Lemma~\ref{lem:cnvh} follows
|
||||
analogously when considering $\tilde{w}$, $f_g^{*, \lambda}$, and $h_k$
|
||||
instead of $\tilde{w}^+$, $f_{g,+}^{*, \lambda}$, and $\bar{h}_k$.
|
||||
Consider $\kappa = \left\{1, \dots, n \right\}$ for $n$ nodes
|
||||
instead of $\kappa^+$. With $h_k = \frac{1}{n g_\xi(\xi_n)}$
|
||||
instead of $\bar{h}_k$
|
||||
and \[
|
||||
\mathbb{E} \left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
|
||||
\delta(l+1))\right\}}\right] = n \int_{\delta
|
||||
l}^{\delta(l+1)}g_\xi (x) dx \approx n (\delta g_\xi(\delta l)
|
||||
\pm \delta \tilde{\varepsilon}),
|
||||
\]
|
||||
for any $\delta \leq \delta(\varepsilon, \tilde{\varepsilon})$, since $g_\xi$ is uniformly continuous on its
|
||||
support by Assumption..
|
||||
As the distribution of $v$ is continuous as well we get that
|
||||
$\mathcal{L}(v_k) = \mathcal{L} v| \xi = \delta l) \forall k \in
|
||||
\kappa : \xi_k \in [\delta l, \delta(l+1))$ for $\delta \leq
|
||||
\delta(\varepsilon, \tilde{\varepsilon})$. Thus we get with the law of
|
||||
large numbers
|
||||
\begin{align*}
|
||||
&\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
|
||||
h_{k,n} \approx\\
|
||||
&\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
|
||||
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
|
||||
\}]}}\left(\mathbb{E}[\phi(\xi, v)|\xi=\delta l]
|
||||
\stackrel{\mathbb{P}}{\pm}\right) \delta \left(1 \pm
|
||||
\frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
|
||||
\\
|
||||
&\approx \left(\sum_{\substack{l \in \mathbb{Z} \\ [\delta
|
||||
l, \delta
|
||||
(l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
|
||||
\}]}}\mathbb{E}[\phi(\xi, v)|\xi=\delta l] \delta
|
||||
\stackrel{\mathbb{P}}{\pm}\tilde{\tilde{\varepsilon}}
|
||||
\abs{C_{g_\xi}^u - C_{g_\xi}^l}
|
||||
\right)\\
|
||||
&\phantom{\approx}\cdot \left(1 \pm
|
||||
\frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
|
||||
\end{align*}
|
||||
\end{Proof}
|
||||
|
||||
\begin{Lemma}[($L(f_n) \to L(f)$), Heiss, Teichmann, and
|
||||
Wutte (2019, Lemma A.11)]
|
||||
For any data $(x_i^{\text{train}}, y_i^{\text{train}}) \in
|
||||
\mathbb{R}^2, i \in \left\{1,\dots,N\right\}$, let $(f_n)_{n \in
|
||||
\mathbb{N}}$ be a sequence of functions that converges point-wise
|
||||
in probability to a function $f : \mathbb{R}\to\mathbb{R}$, then the
|
||||
loss $L$ of $f_n$ converges is probability to $L(f)$ as $n$ tends to
|
||||
infinity,
|
||||
\[
|
||||
\plimn L(f_n) = L(f).
|
||||
\]
|
||||
\proof Vgl. ...
|
||||
\end{Lemma}
|
||||
|
||||
\begin{Proof}[Step 2]
|
||||
We start by showing that
|
||||
\[
|
||||
\plimn \tilde{\lambda} \norm{\tilde{w}}_2^2 = \lambda g(0)
|
||||
\left(\int \frac{\left(f_g^{*,\lambda''}\right)^2}{g(x)} dx\right)
|
||||
\]
|
||||
With the definitions of $\tilde{w}$, $\tilde{\lambda}$ and
|
||||
$h$ we have
|
||||
\begin{align*}
|
||||
\tilde{\lambda} \norm{\tilde{w}}_2^2
|
||||
&= \tilde{\lambda} \sum_{k \in
|
||||
\kappa}\left(f_g^{*,\lambda''}(\xi_k) \frac{h_k
|
||||
v_k}{\mathbb{E}v^2|\xi = \xi_k]}\right)^2\\
|
||||
&= \tilde{\lambda} \sum_{k \in
|
||||
\kappa}\left(\left(f_g^{*,\lambda''}\right)^2(\xi_k) \frac{h_k
|
||||
v_k^2}{\mathbb{E}v^2|\xi = \xi_k]}\right) h_k\\
|
||||
& = \lambda g(0) \sum_{k \in
|
||||
\kappa}\left(\left(f_g^{*,\lambda''}\right)^2(\xi_k)\frac{v_k^2}{g_\xi(\xi_k)\mathbb{E}
|
||||
[v^2|\xi=\xi_k]}\right)h_k.
|
||||
\end{align*}
|
||||
By using Lemma~\ref{lem} with $\phi(x,y) =
|
||||
\left(f_g^{*,\lambda''}\right)^2(x)\frac{y^2}{g_\xi(\xi)\mathbb{E}[v^2|\xi=y]}$
|
||||
this converges to
|
||||
\begin{align*}
|
||||
&\plimn \tilde{\lambda}\norm{\tilde{w}}_2^2 = \\
|
||||
&=\lambda
|
||||
g_\xi(0)\mathbb{E}[v^2|\xi=0]\int_{\supp{g_\xi}}\mathbb{E}\left[
|
||||
\left(f_g^{*,\lambda''}\right)^2(\xi)\frac{v^2}{
|
||||
g_\xi(\xi)\mathbb{E}[v^2|\xi=x]^2}\Big{|} \xi = x\right]dx\\
|
||||
&=\lambda g_\xi(0) \mathbb{E}[v^2|\xi=0] \int_{\supp{g_xi}}
|
||||
\frac{\left(f_g^{*,\lambda''}\right)^2 (x)}{g_\xi(x)
|
||||
\mathbb{E}[v^2|\xi=x]} dx \\
|
||||
&=\lambda g(0) \int_{\supp{g_\xi}} \frac{\left(f_g^{*,\lambda''}\right)^2}{g(x)}dx.
|
||||
\end{align*}
|
||||
\end{Proof}
|
||||
|
||||
\begin{Lemma}[Heiss, Teichmann, and
|
||||
Wutte (2019, Lemma A.13)]
|
||||
Using the notation of Definition .. and ... the following statement
|
||||
holds:
|
||||
$\forall \varepsilon \in \mathbb{R}_{>0} : \exists \delta \in
|
||||
\mathbb{R}_{>0} : \forall \omega \in \Omega : \forall l, l' \in
|
||||
\left\{1,\dots,N\right\} : \forall n \in \mathbb{N}$
|
||||
\[
|
||||
\left(\abs{\xi_l(\omega) - \xi_{l'}(\omega)} < \delta \wedge
|
||||
\text{sign}(v_l(\omega)) = \text{sign}(v_{l'}(\omega))\right)
|
||||
\implies \abs{\frac{w_l^{*, \tilde{\lambda}}(\omega)}{v_l(\omega)}
|
||||
- \frac{w_{l'}^{*, \tilde{\lambda}}(\omega)}{v_{l'}(\omega)}} <
|
||||
\frac{\varepsilon}{n},
|
||||
\]
|
||||
if we assume that $v_k$ is never zero.
|
||||
\proof given in ..
|
||||
\end{Lemma}
|
||||
|
||||
\begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}}{v} \approx
|
||||
\mathcal{O}(\frac{1}{n})$, Heiss, Teichmann, and
|
||||
Wutte (2019, Lemma A.14)]
|
||||
For any $\lambda > 0$ and data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2, i\in
|
||||
\left\{1,\dots,\right\}$, we have
|
||||
\[
|
||||
\forall P \in (0,1) : \exists C \in \mathbb{R}_{>0} : \exists
|
||||
n_0 \in \mathbb{N} : \forall n > n_0 : \mathbb{P}
|
||||
\left[\max_{k\in \left\{1,\dots,n\right\}}
|
||||
\frac{w_k^{*,\tilde{\lambda}}}{v_k} < C
|
||||
\frac{1}{n}\right] > P
|
||||
% \max_{k\in \left\{1,\dots,n\right\}}
|
||||
% \frac{w_k^{*,\tilde{\lambda}}}{v_k} = \plimn
|
||||
\pm \delta \tilde{\varepsilon}).
|
||||
\]
|
||||
\proof
|
||||
Let $k^*_+ \in \argmax_{k\in
|
||||
\left\{1,\dots,n\right\}}\frac{w^{*,\tilde{\lambda}}}{v_k} : v_k
|
||||
> 0$ and $k^*_- \in \argmax_{k\in
|
||||
\left\{1,\dots,n\right\}}\frac{w^{*,\tilde{\lambda}}}{v_k} : v_k
|
||||
< 0$. W.l.o.g. assume $\frac{w_{k_+^*}^2}{v_{k_+^*}^2} \geq
|
||||
\frac{w_{k_-^*}^2}{v_{k_-^*}^2}$
|
||||
\begin{align*}
|
||||
\frac{F^{\lambda,
|
||||
g}\left(f^{*,\lambda}_g\right)}{\tilde{\lambda}}
|
||||
\makebox[2cm][c]{$\stackrel{\mathbb{P}}{\geq}$}
|
||||
& \frac{1}{2 \tilde{\lambda}}
|
||||
F_n^{\tilde{\lambda}}\left(\mathcal{RN}^{*,\tilde{\lambda}}\right)
|
||||
= \frac{1}{2 \tilde{\lambda}}\left[\sum ... + \tilde{\lambda} \norm{w}_2^2\right]
|
||||
\\
|
||||
\makebox[2cm][c]{$\geq$}
|
||||
& \frac{1}{2}\left( \sum_{\substack{k: v_k
|
||||
> 0 \\\xi_k\in(\xi_{k^*}, \xi_{k^*}
|
||||
+ \delta)}} \left(w_k^{*,\tilde{\lambda}}\right)^2 +
|
||||
\sum_{\substack{k: v_k < 0 \\\xi_k\in(\xi_{k^*}, \xi_{k^*}
|
||||
+ \delta)}} \left(w_k^{*,\tilde{\lambda}}\right)^2\right) \\
|
||||
\makebox[2cm][c]{$\overset{\text{Lem. A.6}}{\underset{\delta \text{
|
||||
small enough}}{\geq}} $}
|
||||
&
|
||||
\frac{1}{4}\left(\left(\frac{w_{k_+^*}^{*,\tilde{\lambda}}}
|
||||
{v_{k_+^*}}\right)^2\sum_{\substack{k:
|
||||
v_k > 0 \\\xi_k\in(\xi_{k^*}, \xi_{k^*} + \delta)}}v_k^2 +
|
||||
\left(\frac{w_{k_-^*}^{*,\tilde{\lambda}}}{v_{k_-^*}}\right)^2
|
||||
\sum_{\substack{k:
|
||||
v_k < 0 \\\xi_k\in(\xi_{k^*}, \xi_{k^*} +
|
||||
\delta)}}v_k^2\right)\\
|
||||
\makebox[2cm][c]{$\stackrel{\mathbb{P}}{\geq}$}
|
||||
& \frac{1}{8}
|
||||
\left(\frac{w_{k_+^*}^{*,\tilde{\lambda}}}{v_{k^*}}\right)^2
|
||||
n \delta g_\xi(\xi_{k_+^*}) \mathbb{P}(v_k
|
||||
>0)\mathbb{E}[v_k^2|\xi_k = \xi_{k^*_+}]
|
||||
\end{align*}
|
||||
|
||||
\end{Lemma}
|
||||
% \[
|
||||
% \sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
|
||||
% h_{k,n} = \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
|
||||
% (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
|
||||
% \left(\sum_{\substack{k \in \kappa \\ \xi_k \in
|
||||
% [\delta l , \delta(l+1))}} \varphi(\xi_k, v_k)
|
||||
% h_{k,n}\right) \approx
|
||||
% \]
|
||||
% \[
|
||||
% \approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
|
||||
% (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
|
||||
% \left(\sum_{\substack{k \in \kappa \\ \xi_k \in
|
||||
% [\delta l , \delta(l+1))}} \left(\varphi(\delta l, v_k)
|
||||
% \frac{1}{n g_\xi (\delta l)} \pm \frac{\varepsilon}{n}\right)
|
||||
% \frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
|
||||
% \delta(l+1))\right\}}}{\abs{\left\{m \in \kappa : \xi_m
|
||||
% \in [\delta l, \delta(l+1))\right\}}}\right)
|
||||
% \]
|
||||
% \[
|
||||
% \approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
|
||||
% (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T \}]}}
|
||||
% \left(\frac{\sum_{\substack{k \in \kappa \\ \xi_k \in
|
||||
% [\delta l , \delta(l+1))}}\varphi(\delta l,
|
||||
% v_k)}{\abs{\left\{m \in \kappa : \xi_m
|
||||
% \in [\delta l, \delta(l+1))\right\}}}
|
||||
% \frac{\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
|
||||
% \delta(l+1))\right\}}}{n g_\xi (\delta l)}\right) \pm \varepsilon
|
||||
% \]
|
||||
% The amount of kinks in a given interval of length $\delta$ follows a
|
||||
% binomial distribution,
|
||||
% \[
|
||||
% \mathbb{E} \left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
|
||||
% \delta(l+1))\right\}}\right] = n \int_{\delta
|
||||
% l}^{\delta(l+1)}g_\xi (x) dx \approx n (\delta g_\xi(\delta l)
|
||||
% \pm \delta \tilde{\varepsilon}),
|
||||
% \]
|
||||
% for any $\delta \leq \delta(\varepsilon, \tilde{\varepsilon})$, since $g_\xi$ is uniformly continuous on its
|
||||
% support by Assumption..
