|
|
|
\documentclass{article}
|
|
|
|
\usepackage{pgfplots}
|
|
|
|
\usepackage{filecontents}
|
|
|
|
\usepackage{subcaption}
|
|
|
|
\usepackage{adjustbox}
|
|
|
|
\usepackage{xcolor}
|
|
|
|
\usepackage{tabu}
|
|
|
|
\usepackage{graphicx}
|
|
|
|
\usetikzlibrary{calc, 3d}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
\pgfplotsset{
|
|
|
|
compat=1.11,
|
|
|
|
legend image code/.code={
|
|
|
|
\draw[mark repeat=2,mark phase=2]
|
|
|
|
plot coordinates {
|
|
|
|
(0cm,0cm)
|
|
|
|
(0.0cm,0cm) %% default is (0.3cm,0cm)
|
|
|
|
(0.0cm,0cm) %% default is (0.6cm,0cm)
|
|
|
|
};%
|
|
|
|
}
|
|
|
|
}
|
|
|