|
||||
% As the distribution of $v$ is continuous as well we get that
|
||||
% $\mathcal{L}(v_k) = \mathcal{L} v| \xi = \delta l) \forall k \in
|
||||
% \kappa : \xi_k \in [\delta l, \delta(l+1))$ for $\delta \leq
|
||||
% \delta(\varepsilon, \tilde{\varepsilon})$. Thus we get with the law of
|
||||
% large numbers
|
||||
% \begin{align*}
|
||||
% &\sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
|
||||
% h_{k,n} \approx\\
|
||||
% &\approx \sum_{\substack{l \in \mathbb{Z} \\ [\delta l, \delta
|
||||
% (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
|
||||
% \}]}}\left(\mathbb{E}[\phi(\xi, v)|\xi=\delta l]
|
||||
% \stackrel{\mathbb{P}}{\pm}\right) \delta \left(1 \pm
|
||||
% \frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
|
||||
% \\
|
||||
% &\approx \left(\sum_{\substack{l \in \mathbb{Z} \\ [\delta
|
||||
% l, \delta
|
||||
% (l+1)) \in [C_{g_\xi}^l,\min\{C_{g_\xi}^u, T
|
||||
% \}]}}\mathbb{E}[\phi(\xi, v)|\xi=\delta l] \delta
|
||||
% \stackrel{\mathbb{P}}{\pm}\tilde{\tilde{\varepsilon}}
|
||||
% \abs{C_{g_\xi}^u - C_{g_\xi}^l}
|
||||
% \right)\\
|
||||
% &\phantom{\approx}\cdot \left(1 \pm
|
||||
% \frac{\tilde{\varepsilon}}{g_\xi(\delta l)}\right) \pm \varepsilon
|
||||
% \end{align*}
|
||||
\end{Proof}
|
||||
|
||||
% \begin{Lemma}[($L(f_n) \to L(f)$), Heiss, Teichmann, and
|
||||
% Wutte (2019, Lemma A.11)]
|
||||
% For any data $(x_i^{\text{train}}, y_i^{\text{train}}) \in
|
||||
% \mathbb{R}^2, i \in \left\{1,\dots,N\right\}$, let $(f_n)_{n \in
|
||||
% \mathbb{N}}$ be a sequence of functions that converges point-wise
|
||||
% in probability to a function $f : \mathbb{R}\to\mathbb{R}$, then the
|
||||
% loss $L$ of $f_n$ converges is probability to $L(f)$ as $n$ tends to
|
||||
% infinity,
|
||||
% \[
|
||||
% \plimn L(f_n) = L(f).
|
||||
% \]
|
||||
% \proof Vgl. ...
|
||||
% \end{Lemma}
|
||||
|
||||
\begin{Proof}[Heiss, Teichmann, and Wutte (2019, Lemma A.12)]~\\\noindent
|
||||
\label{proof:lem12}
|
||||
With $\tilde{\lambda} \coloneqq \lambda n g(0)$ Lemma~\ref{lem:s2} follows
|
||||
analogously when considering $\tilde{w}$, $f_g^{*, \lambda}$, and $h_k$
|
||||
instead of $\tilde{w}^+$, $f_{g,+}^{*, \lambda}$, and $\bar{h}_k$.
|
||||
% We start by showing that
|
||||
% \[
|
||||
% \plimn \tilde{\lambda} \norm{\tilde{w}}_2^2 = \lambda g(0)
|
||||
% \left(\int \frac{\left(f_g^{*,\lambda''}\right)^2}{g(x)} dx\right)
|
||||
% \]
|
||||
% With the definitions of $\tilde{w}$, $\tilde{\lambda}$ and
|
||||
% $h$ we have
|
||||
% \begin{align*}
|
||||
% \tilde{\lambda} \norm{\tilde{w}}_2^2
|
||||
% &= \tilde{\lambda} \sum_{k \in
|
||||
% \kappa}\left(f_g^{*,\lambda''}(\xi_k) \frac{h_k
|
||||
% v_k}{\mathbb{E}v^2|\xi = \xi_k]}\right)^2\\
|
||||
% &= \tilde{\lambda} \sum_{k \in
|
||||
% \kappa}\left(\left(f_g^{*,\lambda''}\right)^2(\xi_k) \frac{h_k
|
||||
% v_k^2}{\mathbb{E}v^2|\xi = \xi_k]}\right) h_k\\
|
||||
% & = \lambda g(0) \sum_{k \in
|
||||
% \kappa}\left(\left(f_g^{*,\lambda''}\right)^2(\xi_k)\frac{v_k^2}{g_\xi(\xi_k)\mathbb{E}
|
||||
% [v^2|\xi=\xi_k]}\right)h_k.
|
||||
% \end{align*}
|
||||
% By using Lemma~\ref{lem} with $\phi(x,y) =
|
||||
% \left(f_g^{*,\lambda''}\right)^2(x)\frac{y^2}{g_\xi(\xi)\mathbb{E}[v^2|\xi=y]}$
|
||||
% this converges to
|
||||
% \begin{align*}
|
||||
% &\plimn \tilde{\lambda}\norm{\tilde{w}}_2^2 = \\
|
||||
% &=\lambda
|
||||
% g_\xi(0)\mathbb{E}[v^2|\xi=0]\int_{\supp{g_\xi}}\mathbb{E}\left[
|
||||
% \left(f_g^{*,\lambda''}\right)^2(\xi)\frac{v^2}{
|
||||
% g_\xi(\xi)\mathbb{E}[v^2|\xi=x]^2}\Big{|} \xi = x\right]dx\\
|
||||
% &=\lambda g_\xi(0) \mathbb{E}[v^2|\xi=0] \int_{\supp{g_xi}}
|
||||
% \frac{\left(f_g^{*,\lambda''}\right)^2 (x)}{g_\xi(x)
|
||||
% \mathbb{E}[v^2|\xi=x]} dx \\
|
||||
% &=\lambda g(0) \int_{\supp{g_\xi}} \frac{\left(f_g^{*,\lambda''}\right)^2}{g(x)}dx.
|
||||
% \end{align*}
|
||||
\end{Proof}
|
||||
|
||||
\begin{Proof}[Heiss, Teichmann, and Wutte (2019, Lemma A.14)]~\\\noindent
|
||||
\label{proof:lem14}
|
||||
Substitute $F_{+-}^{\lambda, g}\left(f_{g,+}^{*,\lambda},
|
||||
f_{g,-}^{*,\lambda}\right)$ with $F^{\lambda,g}\left(f_g^{*,\lambda}\right)$.
|
||||
\end{Proof}
|
||||
% \begin{Lemma}[Heiss, Teichmann, and
|
||||
% Wutte (2019, Lemma A.13)]
|
||||
% Using the notation of Definition .. and ... the following statement
|
||||
% holds:
|
||||
% $\forall \varepsilon \in \mathbb{R}_{>0} : \exists \delta \in
|
||||
% \mathbb{R}_{>0} : \forall \omega \in \Omega : \forall l, l' \in
|
||||
% \left\{1,\dots,N\right\} : \forall n \in \mathbb{N}$
|
||||
% \[
|
||||
% \left(\abs{\xi_l(\omega) - \xi_{l'}(\omega)} < \delta \wedge
|
||||
% \text{sign}(v_l(\omega)) = \text{sign}(v_{l'}(\omega))\right)
|
||||
% \implies \abs{\frac{w_l^{*, \tilde{\lambda}}(\omega)}{v_l(\omega)}
|
||||
% - \frac{w_{l'}^{*, \tilde{\lambda}}(\omega)}{v_{l'}(\omega)}} <
|
||||
% \frac{\varepsilon}{n},
|
||||
% \]
|
||||
% if we assume that $v_k$ is never zero.
|
||||
% \proof given in ..
|
||||
% \end{Lemma}
|
||||
|
||||
% \begin{Lemma}[$\frac{w^{*,\tilde{\lambda}}}{v} \approx
|
||||
% \mathcal{O}(\frac{1}{n})$, Heiss, Teichmann, and
|
||||
% Wutte (2019, Lemma A.14)]
|
||||
% For any $\lambda > 0$ and data $(x_i^{\text{train}},
|
||||
% y_i^{\text{train}}) \in \mathbb{R}^2, i\in
|
||||
% \left\{1,\dots,\right\}$, we have
|
||||
% \[
|
||||
% \forall P \in (0,1) : \exists C \in \mathbb{R}_{>0} : \exists
|
||||
% n_0 \in \mathbb{N} : \forall n > n_0 : \mathbb{P}
|
||||
% \left[\max_{k\in \left\{1,\dots,n\right\}}
|
||||
% \frac{w_k^{*,\tilde{\lambda}}}{v_k} < C
|
||||
% \frac{1}{n}\right] > P
|
||||
% % \max_{k\in \left\{1,\dots,n\right\}}
|
||||
% % \frac{w_k^{*,\tilde{\lambda}}}{v_k} = \plimn
|
||||
% \]
|
||||
% \proof
|
||||
|
||||
|
||||
% Let $k^*_+ \in \argmax_{k\in
|
||||
% \left\{1,\dots,n\right\}}\frac{w^{*,\tilde{\lambda}}}{v_k} : v_k
|
||||
% > 0$ and $k^*_- \in \argmax_{k\in
|
||||
% \left\{1,\dots,n\right\}}\frac{w^{*,\tilde{\lambda}}}{v_k} : v_k
|
||||
% < 0$. W.l.o.g. assume $\frac{w_{k_+^*}^2}{v_{k_+^*}^2} \geq
|
||||
% \frac{w_{k_-^*}^2}{v_{k_-^*}^2}$
|
||||
% \begin{align*}
|
||||
% \frac{F^{\lambda,
|
||||
% g}\left(f^{*,\lambda}_g\right)}{\tilde{\lambda}}
|
||||
% \makebox[2cm][c]{$\stackrel{\mathbb{P}}{\geq}$}
|
||||
% & \frac{1}{2 \tilde{\lambda}}
|
||||
% F_n^{\tilde{\lambda}}\left(\mathcal{RN}^{*,\tilde{\lambda}}\right)
|
||||
% = \frac{1}{2 \tilde{\lambda}}\left[\sum ... + \tilde{\lambda} \norm{w}_2^2\right]
|
||||
% \\
|
||||
% \makebox[2cm][c]{$\geq$}
|
||||
% & \frac{1}{2}\left( \sum_{\substack{k: v_k
|
||||
% > 0 \\\xi_k\in(\xi_{k^*}, \xi_{k^*}
|
||||
% + \delta)}} \left(w_k^{*,\tilde{\lambda}}\right)^2 +
|
||||
% \sum_{\substack{k: v_k < 0 \\\xi_k\in(\xi_{k^*}, \xi_{k^*}
|
||||
% + \delta)}} \left(w_k^{*,\tilde{\lambda}}\right)^2\right) \\
|
||||
% \makebox[2cm][c]{$\overset{\text{Lem. A.6}}{\underset{\delta \text{
|
||||
% small enough}}{\geq}} $}
|
||||
% &
|
||||
% \frac{1}{4}\left(\left(\frac{w_{k_+^*}^{*,\tilde{\lambda}}}
|
||||
% {v_{k_+^*}}\right)^2\sum_{\substack{k:
|
||||
% v_k > 0 \\\xi_k\in(\xi_{k^*}, \xi_{k^*} + \delta)}}v_k^2 +
|
||||
% \left(\frac{w_{k_-^*}^{*,\tilde{\lambda}}}{v_{k_-^*}}\right)^2
|
||||
% \sum_{\substack{k:
|
||||
% v_k < 0 \\\xi_k\in(\xi_{k^*}, \xi_{k^*} +
|
||||
% \delta)}}v_k^2\right)\\
|
||||
% \makebox[2cm][c]{$\stackrel{\mathbb{P}}{\geq}$}
|
||||
% & \frac{1}{8}
|
||||
% \left(\frac{w_{k_+^*}^{*,\tilde{\lambda}}}{v_{k^*}}\right)^2
|
||||
% n \delta g_\xi(\xi_{k_+^*}) \mathbb{P}(v_k
|
||||
% >0)\mathbb{E}[v_k^2|\xi_k = \xi_{k^*_+}]
|
||||
% \end{align*}
|
||||
|
||||
% \end{Lemma}
|
||||
|
||||
\begin{Proof}[Heiss, Teichmann, and Wutte (2019, Lemma A.15)]~\\\noindent
|
||||
\label{proof:lem15}
|
||||
Consider $\mathcal{RN}^{*,\tilde{\lambda}}$,
|
||||
$f^{w^{*,\tilde{\lambda}}}$, and $\kappa = \left\{1, \dots, n
|
||||
\right\}$ instead of $\mathcal{RN}_+^{*,\tilde{\lambda}}$,
|
||||
$f_+^{w^{*,\tilde{\lambda}}}$, and $\kappa^+$.
|
||||
Assuming w.l.o.g. $max_{k \in
|
||||
\kappa^+}\abs{\frac{w_k^{*,\tilde{\lambda}}}{v_k}} \geq max_{k \in
|
||||
\kappa^-}\abs{\frac{w_k^{*,\tilde{\lambda}}}{v_k}}$
|
||||
Lemma~ref{lem:s3} follows analogously by multiplying (58b) with two.
|
||||
\end{Proof}
|
||||
|
||||
\begin{Proof}[Heiss, Teichmann, and Wutte (2019, Lemma
|
||||
A.16)]~\\\noindent
|
||||
\label{proof:lem16}
|
||||
As we are considering $F^{\lambda,g}$ instead of
|
||||
$F^{\lambda,g}_{+-}$ we need to substitute $2\lambda g(0)$ with
|
||||
$\lambda g(0)$
|
||||
and thus get
|
||||
\[
|
||||
\left(f^{w^{*,\tilde{\lambda}}}\right)''(x) \approx
|
||||
\frac{w_{l_x}^{*,\tilde{\lambda}}}{v_{l_x}} n g_\xi(x)
|
||||
\mathbb{E}\left[v_k^2|\xi_k = x\right] \stackrel{\mathbb{P}}{\pm} \varepsilon_3
|
||||
\]
|
||||
and use this to follow
|
||||
\[
|
||||
\lambda g(0)
|
||||
\int_{\supp(g)}\hspace{-0.15cm}\frac{\left(\left(f^{w^{*,\tilde{\lambda}}}\right)''(x)\right)^2}{g(0)}dx
|
||||
\approx \tilde{\lambda} n
|
||||
\int_{\supp(g)}\left(\frac{w_{l_x}^{*,\tilde{\lambda}}}{v_{l_x}}\right)^2 \hspace{-0.1cm}
|
||||
g_xi(x) \mathbb{E}\left[v_k^2|\xi_k=x\right]dx
|
||||
\]
|
||||
Analogous to the proof of \textcite{heiss2019} we get
|
||||
\begin{align*}
|
||||
\tilde{\lambda} \sum_{k \in \kappa}
|
||||
\left(w_k^{*,\tilde{\lambda}}\right)^2
|
||||
&= \tilde{\lambda} \sum_{k \in \kappa^+}
|
||||
\left(w_k^{*,\tilde{\lambda}}\right)^2 + \tilde{\lambda} \sum_{k \in \kappa^-}
|
||||
\left(w_k^{*,\tilde{\lambda}}\right)^2 \\
|
||||
&\approx \left(\mathbb{P}[v_k <0] + \mathbb{P}[v_k >0]\right)\\
|
||||
&\phantom{=}
|
||||
\int_{\supp(g_xi)}
|
||||
\left(\frac{w_{l_x}^{*,\tilde{\lambda}}}{v_{l_x}}\right)^2
|
||||
g_\xi(x) \mathbb{E}\left[v_k^2|\xi_k = x\right] dx
|
||||
\stackrel{\mathbb{P}}{\pm} \varepsilon_9 \\
|
||||
&= \int_{\supp{g_xi}}
|
||||
\left(\frac{w_{l_x}^{*,\tilde{\lambda}}}{v_{l_x}}\right)^2
|
||||
g_\xi(x) \mathbb{E}\left[v_k^2|\xi_k = x\right] dx
|
||||
\stackrel{\mathbb{P}}{\pm} \varepsilon_9.
|
||||
\end{align*}
|
||||
With these transformations Lemma~\ref{lem:s4} follows analogously.
|
||||
\end{Proof}
|
||||
|
||||
\begin{Proof}[Heiss, Teichmann, and Wutte (2019, Lemma A.19)]~\\\noindent
|
||||
\label{proof:lem19}
|
||||
The proof works analogously if $F_{+-}^{\lambda,g}$ is substituted
|
||||
by
|
||||
\begin{align*}
|
||||
F_{+-}^{\lambda,g '}(f_+, f_-) =
|
||||
& \sum_{i =
|
||||
1}^N \left(f(x_i^{\text{train}}) -
|
||||
y_i^{\text{train}}\right)^2 \\
|
||||
& + \lambda g(0) \left(\int_{\supp(g)}\frac{\left(f_+''(x)\right)^2}{g(x)}
|
||||
dx + \int_{\supp(g)}\frac{\left(f''_-(x)\right)^2}{g(x)}
|
||||
dx\right).
|
||||
\end{align*}
|
||||
As for $f^n = f_+^n + f_-^n$ such that $\supp(f_+^n) \cap \supp(f_-^n) =
|
||||
\emptyset$ and $h = h_+ + h_-$ such that $\supp(h_+) \cap \supp(h_-) =
|
||||
\emptyset$ it holds
|
||||
\[
|
||||
\plimn F^{\lambda, g}(f^n) = F^{\lambda, g}(h) \implies
|
||||
\plimn F_{+-}^{\lambda,g '}(f_+,f_-) = F_{+-}^{\lambda,g '}(h_+,h_-),
|
||||
\]
|
||||
and all functions can be split in two functions with disjoint support
|
||||
Lemma~\ref{lem:s7} follows.
|
||||
\end{Proof}
|
||||
\input{Appendix_code.tex}
|
||||
|
||||
\end{appendices}
|
||||
|
@ -296,3 +296,18 @@ year = {2014},
|
||||
publisher = {Curran Associates, Inc.},
|
||||
url = {http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf}
|
||||
}
|
||||
|
||||
@book{hastie01statisticallearning,
|
||||
added-at = {2008-05-16T16:17:42.000+0200},
|
||||
address = {New York, NY, USA},
|
||||
author = {Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome},
|
||||
biburl = {https://www.bibsonomy.org/bibtex/2f58afc5c9793fcc8ad8389824e57984c/sb3000},
|
||||
interhash = {d585aea274f2b9b228fc1629bc273644},
|
||||
intrahash = {f58afc5c9793fcc8ad8389824e57984c},
|
||||
keywords = {ml statistics},
|
||||
publisher = {Springer New York Inc.},
|
||||
series = {Springer Series in Statistics},
|
||||
timestamp = {2008-05-16T16:17:43.000+0200},
|
||||
title = {The Elements of Statistical Learning},
|
||||
year = 2001
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,22 +1,74 @@
|
||||
\section{Introduction}
|
||||
|
||||
Neural networks have become a widely used model as they are relatively
|
||||
easy to build with modern frameworks like tensorflow and are able to
|
||||
model complex data.
|
||||
In this thesis we will .. networks ..
|
||||
Neural networks have become a widely used model for a plethora of
|
||||
applications.
|
||||
They are an attractive choice as they are able to
|
||||
model complex data with relatively little additional input to the
|
||||
training data needed.
|
||||
Additionally, as the price of parallelized computing
|
||||
power in the form of graphics processing unit has decreased drastically over the last
|
||||
years, it has become far more accessible to train and use large
|
||||
neural networks.
|
||||
Furthermore, highly optimized and parallelized frameworks for tensor
|
||||
operations have been developed.
|
||||
With these frameworks, such as TensorFlow and PyTorch, building neural
|
||||
networks as become a much more straightforward process.
|
||||
% Furthermore, with the development of highly optimized and
|
||||
% parallelized implementations of mathematical operations needed for
|
||||
% neural networks, such as TensorFlow or PyTorch, building neural network
|
||||
% models has become a much more straightforward process.
|
||||
% For example the flagship consumer GPU GeForce RTX 3080 of NVIDIA's current
|
||||
% generation has 5.888 CUDS cores at a ... price of 799 Euro compared
|
||||
% to the last generations flagship GeForce RTX 2080 Ti with 4352 CUDA
|
||||
% cores at a ... price of 1259 Euro. These CUDA cores are computing
|
||||
% cores specialized for tensor operations, which are necessary in
|
||||
% fitting and using neural networks.
|
||||
|
||||
In order to get some understanding about the behavior of the learned
|
||||
function of neural networks we examine the convergence behavior for
|
||||
....
|
||||
In this thesis we want to get an understanding of the behavior of neural %
|
||||
networks and
|
||||
how we can use them for problems with a complex relationship between
|
||||
in and output.
|
||||
In Section 2 we introduce the mathematical construct of neural
|
||||
networks and how to fit them to training data.
|
||||
|
||||
An interesting application of neural networks is the application to
|
||||
image classification tasks. We ... impact of ... on the performance of
|
||||
a neural network in such a task.
|
||||
To gain some insight about the learned function,
|
||||
we examine a simple class of neural networks that only contain one
|
||||
hidden layer.
|
||||
In Section~\ref{sec:shallownn} we proof a relation between such networks and
|
||||
functions that minimize the distance to training data
|
||||
with respect to its second derivative.
|
||||
|
||||
As in some applications such as medical imaging one might be limited
|
||||
to very small training data we study the impact of two measures in
|
||||
improving the accuracy in such a case by trying to ... the model from
|
||||
overfitting the data.
|
||||
An interesting application of neural networks is the task of
|
||||
classifying images.
|
||||
However, for such complex problems the number of parameters in fully
|
||||
connected neural networks can exceed what is
|
||||
feasible for training.
|
||||
In Section~\ref{sec:cnn} we explore the addition of convolution to neural
|
||||
networks to reduce the number of parameters.
|
||||
|
||||
As these large networks are commonly trained using gradient decent
|
||||
algorithms we compare the performance of different algorithms based on
|
||||
gradient descent in Section~4.4.
|
||||
% and
|
||||
% show that it is beneficial to only use small subsets of the training
|
||||
% data in each iteration rather than using the whole data set to update
|
||||
% the parameters.
|
||||
Most statistical models especially these with large amounts of
|
||||
trainable parameter can struggle with overfitting the data.
|
||||
In Section 4.5 we examine the impact of two measures designed to combat
|
||||
overfitting.
|
||||
|
||||
In some applications such as working with medical images the data
|
||||
available for training can be scarce, which results in the networks
|
||||
being prone to overfitting.
|
||||
As these are interesting applications of neural networks we examine
|
||||
the benefit of the measures to combat overfitting for
|
||||
scenarios with limited amounts of training data.
|
||||
|
||||
% As in some applications such as medical imaging one might be limited
|
||||
% to very small training data we study the impact of two measures in
|
||||
% improving the accuracy in such a case by trying to ... the model from
|
||||
% overfitting the data.
|
||||
|
||||
|
||||
|
||||
|
@ -1,23 +1,26 @@
|
||||
|
||||
\section{\titlecap{Introduction to Neural Networks}}
|
||||
\section{Introduction to Neural Networks}
|
||||
|
||||
This chapter is based on \textcite[Chapter~6]{Goodfellow} and \textcite{Haykin}.
|
||||
|
||||
Neural Networks (NN) are a mathematical construct inspired by the
|
||||
structure of brains in mammals. It consists of an array of neurons that
|
||||
Neural Networks are a mathematical construct inspired by the
|
||||
structure of brains in mammals. They consist of an array of neurons that
|
||||
receive inputs and compute an accumulated output. These neurons are
|
||||
arranged in layers, with one input and output layer
|
||||
and a arbirtary
|
||||
amount of hidden layer between them.
|
||||
The amount of neurons in the in- and output layers correspond to the
|
||||
and an arbitrary
|
||||
amount of hidden layers between them.
|
||||
The number of neurons in the in- and output layers correspond to the
|
||||
desired dimensions of in- and outputs of the model.
|
||||
In conventional neural networks the information is fed forward from the
|
||||
input layer towards the output layer hence they are often called feed
|
||||
forward networks. Each neuron in a layer has the outputs of all
|
||||
neurons in the preceding layer as input and computes a accumulated
|
||||
value from these (fully connected). A
|
||||
illustration of an example neuronal network is given in
|
||||
Figure~\ref{fig:nn} and one of a neuron in Figure~\ref{fig:neuron}.
|
||||
|
||||
In conventional neural networks, the information is fed forward from the
|
||||
input layer towards the output layer, hence they are often called
|
||||
feed forward networks. Each neuron in a layer has the outputs of all
|
||||
neurons in the preceding layer as input and computes an accumulated
|
||||
value from these (fully connected).
|
||||
% An illustration of an example neural network is given in
|
||||
% Figure~\ref{fig:nn} and one of a neuron in Figure~\ref{fig:neuron}.
|
||||
Illustrations of a neural network and the structure of a neuron are given
|
||||
in Figure~\ref{fig:nn} and Figure~\ref{fig:neuron}.
|
||||
|
||||
\tikzset{%
|
||||
every neuron/.style={
|
||||
@ -88,71 +91,71 @@ Figure~\ref{fig:nn} and one of a neuron in Figure~\ref{fig:neuron}.
|
||||
\node[fill=white,scale=1.5,inner xsep=10pt,inner ysep=10mm] at ($(hidden1-1)!.5!(hidden2-2)$) {$\dots$};
|
||||
|
||||
\end{tikzpicture}}%}
|
||||
\caption[Illustration of a neural network]{Illustration of a neural network with $d_i$ inputs, $l$
|
||||
\caption[Illustration of a Neural Network]{Illustration of a neural network with $d_i$ inputs, $l$
|
||||
hidden layers with $n_{\cdot}$ nodes in each layer, as well as
|
||||
$d_o$ outputs.
|
||||
}
|
||||
\label{fig:nn}
|
||||
\end{figure}
|
||||
|
||||
\subsection{\titlecap{nonlinearity of neural networks}}
|
||||
\subsection{Nonlinearity of Neural Networks}
|
||||
|
||||
The arguably most important feature of neural networks that sets them
|
||||
The arguably most important feature of neural networks which sets them
|
||||
apart from linear models is the activation function implemented in the
|
||||
neurons. As seen in Figure~\ref{fig:neuron} on the weighted sum of the
|
||||
inputs a activation function $\sigma$ is applied resulting in the
|
||||
neurons. As illustrated in Figure~\ref{fig:neuron} on the weighted sum of the
|
||||
inputs an activation function $\sigma$ is applied resulting in the
|
||||
output of the $k$-th neuron in a layer $l$ with $m$ nodes in layer $l-1$
|
||||
being given by
|
||||
\begin{align*}
|
||||
o_{l,k} = \sigma\left(b_{l,k} + \sum_{j=1}^{m} w_{l,k,j}
|
||||
o_{l-1,j}\right)
|
||||
o_{l-1,j}\right),
|
||||
\end{align*}
|
||||
for weights $w_{l,k,j}$ and biases $b_{l,k}$. For a network with $L$
|
||||
hidden layers and inputs $o_{0}$ the final outputs of the network
|
||||
are thus given by $o_{L+1}$.
|
||||
The activation function is usually chosen nonlinear (a linear one
|
||||
would result in the entire model collapsing into a linear one\todo{beweis?}) which
|
||||
would result in the entire network collapsing into a linear model) which
|
||||
allows it to better model data where the relation of in- and output is
|
||||
of nonlinear nature.
|
||||
There are two types of activation functions, saturating and not
|
||||
saturating ones. Popular examples for the former are sigmoid
|
||||
functions where most commonly the standard logisitc function or tangens
|
||||
functions where most commonly the standard logistic function or tangens
|
||||
hyperbolicus are used
|
||||
as they have easy to compute derivatives which is desirable for gradient
|
||||
based optimization algorithms. The standard logistic function (often
|
||||
referred to simply as sigmoid function) is given by
|
||||
as they have easy to compute derivatives which is desirable for
|
||||
gradient-based optimization algorithms. The standard logistic function
|
||||
(often simply referred to as sigmoid function) is given by
|
||||
\[
|
||||
f(x) = \frac{1}{1+e^{-x}}
|
||||
\]
|
||||
and has a realm of $[0,1]$. Its usage as an activation function is
|
||||
motivated by modeling neurons which
|
||||
are close to deactive until a certain threshold is hit and then grow in
|
||||
intensity until they are fully
|
||||
active. This is similar to the behavior of neurons in
|
||||
brains\todo{besser schreiben}. The tangens hyperbolicus is given by
|
||||
and has a realm of $[0,1]$. The tangens hyperbolicus is given by
|
||||
\[
|
||||
\tanh(x) = \frac{2}{e^{2x}+1}
|
||||
\]
|
||||
and has a realm of $[-1,1]$.
|
||||
The downside of these saturating activation functions is that given
|
||||
their saturating nature their derivatives are close to zero for large or small
|
||||
input values. This can slow or hinder the progress of gradient based methods.
|
||||
and has a realm of $[-1,1]$. Both functions result in neurons that are
|
||||
close to inactive until a certain threshold is reached where they grow
|
||||
until saturation.
|
||||
The downside of these saturating activation functions is, that their
|
||||
derivatives are close to zero on most of their realm, only assuming
|
||||
larger values in proximity to zero.
|
||||
This can hinder the progress of gradient-based methods.
|
||||
|
||||
The nonsaturating activation functions commonly used are the recified
|
||||
The nonsaturating activation functions commonly used are the rectified
|
||||
linear unit (ReLU) or the leaky ReLU. The ReLU is given by
|
||||
\[
|
||||
\begin{equation}
|
||||
r(x) = \max\left\{0, x\right\}.
|
||||
\]
|
||||
\label{eq:relu}
|
||||
\end{equation}
|
||||
This has the benefit of having a constant derivative for values larger
|
||||
than zero. However the derivative being zero for negative values has
|
||||
the same downside for
|
||||
fitting the model with gradient based methods. The leaky ReLU is
|
||||
than zero. However, the derivative being zero for negative values has
|
||||
the same downside for
|
||||
fitting the model with gradient-based methods. The leaky ReLU is
|
||||
an attempt to counteract this problem by assigning a small constant
|
||||
derivative to all values smaller than zero and for scalar $\alpha$ is given by
|
||||
derivative to all values smaller than zero and for a scalar $\alpha$ is given by
|
||||
\[
|
||||
l(x) = \max\left\{0, x\right\} + \alpha \min \left\{0, x\right\}.
|
||||
\]
|
||||
In order to illustrate these functions plots of them are given in Figure~\ref{fig:activation}.
|
||||
In Figure~\ref{fig:activation} visualizations of these functions are given.
|
||||
%In order to illustrate these functions plots of them are given in Figure~\ref{fig:activation}.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
@ -238,7 +241,7 @@ In order to illustrate these functions plots of them are given in Figure~\ref{fi
|
||||
% \draw [->] (hidden-\i) -- (output-\j);
|
||||
|
||||
\end{tikzpicture}
|
||||
\caption{Structure of a single neuron}
|
||||
\caption[Structure of a Single Neuron]{Structure of a single neuron.}
|
||||
\label{fig:neuron}
|
||||
\end{figure}
|
||||
|
||||
@ -251,7 +254,7 @@ In order to illustrate these functions plots of them are given in Figure~\ref{fi
|
||||
\addplot [domain=-5:5, samples=101,unbounded coords=jump]{1/(1+exp(-x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{\titlecap{standard logistic function}}
|
||||
\caption{Standard Logistic Function}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.45\linewidth}
|
||||
\centering
|
||||
@ -260,7 +263,7 @@ In order to illustrate these functions plots of them are given in Figure~\ref{fi
|
||||
\addplot[domain=-5:5, samples=100]{tanh(x)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{\titlecap{tangens hyperbolicus}}
|
||||
\caption{Tangens Hyperbolicus}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.45\linewidth}
|
||||
\centering
|
||||
@ -282,7 +285,7 @@ In order to illustrate these functions plots of them are given in Figure~\ref{fi
|
||||
\end{tikzpicture}
|
||||
\caption{Leaky ReLU, $\alpha = 0.1$}
|
||||
\end{subfigure}
|
||||
\caption{Plots of the activation functions}
|
||||
\caption[Plots of the Activation Functions]{Plots of the activation functions.}
|
||||
\label{fig:activation}
|
||||
\end{figure}
|
||||
|
||||
@ -291,9 +294,9 @@ In order to illustrate these functions plots of them are given in Figure~\ref{fi
|
||||
|
||||
As neural networks are a parametric model we need to fit the
|
||||
parameters to the input
|
||||
data in order to get meaningful results from the network. To be able
|
||||
do this we first need to discuss how we interpret the output of the
|
||||
neural network.
|
||||
data to get meaningful predictions from the network. In order
|
||||
to accomplish this we need to discuss how we interpret the output of the
|
||||
neural network and assess the quality of predictions.
|
||||
|
||||
% After a neural network model is designed, like most statistical models
|
||||
% it has to be fit to the data. In the machine learning context this is
|
||||
@ -311,20 +314,20 @@ neural network.
|
||||
% data-point in fitting the model, where usually some distance between
|
||||
% the model output and the labels is minimized.
|
||||
|
||||
\subsubsection{\titlecap{nonliniarity in the last layer}}
|
||||
\subsubsection{Nonlinearity in the Last Layer}
|
||||
|
||||
Given the nature of the neural net the outputs of the last layer are
|
||||
real numbers. For regression tasks this is desirable, for
|
||||
Given the nature of the neural net, the outputs of the last layer are
|
||||
real numbers. For regression tasks, this is desirable, for
|
||||
classification problems however some transformations might be
|
||||
necessary.
|
||||
As the goal in the latter is to predict a certain class or classes for
|
||||
an object the output needs to be of a form that allows this
|
||||
an object, the output needs to be of a form that allows this
|
||||
interpretation.
|
||||
Commonly the nodes in the output layer each correspond to a class and
|
||||
the class chosen as prediction is the one with the highest value at
|
||||
the corresponding output node.
|
||||
This corresponds to a transformation of the output
|
||||
vector $o$ into a one-hot vector
|
||||
This can be modeled as a transformation of the output
|
||||
vector $o \in \mathbb{R}^n$ into a one-hot vector
|
||||
\[
|
||||
\text{pred}_i =
|
||||
\begin{cases}
|
||||
@ -332,9 +335,9 @@ vector $o$ into a one-hot vector
|
||||
0,& \text{else}.
|
||||
\end{cases}
|
||||
\]
|
||||
This however makes training the model with gradient based methods impossible, as the derivative of
|
||||
This however makes training the model with gradient-based methods impossible, as the derivative of
|
||||
the transformation is either zero or undefined.
|
||||
A continuous transformation that is close to the argmax one is given by
|
||||
An continuous transformation that is close to argmax is given by
|
||||
softmax
|
||||
\begin{equation}
|
||||
\text{softmax}(o)_i = \frac{e^{o_i}}{\sum_j e^{o_j}}.
|
||||
@ -342,10 +345,10 @@ softmax
|
||||
\end{equation}
|
||||
The softmax function transforms the realm of the output to the interval $[0,1]$
|
||||
and the individual values sum to one, thus the output can be interpreted as
|
||||
a probability for each class given the input.
|
||||
Additionally to being differentiable this allows for evaluataing the
|
||||
cetainiy of a prediction, rather than just whether it is accurate.
|
||||
A similar effect is obtained when for a binary or two class problem the
|
||||
a probability for each class conditioned on the input.
|
||||
Additionally, to being differentiable this allows to evaluate the
|
||||
certainty of a prediction, rather than just whether it is accurate.
|
||||
A similar effect is obtained when for a binary or two-class problem the
|
||||
sigmoid function
|
||||
\[
|
||||
f(x) = \frac{1}{1 + e^{-x}}
|
||||
@ -353,7 +356,6 @@ sigmoid function
|
||||
is used and the output $f(x)$ is interpreted as the probability for
|
||||
the first class and $1-f(x)$ for the second class.
|
||||
|
||||
\todo{vielleicht additiv invarianz}
|
||||
% Another property that makes softmax attractive is the invariance to addition
|
||||
% \[
|
||||
% \text{sofmax}(o) = \text{softmax}(o + c
|
||||
@ -389,26 +391,26 @@ the first class and $1-f(x)$ for the second class.
|
||||
% way to circumvent this problem is to normalize the output vector is
|
||||
% such a way that the entries add up to one, this allows for the
|
||||
% interpretation of probabilities assigned to each class.
|
||||
|
||||
\clearpage
|
||||
\subsubsection{Error Measurement}
|
||||
|
||||
In order to train the network we need to be able to make an assessment
|
||||
about the quality of predictions using some error measure.
|
||||
In order to train the network we need to be able to assess the quality
|
||||
of predictions using some error measure.
|
||||
The choice of the error
|
||||
function is highly dependent on the type of the problem. For
|
||||
regression problems a commonly used error measure is the mean squared
|
||||
function is highly dependent on the type of problem. For
|
||||
regression problems, a commonly used error measure is the mean squared
|
||||
error (MSE)
|
||||
which for a function $f$ and data $(x_i,y_i), i=1,\dots,n$ is given by
|
||||
which for a function $f$ and data $(x_i,y_i), i \in \left\{1,\dots,n\right\}$ is given by
|
||||
\[
|
||||
MSE(f) = \frac{1}{n} \sum_i^n \left(f(x_i) - y_i\right)^2.
|
||||
\]
|
||||
However depending on the problem error measures with different
|
||||
properties might be needed, for example in some contexts it is
|
||||
However, depending on the problem error measures with different
|
||||
properties might be needed. For example in some contexts it is
|
||||
required to consider a proportional rather than absolute error.
|
||||
|
||||
As discussed above the output of a neural network for a classification
|
||||
problem can be interpreted as a probability distribution over the classes
|
||||
conditioned on the input. In this case it is desirable to
|
||||
conditioned on the input. In this case, it is desirable to
|
||||
use error functions designed to compare probability distributions. A
|
||||
widespread error function for this use case is the categorical cross entropy (\textcite{PRML}),
|
||||
which for two discrete distributions $p, q$ with the same realm $C$ is given by
|
||||
@ -416,33 +418,35 @@ which for two discrete distributions $p, q$ with the same realm $C$ is given by
|
||||
H(p, q) = \sum_{c \in C} p(c) \ln\left(\frac{1}{q(c)}\right),
|
||||
\]
|
||||
comparing $q$ to a target density $p$.
|
||||
For a data set $(x_i,y_i), i = 1,\dots,n$ where each $y_{i,c}$
|
||||
corresponds to the probability of class $c$ given $x_i$ and predictor
|
||||
For a data set $(x_i,y_i), i \in \left\{1,\dots,n\right\}$ where each $y_{i,c}$
|
||||
corresponds to the probability of class $c$ given $x_i$ and a predictor
|
||||
$f$ we get the loss function
|
||||
\begin{equation}
|
||||
CE(f) = \sum_{i=1}^n H(y_i, f(x_i)).
|
||||
\label{eq:cross_entropy}
|
||||
\end{equation}
|
||||
|
||||
\todo{Den satz einbauen}
|
||||
-Maximum Likelihood
|
||||
-Ableitung mit softmax pseudo linear -> fast improvemtns possible
|
||||
% \todo{Den satz einbauen}
|
||||
% -Maximum Likelihood
|
||||
% -Ableitung mit softmax pseudo linear -> fast improvemtns possible
|
||||
|
||||
\subsubsection{Gradient Descent Algorithm}
|
||||
|
||||
Trying to find the optimal parameter for fitting the model to the data
|
||||
can be a hard problem. Given the complex nature of a neural network
|
||||
with many layers and neurons it is hard to predict the impact of
|
||||
with many layers and neurons, it is hard to predict the impact of
|
||||
single parameters on the accuracy of the output.
|
||||
Thus using numeric optimization algorithms is the only
|
||||
feasible way to fit the model. A attractive algorithm for training
|
||||
neural networks is gradient descent where each parameter
|
||||
$\theta_i$\todo{parameter name?} is
|
||||
iterative changed according to the gradient regarding the error
|
||||
measure and a step size $\gamma$. For this all parameters are
|
||||
initialized (often random or close to zero) and then iteratively
|
||||
updated until a certain stopping criterion is hit, mostly either being a fixed
|
||||
number of iterations or a desired upper limit for the error measure.
|
||||
feasible way to fit the model.
|
||||
|
||||
An attractive algorithm for training
|
||||
neural networks is gradient descent. Here all parameters are
|
||||
initialized with certain values (often random or close to zero) and
|
||||
then iteratively updated. The updates are made in the direction of the
|
||||
gradient regarding the error with a step size $\gamma$ until a
|
||||
specified stopping criterion is hit.
|
||||
% This mostly either being a fixed
|
||||
% number of iterations or a desired upper limit for the error measure.
|
||||
% For a function $f_\theta$ with parameters $\theta \in \mathbb{R}^n$
|
||||
% and a error function $L(f_\theta)$ the gradient descent algorithm is
|
||||
% given in \ref{alg:gd}.
|
||||
@ -465,21 +469,21 @@ number of iterations or a desired upper limit for the error measure.
|
||||
|
||||
The algorithm for gradient descent is given in
|
||||
Algorithm~\ref{alg:gd}. In the context of fitting a neural network
|
||||
$f_\theta$ corresponds to a error measurement of a neural network
|
||||
$f_\theta$ corresponds to an error measurement of a neural network
|
||||
$\mathcal{NN}_{\theta}$ where $\theta$ is a vector
|
||||
containing all the weights and biases of the network.
|
||||
As can be seen this requires computing the derivative of the network
|
||||
As can be seen, this requires computing the derivative of the network
|
||||
with regard to each variable. With the number of variables getting
|
||||
large in networks with multiple layers of high neuron count naively
|
||||
computing the derivatives can get quite memory and computational
|
||||
expensive.
|
||||
By using the chain rule and exploiting the layered structure we can
|
||||
compute the parameter update much more efficiently, this practice is
|
||||
called backpropagation and was introduced by
|
||||
\textcite{backprop}\todo{nachsehen ob richtige quelle}. The algorithm
|
||||
compute the parameter update much more efficiently. This practice is
|
||||
called backpropagation and was introduced for use in neural networks by
|
||||
\textcite{backprop}. The algorithm
|
||||
for one data point is given in Algorithm~\ref{alg:backprop}, but for all error
|
||||
functions that are sums of errors for single data points (MSE, cross
|
||||
entropy) backpropagation works analogous for larger training data.
|
||||
entropy) backpropagation works analogously for larger training data.
|
||||
|
||||
% \subsubsection{Backpropagation}
|
||||
|
||||
@ -496,8 +500,9 @@ entropy) backpropagation works analogous for larger training data.
|
||||
\begin{algorithm}[H]
|
||||
\SetAlgoLined
|
||||
\KwInput{Inputs $o_0$, neural network
|
||||
with $L$ hidden layers and weights $w$ and biases $b$ for $n_l$
|
||||
nodes and activation function $\sigma_l$ in layer $l$, loss $\tilde{L}$.}
|
||||
with $L$ hidden layers, weights $w$, and biases $b$ for $n_l$
|
||||
nodes as well as an activation function $\sigma_l$ in layer $l$
|
||||
and loss function $\tilde{L}$.}
|
||||
Forward Propagation:
|
||||
\For{$l \in \left\{1, \dots, L+1\right\}$}{
|
||||
Compute values for layer $l$:
|
||||
|
@ -1,8 +1,6 @@
|
||||
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
|
||||
\babel@toc {english}{}
|
||||
\defcounter {refsection}{0}\relax
|
||||
\contentsline {table}{\numberline {4.1}{\ignorespaces Performance metrics of the networks trained in Figure~\ref {fig:sgd_vs_gd} after 20 training epochs.\relax }}{29}{table.caption.32}%
|
||||
\contentsline {table}{\numberline {4.1}{\ignorespaces Values of Test Accuracies for Models Trained on Subsets of MNIST Handwritten Digits}}{41}%
|
||||
\defcounter {refsection}{0}\relax
|
||||
\contentsline {table}{\numberline {4.2}{\ignorespaces Values of the test accuracy of the model trained 10 times on random MNIST handwriting training sets containing 1, 10 and 100 data points per class after 125 epochs. The mean accuracy achieved for the full set employing both overfitting measures is \relax }}{42}{table.4.2}%
|
||||
\defcounter {refsection}{0}\relax
|
||||
\contentsline {table}{\numberline {4.3}{\ignorespaces Values of the test accuracy of the model trained 10 times on random fashion MNIST training sets containing 1, 10 and 100 data points per class after 125 epochs. The mean accuracy achieved for the full set employing both overfitting measures is \relax }}{42}{table.4.3}%
|
||||
\contentsline {table}{\numberline {4.2}{\ignorespaces Values of Test Accuracies for Models Trained on Subsets of Fashion MNIST}}{41}%
|
||||
|
25
TeX/main.out
Normal file
25
TeX/main.out
Normal file
@ -0,0 +1,25 @@
|
||||
\BOOKMARK [1][-]{section.1}{Introduction}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{Introduction to Neural Networks}{}% 2
|
||||
\BOOKMARK [2][-]{subsection.2.1}{Nonlinearity of Neural Networks}{section.2}% 3
|
||||
\BOOKMARK [2][-]{subsection.2.2}{Training Neural Networks}{section.2}% 4
|
||||
\BOOKMARK [3][-]{subsubsection.2.2.1}{Nonlinearity in the Last Layer}{subsection.2.2}% 5
|
||||
\BOOKMARK [3][-]{subsubsection.2.2.2}{Error Measurement}{subsection.2.2}% 6
|
||||
\BOOKMARK [3][-]{subsubsection.2.2.3}{Gradient Descent Algorithm}{subsection.2.2}% 7
|
||||
\BOOKMARK [1][-]{section.3}{Shallow Neural Networks}{}% 8
|
||||
\BOOKMARK [2][-]{subsection.3.1}{Convergence Behavior of One-Dimensional Randomized Shallow Neural Networks}{section.3}% 9
|
||||
\BOOKMARK [2][-]{subsection.3.2}{Simulations}{section.3}% 10
|
||||
\BOOKMARK [1][-]{section.4}{Application of Neural Networks to Higher Complexity Problems}{}% 11
|
||||
\BOOKMARK [2][-]{subsection.4.1}{Convolution}{section.4}% 12
|
||||
\BOOKMARK [2][-]{subsection.4.2}{Convolutional Neural Networks}{section.4}% 13
|
||||
\BOOKMARK [2][-]{subsection.4.3}{Stochastic Training Algorithms}{section.4}% 14
|
||||
\BOOKMARK [2][-]{subsection.4.4}{Modified Stochastic Gradient Descent}{section.4}% 15
|
||||
\BOOKMARK [2][-]{subsection.4.5}{Combating Overfitting}{section.4}% 16
|
||||
\BOOKMARK [3][-]{subsubsection.4.5.1}{Dropout}{subsection.4.5}% 17
|
||||
\BOOKMARK [3][-]{subsubsection.4.5.2}{Manipulation of Input Data}{subsection.4.5}% 18
|
||||
\BOOKMARK [3][-]{subsubsection.4.5.3}{Comparisons}{subsection.4.5}% 19
|
||||
\BOOKMARK [3][-]{subsubsection.4.5.4}{Effectiveness for Small Training Sets}{subsection.4.5}% 20
|
||||
\BOOKMARK [1][-]{section.5}{Summary and Outlook}{}% 21
|
||||
\BOOKMARK [1][-]{section*.28}{Appendices}{}% 22
|
||||
\BOOKMARK [1][-]{Appendix.a.A}{Notes on Proofs of Lemmata in Section 3.1}{}% 23
|
||||
\BOOKMARK [1][-]{Appendix.a.B}{Implementations}{}% 24
|
||||
\BOOKMARK [1][-]{Appendix.a.C}{Additional Comparisons}{}% 25
|
425
TeX/main.tex
425
TeX/main.tex
@ -1,4 +1,4 @@
|
||||
\documentclass[a4paper, 12pt, draft=true]{article}
|
||||
\documentclass[a4paper, 12pt]{article}
|
||||
|
||||
%\usepackage[margin=1in]{geometry}
|
||||
%\geometry{a4paper, left=30mm, right=40mm,top=25mm, bottom=20mm}
|
||||
@ -34,17 +34,17 @@
|
||||
\usepackage{todonotes}
|
||||
\usepackage{lipsum}
|
||||
\usepackage[ruled,vlined]{algorithm2e}
|
||||
\usepackage{showframe}
|
||||
%\usepackage{showframe}
|
||||
\usepackage[protrusion=true, expansion=true, kerning=true, letterspace
|
||||
= 150]{microtype}
|
||||
\usepackage{titlecaps}
|
||||
%\usepackage{titlecaps}
|
||||
\usepackage{afterpage}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{chngcntr}
|
||||
\usepackage{hyperref}
|
||||
\hypersetup{
|
||||
linktoc=all, %set to all if you want both sections and subsections linked
|
||||
}
|
||||
%\usepackage{hyperref}
|
||||
% \hypersetup{
|
||||
% linktoc=all, %set to all if you want both sections and subsections linked
|
||||
% }
|
||||
\allowdisplaybreaks
|
||||
|
||||
\captionsetup[sub]{justification=centering}
|
||||
@ -245,8 +245,7 @@
|
||||
|
||||
\begin{center}
|
||||
\vspace{1cm}
|
||||
\huge \textbf{\titlecap{neural networks and their application on
|
||||
higher complexity problems}}\\
|
||||
\huge \textbf{Neural Networks and their Application on Higher Complexity Problems}\\
|
||||
\vspace{1cm}
|
||||
\huge \textbf{Tim Tobias Arndt}\\
|
||||
\vspace{1cm}
|
||||
@ -260,7 +259,6 @@
|
||||
\clearpage
|
||||
\listoffigures
|
||||
\listoftables
|
||||
\listoftodos
|
||||
\newpage
|
||||
\pagenumbering{arabic}
|
||||
% Introduction
|
||||
@ -288,413 +286,6 @@
|
||||
% Appendix A
|
||||
\input{appendixA.tex}
|
||||
|
||||
\section{\titlecap{additional comparisons}}
|
||||
In this section we show additional comparisons for the neural networks
|
||||
trained in Section~\ref{...}. In ... the same comparisons given for
|
||||
the test accuracy are given for the cross entropy loss on the test
|
||||
set, as well as on the training set.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\small
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 sample per class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 samples per class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 samples per class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption{Mean test accuracies of the models fitting the sampled MNIST
|
||||
handwriting datasets over the 125 epochs of training.}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\small
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style =
|
||||
{draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 sample per class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}, ymin = {0.62}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 samples per class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=val_loss, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 samples per class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption{Mean test accuracies of the models fitting the sampled fashion MNIST
|
||||
over the 125 epochs of training.}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\small
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 sample per class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_00_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 samples per class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}, ymin = {0.92}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_dropout_02_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_00_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/adam_datagen_dropout_02_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 samples per class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption{Mean test accuracies of the models fitting the sampled MNIST
|
||||
handwriting datasets over the 125 epochs of training.}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\small
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style =
|
||||
{draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_1.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_1.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G. + D. 0.2}}
|
||||
\addlegendentry{\footnotesize{D. 0.4}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{1 sample per class}
|
||||
\vspace{0.25cm}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch},ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}, ymin = {0.62}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_10.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_10.mean};
|
||||
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{10 samples per class}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}[h]{\textwidth}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[legend cell align={left},yticklabel style={/pgf/number format/fixed,
|
||||
/pgf/number format/precision=3},tick style = {draw = none}, width = 0.9875\textwidth,
|
||||
height = 0.4\textwidth, legend style={at={(0.9825,0.0175)},anchor=south east},
|
||||
xlabel = {epoch}, ylabel = {Test Accuracy}, cycle
|
||||
list/Dark2, every axis plot/.append style={line width
|
||||
=1.25pt}]
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_0_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_dropout_2_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_0_100.mean};
|
||||
\addplot table
|
||||
[x=epoch, y=accuracy, col sep=comma, mark = none]
|
||||
{Figures/Data/fashion_datagen_dropout_2_100.mean};
|
||||
|
||||
\addlegendentry{\footnotesize{Default.}}
|
||||
\addlegendentry{\footnotesize{D. 0.2}}
|
||||
\addlegendentry{\footnotesize{G.}}
|
||||
\addlegendentry{\footnotesize{G + D. 0.2}}
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{100 samples per class}
|
||||
\vspace{.25cm}
|
||||
\end{subfigure}
|
||||
\caption{Mean test accuracies of the models fitting the sampled fashion MNIST
|
||||
over the 125 epochs of training.}
|
||||
\end{figure}
|
||||
|
||||
\end{document}
|
||||
|
||||
%%% Local Variables:
|
||||
|
442
TeX/theo_3_8.tex
442
TeX/theo_3_8.tex
@ -5,16 +5,16 @@
|
||||
%%% TeX-master: "main"
|
||||
%%% End:
|
||||
\section{Shallow Neural Networks}
|
||||
|
||||
\label{sec:shallownn}
|
||||
% In order to get a some understanding of the behavior of neural
|
||||
% networks we study a simplified class of networks called shallow neural
|
||||
% networks in this chapter.
|
||||
% We consider shallow neural networks consist of a single
|
||||
% hidden layer and
|
||||
In order to get some understanding of the behavior of neural networks
|
||||
To get some understanding of the behavior of neural networks
|
||||
we examine a simple class of networks in this chapter. We consider
|
||||
networks that contain only one hidden layer and have a single output
|
||||
node. We call these networks shallow neural networks.
|
||||
node and call these networks shallow neural networks.
|
||||
\begin{Definition}[Shallow neural network, Heiss, Teichmann, and
|
||||
Wutte (2019, Definition 1.4)]
|
||||
For a input dimension $d$ and a Lipschitz continuous activation function $\sigma:
|
||||
@ -85,8 +85,8 @@ with
|
||||
% \label{fig:shallowNN}
|
||||
% \end{figure}
|
||||
|
||||
As neural networks with a large amount of nodes have a large amount of
|
||||
parameters that can be tuned it can often fit the data quite well. If
|
||||
As neural networks with a large number of nodes have a large amount of
|
||||
tunable parameters it can often fit data quite well. If
|
||||
a ReLU activation function
|
||||
\[
|
||||
\sigma(x) \coloneqq \max{(0, x)}
|
||||
@ -106,7 +106,7 @@ on MSE will perfectly fit the data.
|
||||
minimizing squared error loss.
|
||||
\proof
|
||||
W.l.o.g. all values $x_{ij}^{\text{train}} \in [0,1],~\forall i \in
|
||||
\left\{1,\dots\right\}, j \in \left\{1,\dots,d\right\}$. Now we
|
||||
\left\{1,\dots, t\right\}, j \in \left\{1,\dots,d\right\}$. Now we
|
||||
chose $v^*$ in order to calculate a unique value for all
|
||||
$x_i^{\text{train}}$:
|
||||
\[
|
||||
@ -142,30 +142,32 @@ on MSE will perfectly fit the data.
|
||||
and $\vartheta^* = (w^*, b^*, v^*, c = 0)$ we get
|
||||
\[
|
||||
\mathcal{NN}_{\vartheta^*} (x_i^{\text{train}}) = \sum_{k =
|
||||
1}^{i-1} w_k\left(\left(v^*\right)^{\mathrm{T}}
|
||||
x_i^{\text{train}}\right) + w_i\left(\left(v^*\right)^{\mathrm{T}}
|
||||
1}^{i-1} w_k\left(b_k^* + \left(v^*\right)^{\mathrm{T}}
|
||||
x_i^{\text{train}}\right) + w_i\left(b_i^* +\left(v^*\right)^{\mathrm{T}}
|
||||
x_i^{\text{train}}\right) = y_i^{\text{train}}.
|
||||
\]
|
||||
As the squared error of $\mathcal{NN}_{\vartheta^*}$ is zero all
|
||||
squared error loss minimizing shallow networks with at least $t$ hidden
|
||||
nodes will perfectly fit the data.
|
||||
\qed
|
||||
nodes will perfectly fit the data. \qed
|
||||
\label{theo:overfit}
|
||||
\end{Theorem}
|
||||
|
||||
However this behavior is often not desired as over fit models generally
|
||||
have bad generalization properties especially if noise is present in
|
||||
However, this behavior is often not desired as overfit models tend to
|
||||
have bad generalization properties, especially if noise is present in
|
||||
the data. This effect is illustrated in
|
||||
Figure~\ref{fig:overfit}. Here a shallow neural network that perfectly fits the
|
||||
training data is
|
||||
constructed according to the proof of Theorem~\ref{theo:overfit} and
|
||||
Figure~\ref{fig:overfit}.
|
||||
|
||||
Here a shallow neural network is
|
||||
constructed according to the proof of Theorem~\ref{theo:overfit} to
|
||||
perfectly fit some data and
|
||||
compared to a cubic smoothing spline
|
||||
(Definition~\ref{def:wrs}). While the neural network
|
||||
fits the data better than the spline, the spline represents the
|
||||
underlying mechanism that was used to generate the data more accurately. The better
|
||||
generalization of the spline compared to the network is further
|
||||
demonstrated by the better validation error computed on newly generated
|
||||
demonstrated by the better performance on newly generated
|
||||
test data.
|
||||
|
||||
In order to improve the accuracy of the model we want to reduce
|
||||
overfitting. A possible way to achieve this is by explicitly
|
||||
regularizing the network through the cost function as done with
|
||||
@ -173,48 +175,47 @@ ridge penalized networks
|
||||
(Definition~\ref{def:rpnn}) where large weights $w$ are punished. In
|
||||
Theorem~\ref{theo:main1} we will
|
||||
prove that this will result in the shallow neural network converging to
|
||||
regressions splines as the amount of nodes in the hidden layer is
|
||||
a form of splines as the number of nodes in the hidden layer is
|
||||
increased.
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\pgfplotsset{
|
||||
compat=1.11,
|
||||
legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.15cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.3cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth]
|
||||
\addplot table
|
||||
[x=x, y=y, col sep=comma, only marks,mark options={scale =
|
||||
0.7}] {Figures/Data/overfit.csv};
|
||||
\addplot [red, line width=0.8pt] table [x=x_n, y=s_n, col
|
||||
sep=comma, forget plot] {Figures/Data/overfit.csv};
|
||||
\addplot [black, line width=0.8pt] table [x=x_n, y=y_n, col
|
||||
sep=comma] {Figures/Data/overfit.csv};
|
||||
\addplot [black, line width=0.8pt, dashed] table [x=x, y=y, col
|
||||
sep=comma] {Figures/Data/overfit_spline.csv};
|
||||
|
||||
\addlegendentry{\footnotesize{data}};
|
||||
\addlegendentry{\footnotesize{$\mathcal{NN}_{\vartheta^*}$}};
|
||||
\addlegendentry{\footnotesize{spline}};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption[Overfitting of shallow neural networks]{For data of the form $y=\sin(\frac{x+\pi}{2 \pi}) +
|
||||
\begin{figure}[h]
|
||||
\pgfplotsset{
|
||||
compat=1.11,
|
||||
legend image code/.code={
|
||||
\draw[mark repeat=2,mark phase=2]
|
||||
plot coordinates {
|
||||
(0cm,0cm)
|
||||
(0.15cm,0cm) %% default is (0.3cm,0cm)
|
||||
(0.3cm,0cm) %% default is (0.6cm,0cm)
|
||||
};%
|
||||
}
|
||||
}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
||||
height = 0.6\textwidth]
|
||||
\addplot table
|
||||
[x=x, y=y, col sep=comma, only marks,mark options={scale =
|
||||
0.7}] {Figures/Data/overfit.csv};
|
||||
\addplot [red, line width=0.8pt] table [x=x_n, y=s_n, col
|
||||
sep=comma, forget plot] {Figures/Data/overfit.csv};
|
||||
\addplot [black, line width=0.8pt] table [x=x_n, y=y_n, col
|
||||
sep=comma] {Figures/Data/overfit.csv};
|
||||
\addplot [black, line width=0.8pt, dashed] table [x=x, y=y, col
|
||||
sep=comma] {Figures/Data/overfit_spline.csv};
|
||||
|
||||
\addlegendentry{\footnotesize{data}};
|
||||
\addlegendentry{\footnotesize{$\mathcal{NN}_{\vartheta^*}$}};
|
||||
\addlegendentry{\footnotesize{spline}};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption[Overfitting of Shallow Neural Networks]{For data of the form $y=\sin(\frac{x+\pi}{2 \pi}) +
|
||||
\varepsilon,~ \varepsilon \sim \mathcal{N}(0,0.4)$
|
||||
(\textcolor{blue}{blue dots}) the neural network constructed
|
||||
(\textcolor{blue}{blue}) the neural network constructed
|
||||
according to the proof of Theorem~\ref{theo:overfit} (black) and the
|
||||
underlying signal (\textcolor{red}{red}). While the network has no
|
||||
bias a cubic smoothing spline (black dashed) fits the data much
|
||||
bias a cubic smoothing spline (black, dashed) fits the data much
|
||||
better. For a test set of size 20 with uniformly distributed $x$
|
||||
values and responses of the same fashion as the training data the MSE of the neural network is
|
||||
0.30, while the MSE of the spline is only 0.14 thus generalizing
|
||||
@ -223,17 +224,20 @@ plot coordinates {
|
||||
\label{fig:overfit}
|
||||
\end{figure}
|
||||
|
||||
\clearpage
|
||||
\subsection{\titlecap{convergence behaviour of 1-dim. randomized shallow neural
|
||||
networks}}
|
||||
\vfill
|
||||
|
||||
\clearpage
|
||||
\subsection{Convergence Behavior of One-Dimensional Randomized Shallow
|
||||
Neural Networks}
|
||||
\label{sec:conv}
|
||||
|
||||
This section is based on \textcite{heiss2019}.
|
||||
|
||||
... shallow neural networks with a one dimensional input where the parameters in the
|
||||
In this section, we examine the convergence behavior of certain shallow
|
||||
neural networks.
|
||||
We consider shallow neural networks with a one dimensional input where the parameters in the
|
||||
hidden layer are randomized resulting in only the weights is the
|
||||
output layer being trainable.
|
||||
Additionally we assume all neurons use a ReLU as activation function
|
||||
Additionally, we assume all neurons use a ReLU as an activation function
|
||||
and call such networks randomized shallow neural networks.
|
||||
|
||||
% We will analyze the
|
||||
@ -271,14 +275,12 @@ and call such networks randomized shallow neural networks.
|
||||
% are penalized in the loss
|
||||
% function ridge penalized neural networks.
|
||||
|
||||
|
||||
We will prove that ... nodes .. a randomized shallow neural network will
|
||||
We will prove that if we penalize the amount of the trainable weights
|
||||
when fitting a randomized shallow neural network it will
|
||||
converge to a function that minimizes the distance to the training
|
||||
data with .. to its second derivative,
|
||||
if the $L^2$ norm of the trainable weights $w$ is
|
||||
penalized in the loss function.
|
||||
data with respect to its second derivative as the amount of nodes is increased.
|
||||
We call such a network that is fitted according to MSE and a penalty term for
|
||||
the amount of the weights a ridge penalized neural network.
|
||||
the $L^2$ norm of the trainable weights $w$ a ridge penalized neural network.
|
||||
% $\lam$
|
||||
% We call a randomized shallow neural network trained on MSE and
|
||||
% punished for the amount of the weights $w$ according to a
|
||||
@ -300,7 +302,7 @@ the amount of the weights a ridge penalized neural network.
|
||||
\mathcal{RN}^{*, \tilde{\lambda}}_{\omega}(x) \coloneqq
|
||||
\mathcal{RN}_{w^{*, \tilde{\lambda}}(\omega), \omega}
|
||||
\]
|
||||
with
|
||||
with \
|
||||
\[
|
||||
w^{*,\tilde{\lambda}}(\omega) :\in \argmin_{w \in
|
||||
\mathbb{R}^n} \underbrace{ \left\{\overbrace{\sum_{i = 1}^N \left(\mathcal{RN}_{w,
|
||||
@ -316,7 +318,7 @@ having minimal weights, resulting in the \textit{minimum norm
|
||||
network} $\mathcal{RN}_{w^{\text{min}}, \omega}$.
|
||||
\[
|
||||
\mathcal{RN}_{w^{\text{min}}, \omega} \text{ randomized shallow
|
||||
Neural network with weights } w^{\text{min}}:
|
||||
neural network with weights } w^{\text{min}}\colon
|
||||
\]
|
||||
\[
|
||||
w^{\text{min}} \in \argmin_{w \in \mathbb{R}^n} \norm{w}, \text{
|
||||
@ -328,8 +330,8 @@ For $\tilde{\lambda} \to \infty$ the learned
|
||||
function will resemble the data less and with the weights
|
||||
approaching $0$ will converge to the constant $0$ function.
|
||||
|
||||
In order to make the notation more convinient in the following the
|
||||
$\omega$ used to express the realised random parameters will no longer
|
||||
To make the notation more convenient, in the following the
|
||||
$\omega$ used to express the realized random parameters will no longer
|
||||
be explicitly mentioned.
|
||||
|
||||
We call a function that minimizes the cubic distance between training points
|
||||
@ -348,11 +350,11 @@ derivative of the function a cubic smoothing spline.
|
||||
\]
|
||||
\end{Definition}
|
||||
|
||||
We will show that for specific hyper parameters the ridge penalized
|
||||
We will show that for specific hyperparameters the ridge penalized
|
||||
shallow neural networks converge to a slightly modified variant of the
|
||||
cubic smoothing spline. We will need to incorporate the densities of the
|
||||
cubic smoothing spline. We need to incorporate the densities of the
|
||||
random parameters in the loss function of the spline to ensure
|
||||
convergence. Thus we define
|
||||
convergence. Thus we define
|
||||
the adapted weighted cubic smoothing spline where the loss for the second
|
||||
derivative is weighted by a function $g$ and the support of the second
|
||||
derivative of $f$ has to be a subset the support of $g$. The formal
|
||||
@ -371,7 +373,8 @@ definition is given in Definition~\ref{def:wrs}.
|
||||
% Definition~\ref{def:rpnn} converges a weighted cubic smoothing spline, as
|
||||
% the amount of hidden nodes is grown to inifity.
|
||||
|
||||
\begin{Definition}[Adapted weighted cubic smoothing spline]
|
||||
\begin{Definition}[Adapted weighted cubic smoothing spline, Heiss, Teichmann, and
|
||||
Wutte (2019, Definition 3.5)]
|
||||
\label{def:wrs}
|
||||
Let $x_i^{\text{train}}, y_i^{\text{train}} \in \mathbb{R}, i \in
|
||||
\left\{1,\dots,N\right\}$ be trainig data. For a given $\lambda \in \mathbb{R}_{>0}$
|
||||
@ -385,16 +388,15 @@ definition is given in Definition~\ref{def:wrs}.
|
||||
\lambda g(0) \int_{\supp(g)}\frac{\left(f''(x)\right)^2}{g(x)}
|
||||
dx\right\}}_{\eqqcolon F^{\lambda, g}(f)}.
|
||||
\]
|
||||
\todo{Anforderung an Ableitung von f, doch nicht?}
|
||||
% \todo{Anforderung an Ableitung von f, doch nicht?}
|
||||
\end{Definition}
|
||||
|
||||
Similarly to ridge weight penalized neural networks the parameter
|
||||
$\lambda$ controls a trade-off between accuracy on the training data
|
||||
and smoothness or low second dreivative. For $g \equiv 1$ and $\lambda \to 0$ the
|
||||
and smoothness or low second derivative. For $g \equiv 1$ and $\lambda \to 0$ the
|
||||
resulting function $f^{*, 0+}$ will interpolate the training data while minimizing
|
||||
the second derivative. Such a function is known as cubic spline
|
||||
interpolation.
|
||||
|
||||
\vspace{-0.2cm}
|
||||
\[
|
||||
f^{*, 0+} \text{ smooth spline interpolation: }
|
||||
\]
|
||||
@ -403,7 +405,6 @@ interpolation.
|
||||
\argmin_{\substack{f \in \mathcal{C}^2(\mathbb{R}), \\ f(x_i^{\text{train}}) =
|
||||
y_i^{\text{train}}}} = \left( \int _{\mathbb{R}} (f''(x))^2dx\right).
|
||||
\]
|
||||
|
||||
For $\lambda \to \infty$ on the other hand $f_g^{*\lambda}$ converges
|
||||
to linear regression of the data.
|
||||
|
||||
@ -412,16 +413,16 @@ the ridge penalized shallow neural network to adapted cubic smoothing splines.
|
||||
% In order to show that ridge penalized shallow neural networks converge
|
||||
% to adapted cubic smoothing splines for a growing amount of hidden nodes we
|
||||
% define two intermediary functions.
|
||||
One being a smooth approximation of
|
||||
the neural network, and a randomized shallow neural network designed
|
||||
One being a smooth approximation of a
|
||||
neural network and the other being a randomized shallow neural network designed
|
||||
to approximate a spline.
|
||||
In order to properly BUILD these functions we need to take the points
|
||||
of the network into consideration where the TRAJECTORY of the learned
|
||||
In order to properly construct these functions, we need to take the points
|
||||
of the network into consideration where the trajectory of the learned
|
||||
function changes
|
||||
(or their points of discontinuity).
|
||||
As we use the ReLU activation the function learned by the
|
||||
network will possess points of discontinuity where a neuron in the hidden
|
||||
layer gets activated (goes from 0 -> x>0). We formalize these points
|
||||
layer gets activated and their output is no longer zero. We formalize these points
|
||||
as kinks in Definition~\ref{def:kink}.
|
||||
\begin{Definition}
|
||||
\label{def:kink}
|
||||
@ -439,9 +440,9 @@ as kinks in Definition~\ref{def:kink}.
|
||||
\item Let $\xi_k \coloneqq -\frac{b_k}{v_k}$ be the k-th kink of $\mathcal{RN}_w$.
|
||||
\item Let $g_{\xi}(\xi_k)$ be the density of the kinks $\xi_k =
|
||||
- \frac{b_k}{v_k}$ in accordance to the distributions of $b_k$ and
|
||||
$v_k$.
|
||||
$v_k$. With $\supp(g_\xi) = \left[C_{g_\xi}^l, C_{g_\xi}^u\right]$.
|
||||
\item Let $h_{k,n} \coloneqq \frac{1}{n g_{\xi}(\xi_k)}$ be the
|
||||
average estmated distance from kink $\xi_k$ to the next nearest
|
||||
average estimated distance from kink $\xi_k$ to the next nearest
|
||||
one.
|
||||
\end{enumerate}
|
||||
\end{Definition}
|
||||
@ -457,40 +458,36 @@ network by applying the kernel similar to convolution.
|
||||
corresponding kink density $g_{\xi}$ as given by
|
||||
Definition~\ref{def:kink}.
|
||||
In order to smooth the RSNN consider following kernel for every $x$:
|
||||
|
||||
\[
|
||||
\kappa_x(s) \coloneqq \mathds{1}_{\left\{\abs{s} \leq \frac{1}{2 \sqrt{n}
|
||||
g_{\xi}(x)}\right\}}(s)\sqrt{n} g_{\xi}(x), \, \forall s \in \mathbb{R}
|
||||
\]
|
||||
|
||||
Using this kernel we define a smooth approximation of
|
||||
$\mathcal{RN}_w$ by
|
||||
|
||||
\[
|
||||
f^w(x) \coloneqq \int_{\mathds{R}} \mathcal{RN}_w(x-s) \kappa_x(s) ds.
|
||||
\]
|
||||
\begin{align*}
|
||||
\kappa_x(s) &\coloneqq \mathds{1}_{\left\{\abs{s} \leq \frac{1}{2 \sqrt{n}
|
||||
g_{\xi}(x)}\right\}}(s)\sqrt{n} g_{\xi}(x), \, \forall s \in \mathbb{R}\\
|
||||
\intertext{Using this kernel we define a smooth approximation of
|
||||
$\mathcal{RN}_w$ by}
|
||||
f^w(x) &\coloneqq \int_{\mathds{R}} \mathcal{RN}_w(x-s)
|
||||
\kappa_x(s) ds.
|
||||
\end{align*}
|
||||
\end{Definition}
|
||||
|
||||
Note that the kernel introduced in Definition~\ref{def:srsnn}
|
||||
satisfies $\int_{\mathbb{R}}\kappa_x dx = 1$. While $f^w$ looks highly
|
||||
satisfies $\int_{\mathbb{R}}\kappa_x dx = 1$. While $f^w$ looks
|
||||
similar to a convolution, it differs slightly as the kernel $\kappa_x(s)$
|
||||
is dependent on $x$. Therefore only $f^w = (\mathcal{RN}_w *
|
||||
\kappa_x)(x)$ is well defined, while $\mathcal{RN}_w * \kappa$ is not.
|
||||
We use $f^{w^{*,\tilde{\lambda}}}$ to describe the spline
|
||||
approximating the ridge penalized network
|
||||
$\mathrm{RN}^{*,\tilde{\lambda}}$.
|
||||
$\mathcal{RN}^{*,\tilde{\lambda}}$.
|
||||
|
||||
Next we construct a randomized shallow neural network which
|
||||
approximates a spline independent from the realization of the random
|
||||
parameters. In order to achieve this we ...
|
||||
Next, we construct a randomized shallow neural network that
|
||||
is designed to be close to a spline, independent from the realization of the random
|
||||
parameters, by approximating the splines curvature between the
|
||||
kinks.
|
||||
|
||||
\begin{Definition}[Spline approximating Randomised Shallow Neural
|
||||
\begin{Definition}[Spline approximating Randomized Shallow Neural
|
||||
Network]
|
||||
\label{def:sann}
|
||||
Let $\mathcal{RN}$ be a randomised shallow Neural Network according
|
||||
Let $\mathcal{RN}$ be a randomized shallow Neural Network according
|
||||
to Definition~\ref{def:rsnn} and $f^{*, \lambda}_g$ be the weighted
|
||||
cubic smoothing spline as introduced in Definition~\ref{def:wrs}. Then
|
||||
the randomised shallow neural network approximating $f^{*,
|
||||
the randomized shallow neural network approximating $f^{*,
|
||||
\lambda}_g$ is given by
|
||||
\[
|
||||
\mathcal{RN}_{\tilde{w}}(x) = \sum_{k = 1}^n \tilde{w}_k \sigma(b_k + v_k x),
|
||||
@ -498,7 +495,7 @@ parameters. In order to achieve this we ...
|
||||
with the weights $\tilde{w}_k$ defined as
|
||||
\[
|
||||
\tilde{w}_k \coloneqq \frac{h_{k,n} v_k}{\mathbb{E}[v^2 \vert \xi
|
||||
= \xi_k]} (f_g^{*, \lambda})''(\xi_k).
|
||||
= \xi_k]} \left(f_g^{*, \lambda}\right)''(\xi_k).
|
||||
\]
|
||||
\end{Definition}
|
||||
|
||||
@ -512,16 +509,16 @@ derivative of $\mathcal{RN}_{\tilde{w}}(x)$ which is given by
|
||||
x}} \tilde{w}_k v_k \nonumber \\
|
||||
&= \frac{1}{n} \sum_{\substack{k \in \mathbb{N} \\
|
||||
\xi_k < x}} \frac{v_k^2}{g_{\xi}(\xi_k) \mathbb{E}[v^2 \vert \xi
|
||||
= \xi_k]} (f_g^{*, \lambda})''(\xi_k). \label{eq:derivnn}
|
||||
= \xi_k]} \left(f_g^{*, \lambda}\right)''(\xi_k). \label{eq:derivnn}
|
||||
\end{align}
|
||||
As the expression (\ref{eq:derivnn}) behaves similary to a
|
||||
As the expression (\ref{eq:derivnn}) behaves similarly to a
|
||||
Riemann-sum for $n \to \infty$ it will converge in probability to the
|
||||
first derivative of $f^{*,\lambda}_g$. A formal proof of this behaviour
|
||||
first derivative of $f^{*,\lambda}_g$. A formal proof of this behavior
|
||||
is given in Lemma~\ref{lem:s0}.
|
||||
|
||||
In order to ensure the functions used in the proof of the convergence
|
||||
are well defined we need to assume some properties of the random
|
||||
parameters and their densities
|
||||
are well defined we need to make some assumptions about properties of the random
|
||||
parameters and their densities.
|
||||
|
||||
% In order to formulate the theorem describing the convergence of $RN_w$
|
||||
% we need to make a couple of assumptions.
|
||||
@ -530,7 +527,7 @@ parameters and their densities
|
||||
\begin{Assumption}~
|
||||
\label{ass:theo38}
|
||||
\begin{enumerate}[label=(\alph*)]
|
||||
\item The probability density fucntion of the kinks $\xi_k$,
|
||||
\item The probability density function of the kinks $\xi_k$,
|
||||
namely $g_{\xi}$ as defined in Definition~\ref{def:kink} exists
|
||||
and is well defined.
|
||||
\item The density function $g_\xi$
|
||||
@ -545,7 +542,7 @@ parameters and their densities
|
||||
\end{enumerate}
|
||||
\end{Assumption}
|
||||
|
||||
As we will prove the convergence of in the Sobolev space, we hereby
|
||||
As we will prove the convergence of in the Sobolev Space, we hereby
|
||||
introduce it and the corresponding induced norm.
|
||||
|
||||
\begin{Definition}[Sobolev Space]
|
||||
@ -563,7 +560,7 @@ introduce it and the corresponding induced norm.
|
||||
\norm{u^{(\alpha)}}_{L^p} < \infty.
|
||||
\]
|
||||
\label{def:sobonorm}
|
||||
The natural norm of the sobolev space is given by
|
||||
The natural norm of the Sobolev Space is given by
|
||||
\[
|
||||
\norm{f}_{W^{k,p}(K)} =
|
||||
\begin{cases}
|
||||
@ -577,18 +574,21 @@ introduce it and the corresponding induced norm.
|
||||
\]
|
||||
\end{Definition}
|
||||
|
||||
With the important definitions and assumptions in place we can now
|
||||
formulate the main theorem ... the convergence of ridge penalized
|
||||
random neural networks to adapted cubic smoothing splines when the
|
||||
parameters are chosen accordingly.
|
||||
With the important definitions and assumptions in place, we can now
|
||||
formulate the main theorem.
|
||||
% ... the convergence of ridge penalized
|
||||
% random neural networks to adapted cubic smoothing splines when the
|
||||
% parameters are chosen accordingly.
|
||||
|
||||
\begin{Theorem}[Ridge weight penaltiy corresponds to weighted cubic smoothing spline]
|
||||
\begin{Theorem}[Ridge Weight Penalty Corresponds to Weighted Cubic
|
||||
Smoothing Spline]
|
||||
\label{theo:main1}
|
||||
For $N \in \mathbb{N}$ arbitrary training data
|
||||
\(\left(x_i^{\text{train}}, y_i^{\text{train}}
|
||||
\right)\) and $\mathcal{RN}^{*, \tilde{\lambda}}, f_g^{*, \lambda}$
|
||||
For $N \in \mathbb{N}$, arbitrary training data
|
||||
$\left(x_i^{\text{train}}, y_i^{\text{train}}
|
||||
\right)~\in~\mathbb{R}^2$, with $i \in \left\{1,\dots,N\right\}$,
|
||||
and $\mathcal{RN}^{*, \tilde{\lambda}}, f_g^{*, \lambda}$
|
||||
according to Definition~\ref{def:rpnn} and Definition~\ref{def:wrs}
|
||||
respectively with Assumption~\ref{ass:theo38} it holds
|
||||
respectively with Assumption~\ref{ass:theo38} it holds that
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:main1}
|
||||
@ -604,7 +604,7 @@ parameters are chosen accordingly.
|
||||
\end{align*}
|
||||
\end{Theorem}
|
||||
As mentioned above we will prof Theorem~\ref{theo:main1} utilizing
|
||||
the ... functions. We show that
|
||||
intermediary functions. We show that
|
||||
\begin{equation}
|
||||
\label{eq:main2}
|
||||
\plimn \norm{\mathcal{RN}^{*, \tilde{\lambda}} - f^{w^*}}_{W^{1,
|
||||
@ -616,13 +616,13 @@ and
|
||||
\plimn \norm{f^{w^*} - f_g^{*, \lambda}}_{W^{1,\infty}(K)} = 0
|
||||
\end{equation}
|
||||
and then get (\ref{eq:main1}) using the triangle inequality. In
|
||||
order to prove (\ref{eq:main2}) and (\ref{eq:main3}) we will need to
|
||||
introduce a number of auxiliary lemmmata, proves of these will be
|
||||
provided in the appendix.
|
||||
order to prove (\ref{eq:main2}) and (\ref{eq:main3}) we need to
|
||||
introduce a number of auxiliary lemmata, proves of which are
|
||||
given in \textcite{heiss2019} and Appendix~\ref{appendix:proofs}.
|
||||
|
||||
|
||||
|
||||
\begin{Lemma}[Poincar\'e typed inequality]
|
||||
\begin{Lemma}[Poincar\'e Typed Inequality]
|
||||
\label{lem:pieq}
|
||||
Let \(f:\mathbb{R} \to \mathbb{R}\) differentiable with \(f' :
|
||||
\mathbb{R} \to \mathbb{R}\) Lesbeque integrable. Then for \(K=[a,b]
|
||||
@ -634,13 +634,14 @@ provided in the appendix.
|
||||
\norm{f'}_{L^{\infty}(K)}.
|
||||
\end{equation*}
|
||||
If additionaly \(f'\) is differentiable with \(f'': \mathbb{R} \to
|
||||
\mathbb{R}\) Lesbeque integrable then additionally
|
||||
\mathbb{R}\) Lesbeque integrable then
|
||||
\begin{equation*}
|
||||
\label{eq:pti2}
|
||||
\exists C_K^2 \in \mathbb{R}_{>0} : \norm{f}_{W^{1,\infty}(K)} \leq
|
||||
C_K^2 \norm{f''}_{L^2(K)}.
|
||||
\end{equation*}
|
||||
\proof The proof is given in the appendix...
|
||||
% \proof The proof is given in the appendix...
|
||||
|
||||
% With the fundamental theorem of calculus, if
|
||||
% \(\norm{f}_{L^{\infty}(K)}<\infty\) we get
|
||||
% \begin{equation}
|
||||
@ -682,6 +683,7 @@ provided in the appendix.
|
||||
\forall x \in \supp(g_{\xi}) : \mathbb{E}\left[\varphi(\xi, v)
|
||||
\frac{1}{n g_{\xi}(\xi)} \vert \xi = x \right] < \infty,
|
||||
\]
|
||||
\clearpage
|
||||
it holds, that
|
||||
\[
|
||||
\plimn \sum_{k \in \kappa : \xi_k < T} \varphi(\xi_k, v_k)
|
||||
@ -690,7 +692,7 @@ provided in the appendix.
|
||||
\mathbb{E}\left[\varphi(\xi, v) \vert \xi = x \right] dx
|
||||
\]
|
||||
uniformly in \(T \in K\).
|
||||
\proof The proof is given in appendix...
|
||||
% \proof The proof is given in appendix...
|
||||
% For \(T \leq C_{g_{\xi}}^l\) both sides equal 0, so it is sufficient to
|
||||
% consider \(T > C_{g_{\xi}}^l\). With \(\varphi\) and
|
||||
% \(\nicefrac{1}{g_{\xi}}\) uniformly continous in \(\xi\),
|
||||
@ -735,7 +737,7 @@ provided in the appendix.
|
||||
% \kappa : \xi_m \in [\delta l, \delta(l +
|
||||
% 1)]\right\}}}{ng_{\xi}(l\delta)}\right) \pm \varepsilon .\\
|
||||
% \intertext{We use the mean to approximate the number of kinks in
|
||||
% each $\delta$-strip, as it follows a bonomial distribution this
|
||||
% each $\delta$-strip, as it follows a binomial distribution this
|
||||
% amounts to
|
||||
% \[
|
||||
% \mathbb{E}\left[\abs{\left\{m \in \kappa : \xi_m \in [\delta l,
|
||||
@ -745,13 +747,14 @@ provided in the appendix.
|
||||
% \]
|
||||
% Bla Bla Bla $v_k$}
|
||||
% \circled{1} & \approx
|
||||
% \end{align*}
|
||||
% \end{align*}
|
||||
\proof Notes on the proof are given in Proof~\ref{proof:lem9}.
|
||||
\end{Lemma}
|
||||
|
||||
\begin{Lemma}
|
||||
For any $\lambda > 0$, training data $(x_i^{\text{train}}
|
||||
For any $\lambda > 0$, $N \in \mathbb{N}$, training data $(x_i^{\text{train}}
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2$, with $ i \in
|
||||
\left\{1,\dots,N\right\}$ and subset $K \subset \mathbb{R}$ the spline approximating randomized
|
||||
\left\{1,\dots,N\right\}$, and subset $K \subset \mathbb{R}$ the spline approximating randomized
|
||||
shallow neural network $\mathcal{RN}_{\tilde{w}}$ converges to the
|
||||
cubic smoothing spline $f^{*, \lambda}_g$ in
|
||||
$\norm{.}_{W^{1,\infty}(K)}$ as the node count $n$ increases,
|
||||
@ -767,50 +770,63 @@ provided in the appendix.
|
||||
\lambda}_g)'}_{L^{\infty}} = 0.
|
||||
\]
|
||||
This can be achieved by using Lemma~\ref{lem:cnvh} with $\varphi(\xi_k,
|
||||
v_k) = \frac{v_k^2}{\mathbb{E}[v^2|\xi = z]} (f^{*, \lambda}_w)''(\xi_k) $
|
||||
v_k) = \frac{v_k^2}{\mathbb{E}[v^2|\xi = z]} (f^{*, \lambda}_g)''(\xi_k) $
|
||||
thus obtaining
|
||||
\begin{align*}
|
||||
\plimn \frac{\partial \mathcal{RN}_{\tilde{w}}}{\partial x}
|
||||
\stackrel{(\ref{eq:derivnn})}{=}
|
||||
& \plimn \sum_{\substack{k \in \mathbb{N} \\
|
||||
\xi_k < x}} \frac{v_k^2}{\mathbb{E}[v^2 \vert \xi
|
||||
= \xi_k]} (f_g^{*, \lambda})''(\xi_k) h_{k,n}
|
||||
\stackrel{\text{Lemma}~\ref{lem:cnvh}}{=} \\
|
||||
\stackrel{\phantom{(\ref{eq:derivnn})}}{=}
|
||||
&
|
||||
\int_{\min\left\{C_{g_{\xi}}^l,T\right\}}^{min\left\{C_{g_{\xi}}^u,T\right\}}
|
||||
\plimn \frac{\partial \mathcal{RN}_{\tilde{w}}}{\partial x} (x)
|
||||
\equals^{(\ref{eq:derivnn})}_{\phantom{\text{Lemma 3.1.4}}}
|
||||
%\stackrel{(\ref{eq:derivnn})}{=}
|
||||
&
|
||||
\plimn \sum_{\substack{k \in \mathbb{N} \\
|
||||
\xi_k < x}} \frac{v_k^2}{\mathbb{E}[v^2 \vert \xi
|
||||
= \xi_k]} (f_g^{*, \lambda})''(\xi_k) h_{k,n} \\
|
||||
\stackrel{\text{Lemma}~\ref{lem:cnvh}}{=}
|
||||
%\stackrel{\phantom{(\ref{eq:derivnn})}}{=}
|
||||
&
|
||||
\int_{\max\left\{C_{g_{\xi}}^l,x\right\}}^{\min\left\{C_{g_{\xi}}^u,x\right\}}
|
||||
\mathbb{E}\left[\frac{v^2}{\mathbb{E}[v^2|\xi = z]} (f^{*,
|
||||
\lambda}_w)''(\xi) \vert
|
||||
\xi = x \right] dx \equals^{\text{Tower-}}_{\text{property}} \\
|
||||
\stackrel{\phantom{(\ref{eq:derivnn})}}{=}
|
||||
&
|
||||
\int_{\min\left\{C_{g_{\xi}}^l,
|
||||
T\right\}}^{min\left\{C_{g_{\xi}}^u,T\right\}}(f^{*,\lambda}_w)''(x)
|
||||
dx.
|
||||
\lambda}_g)''(\xi) \vert
|
||||
\xi = z \right] dz\\
|
||||
\mathmakebox[\widthof{$\stackrel{\text{Lemma 3.14}}{=}$}][c]{\equals^{\text{Tower-}}_{\text{property}}}
|
||||
%\stackrel{\phantom{(\ref{eq:derivnn})}}{=}
|
||||
&
|
||||
\int_{\max\left\{C_{g_{\xi}}^l,
|
||||
x\right\}}^{\min\left\{C_{g_{\xi}}^u,x\right\}}(f^{*,\lambda}_g)''(z)
|
||||
dz.
|
||||
\end{align*}
|
||||
By the fundamental theorem of calculus and $\supp(f') \subset
|
||||
\supp(f)$, (\ref{eq:s0}) follows with Lemma~\ref{lem:pieq}.
|
||||
\todo{ist die 0 wichtig?}
|
||||
With the fundamental theorem of calculus we get
|
||||
\[
|
||||
\plimn \mathcal{RN}_{\tilde{w}}'(x) = f_g^{*,\lambda
|
||||
'}(\min\left\{C_{g_{\xi}}^u, x\right\}) - f_g^{*,\lambda
|
||||
'}(\max\left\{C_{g_{\xi}}^l, x\right\})
|
||||
\]
|
||||
As $f_g^{*,\lambda '}$ is constant on $\left[C_{g_\xi}^l,
|
||||
C_{g_\xi}^u\right]^C$ because $\supp(f_g^{*,\lambda ''}) \subseteq
|
||||
\supp(g) \subseteq \supp(g_\xi)$ we get
|
||||
\[
|
||||
\plimn \mathcal{RN}_{\tilde{w}}'(x) = f_g^{*,\lambda
|
||||
'},
|
||||
\]
|
||||
thus (\ref{eq:s0}) follows with Lemma~\ref{lem:pieq}.
|
||||
\qed
|
||||
\label{lem:s0}
|
||||
\end{Lemma}
|
||||
|
||||
\begin{Lemma}
|
||||
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
|
||||
For any $\lambda > 0$, $N \in \mathbb{N}$, and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2$, with $i \in
|
||||
\left\{1,\dots,N\right\}$, we have
|
||||
\[
|
||||
\plimn F^{\tilde{\lambda}}_n(\mathcal{RN}_{\tilde{w}}) =
|
||||
F^{\lambda, g}(f^{*, \lambda}_g) = 0.
|
||||
\]
|
||||
\proof
|
||||
The proof is given in the appendix...
|
||||
\proof Notes on the proof are given in Proof~\ref{proof:lem14}.
|
||||
\label{lem:s2}
|
||||
\end{Lemma}
|
||||
|
||||
\begin{Lemma}
|
||||
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
|
||||
For any $\lambda > 0$, $N \in \mathbb{N}$, and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2$, with $i \in
|
||||
\left\{1,\dots,N\right\}$, with $w^*$ as
|
||||
defined in Definition~\ref{def:rpnn} and $\tilde{\lambda}$ as
|
||||
defined in Theroem~\ref{theo:main1}, it holds
|
||||
@ -818,13 +834,13 @@ provided in the appendix.
|
||||
\plimn \norm{\mathcal{RN}^{*,\tilde{\lambda}} -
|
||||
f^{w*, \tilde{\lambda}}}_{W^{1,\infty}(K)} = 0.
|
||||
\]
|
||||
\proof The proof is given in Appendix ..
|
||||
\proof Notes on the proof are given in Proof~\ref{proof:lem15}.
|
||||
\label{lem:s3}
|
||||
\end{Lemma}
|
||||
|
||||
\begin{Lemma}
|
||||
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
|
||||
For any $\lambda > 0$, $N \in \mathbb{N}$, and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2$, with $i \in
|
||||
\left\{1,\dots,N\right\}$, with $w^*$ and $\tilde{\lambda}$ as
|
||||
defined in Definition~\ref{def:rpnn} and Theroem~\ref{theo:main1}
|
||||
respectively, it holds
|
||||
@ -832,13 +848,13 @@ provided in the appendix.
|
||||
\plimn \abs{F_n^{\tilde{\lambda}}(\mathcal{RN}^{*,\tilde{\lambda}}) -
|
||||
F^{\lambda, g}(f^{w*, \tilde{\lambda}})} = 0.
|
||||
\]
|
||||
\proof The proof is given in appendix...
|
||||
\proof Notes on the proof are given in Proof~\ref{proof:lem16}.
|
||||
\label{lem:s4}
|
||||
\end{Lemma}
|
||||
|
||||
\begin{Lemma}
|
||||
For any $\lambda > 0$ and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2, \, i \in
|
||||
For any $\lambda > 0$, $N \in \mathbb{N}$, and training data $(x_i^{\text{train}},
|
||||
y_i^{\text{train}}) \in \mathbb{R}^2$, with $i \in
|
||||
\left\{1,\dots,N\right\}$, for any sequence of functions $f^n \in
|
||||
W^{2,2}$ with
|
||||
\[
|
||||
@ -848,39 +864,45 @@ provided in the appendix.
|
||||
\[
|
||||
\plimn \norm{f^n - f^{*, \lambda}} = 0.
|
||||
\]
|
||||
\proof The proof is given in appendix ...
|
||||
\proof Notes on the proof are given in Proof~\ref{proof:lem19}.
|
||||
\label{lem:s7}
|
||||
\end{Lemma}
|
||||
Using these lemmata we can now proof Theorem~\ref{theo:main1}. We
|
||||
start by showing that the error measure of the smooth approximation of
|
||||
the ridge penalized randomized shallow neural network $F^{\lambda,
|
||||
g}\left(f^{w^{*,\tilde{\lambda}}}\right)$
|
||||
g}(f^{w^{*,\tilde{\lambda}}})$
|
||||
will converge in probability to the error measure of the adapted weighted regression
|
||||
spline $F^{\lambda, g}\left(f^{*,\lambda}\right)$ for the specified
|
||||
parameters.
|
||||
|
||||
Using Lemma~\ref{lem:s4} we get that for every $P \in (0,1)$ and
|
||||
$\varepsilon > 0$ there exists a $n_1 \in \mathbb{N}$ such that
|
||||
\[
|
||||
\begin{equation}
|
||||
\mathbb{P}\left[F^{\lambda, g}\left(f^{w^{*,\tilde{\lambda}}}\right) \in
|
||||
F_n^{\tilde{\lambda}}\left(\mathcal{RN}^{*,\tilde{\lambda}}\right)
|
||||
+[-\varepsilon, \varepsilon]\right] > P, \forall n \in \mathbb{N}_{> n_1}.
|
||||
\]
|
||||
+[-\varepsilon, \varepsilon]\right] > P, \forall n \in
|
||||
\mathbb{N}_{> n_1}.
|
||||
\label{eq:squeeze_1}
|
||||
\end{equation}
|
||||
As $\mathcal{RN}^{*,\tilde{\lambda}}$ is the optimal network for
|
||||
$F_n^{\tilde{\lambda}}$ we know that
|
||||
\[
|
||||
\begin{equation}
|
||||
F_n^{\tilde{\lambda}}\left(\mathcal{RN}^{*,\tilde{\lambda}}\right)
|
||||
\leq F_n^{\tilde{\lambda}}\left(\mathcal{RN}_{\tilde{w}}\right).
|
||||
\]
|
||||
\label{eq:squeeze_2}
|
||||
\end{equation}
|
||||
Using Lemma~\ref{lem:s2} we get that for every $P \in (0,1)$ and
|
||||
$\varepsilon > 0$ there exists a $n_2 \in \mathbb{N}$ such that
|
||||
\[
|
||||
$\varepsilon > 0$ a $n_2 \in \mathbb{N}$ exists such that
|
||||
\begin{equation}
|
||||
\mathbb{P}\left[F_n^{\tilde{\lambda}}\left(\mathcal{RN}_{\tilde{w}}\right)
|
||||
\in F^{\lambda, g}\left(f^{*,\lambda}_g\right)+[-\varepsilon,
|
||||
\varepsilon]\right] > P, \forall n \in \mathbb{N}_{> n_2}.
|
||||
\]
|
||||
If we combine these ... we get that for every $P \in (0,1)$ and
|
||||
$\varepsilon > 0$ and $n_3 \geq
|
||||
\label{eq:squeeze_3}
|
||||
\end{equation}
|
||||
Combining (\ref{eq:squeeze_1}), (\ref{eq:squeeze_2}), and
|
||||
(\ref{eq:squeeze_3}) we get that for every $P \in (0,1)$ and for \linebreak
|
||||
every
|
||||
$\varepsilon > 0$ with $n_3 \geq
|
||||
\max\left\{n_1,n_2\right\}$
|
||||
\[
|
||||
\mathbb{P}\left[F^{\lambda,
|
||||
@ -888,47 +910,51 @@ $\varepsilon > 0$ and $n_3 \geq
|
||||
g}\left(f^{*,\lambda}_g\right)+2\varepsilon\right] > P, \forall
|
||||
n \in \mathbb{N}_{> n_3}.
|
||||
\]
|
||||
As ... is in ... and ... is optimal we know that
|
||||
As $\supp(f^{w^{*,\tilde{\lambda}}}) \subseteq \supp(g_\xi)$ and $f^{*,\lambda}_g$ is optimal we know that
|
||||
\[
|
||||
F^{\lambda, g}\left(f^{*,\lambda}_g\right) \leq F^{\lambda, g}\left(f^{w^{*,\tilde{\lambda}}}\right)
|
||||
F^{\lambda, g}\left(f^{*,\lambda}_g\right) \leq F^{\lambda,
|
||||
g}\left(f^{w^{*,\tilde{\lambda}}}\right)
|
||||
\]
|
||||
and thus get with the squeeze theorem
|
||||
\[
|
||||
\plimn F^{\lambda, g}\left(f^{w^{*,\tilde{\lambda}}}\right) = F^{\lambda, g}\left(f^{*,\lambda}_g\right).
|
||||
\]
|
||||
We can now use Lemma~\ref{lem:s7} to follow that
|
||||
With Lemma~\ref{lem:s7} it follows that
|
||||
\begin{equation}
|
||||
\plimn \norm{f^{w^{*,\tilde{\lambda}}} - f^{*,\lambda}_g}
|
||||
_{W^{1,\infty}} = 0.
|
||||
\label{eq:main4}
|
||||
\end{equation}
|
||||
Now by using the triangle inequality with Lemma~\ref{lem:s3} and
|
||||
By using the triangle inequality with Lemma~\ref{lem:s3} and
|
||||
(\ref{eq:main4}) we get
|
||||
\begin{align*}
|
||||
\plimn \norm{\mathcal{RN}^{*, \tilde{\lambda}} - f_g^{*,\lambda}}
|
||||
\leq& \plimn \bigg(\norm{\mathcal{RN}^{*, \tilde{\lambda}} -
|
||||
f_g^{w^{*,\tilde{\lambda}}}}_{W^{1,\infty}}\\
|
||||
&+ \norm{f^{w^{*,\tilde{\lambda}}} - f^{*,\lambda}_g}
|
||||
\begin{multline}
|
||||
\plimn \norm{\mathcal{RN}^{*, \tilde{\lambda}} - f_g^{*,\lambda}}\\
|
||||
\leq \plimn \bigg(\norm{\mathcal{RN}^{*, \tilde{\lambda}} -
|
||||
f_g^{w^{*,\tilde{\lambda}}}}_{W^{1,\infty}}
|
||||
+ \norm{f^{w^{*,\tilde{\lambda}}} - f^{*,\lambda}_g}
|
||||
_{W^{1,\infty}}\bigg) = 0
|
||||
\end{align*}
|
||||
\end{multline}
|
||||
and thus have proven Theorem~\ref{theo:main1}.
|
||||
|
||||
We now know that randomized shallow neural networks behave similar to
|
||||
spline regression if we regularize the size of the weights during
|
||||
training.
|
||||
training.
|
||||
|
||||
\textcite{heiss2019} further explore a connection between ridge penalized
|
||||
networks and randomized shallow neural networks trained using gradient
|
||||
descent.
|
||||
They come to the conclusion that the effect of weight regularization
|
||||
They infer that the effect of weight regularization
|
||||
can be achieved by stopping the training of the randomized shallow
|
||||
neural network early, with the amount of epochs being proportional to
|
||||
the punishment for weight size.
|
||||
This ... that randomized shallow neural networks trained for a certain
|
||||
amount of iterations converge for a increasing amount of nodes to
|
||||
cubic smoothing splines with appropriate weights.
|
||||
\todo{nochmal nachlesen wie es genau war}
|
||||
neural network early, with the number of iterations being proportional to
|
||||
the tuning parameter penalizing the size of the weights.
|
||||
They use this to further conclude that for a large number of training epochs and number of
|
||||
neurons shallow neural networks trained with gradient descent are
|
||||
very close to spline interpolations. Alternatively if the training
|
||||
is stopped early, they are close to adapted weighted cubic smoothing splines.
|
||||
|
||||
\newpage
|
||||
\subsection{Simulations}
|
||||
\label{sec:rsnn_sim}
|
||||
In the following the behaviour described in Theorem~\ref{theo:main1}
|
||||
is visualized in a simulated example. For this two sets of training
|
||||
data have been generated.
|
||||
@ -962,20 +988,26 @@ Theorem~\ref{theo:main1}
|
||||
would equate to $g(x) = \frac{\mathbb{E}[v_k^2|\xi_k = x]}{10}$. In
|
||||
order to utilize the
|
||||
smoothing spline implemented in Mathlab, $g$ has been simplified to $g
|
||||
\equiv \frac{1}{10}$ instead. For all figures $f_1^{*, \lambda}$ has
|
||||
been calculated with Matlab's ``smoothingspline'', as this minimizes
|
||||
\equiv \frac{1}{10}$ instead.
|
||||
|
||||
For all figures $f_1^{*, \lambda}$ has
|
||||
been calculated with Matlab's {\sffamily{smoothingspline}}, as this minimizes
|
||||
\[
|
||||
\bar{\lambda} \sum_{i=1}^N(y_i^{train} - f(x_i^{train}))^2 + (1 -
|
||||
\bar{\lambda}) \int (f''(x))^2 dx
|
||||
\]
|
||||
the smoothing parameter used for fittment is $\bar{\lambda} =
|
||||
the smoothing parameter used for fitment is $\bar{\lambda} =
|
||||
\frac{1}{1 + \lambda}$. The parameter $\tilde{\lambda}$ for training
|
||||
the networks is chosen as defined in Theorem~\ref{theo:main1} and each
|
||||
network is trained on the full training data for 5000 epochs using
|
||||
the networks is chosen as defined in Theorem~\ref{theo:main1}.
|
||||
|
||||
Each
|
||||
network contains 10.000 hidden nodes and is trained on the full
|
||||
training data for 100.000 epochs using
|
||||
gradient descent. The
|
||||
results are given in Figure~\ref{fig:rn_vs_rs}, here it can be seen that in
|
||||
the intervall of the traing data $[-\pi, \pi]$ the neural network and
|
||||
smoothing spline are nearly identical, coinciding with the proposition.
|
||||
results are given in Figure~\ref{fig:rn_vs_rs}, where it can be seen
|
||||
that the neural network and
|
||||
smoothing spline are nearly identical, coinciding with the
|
||||
proposition.
|
||||
|
||||
\input{Figures/RN_vs_RS}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user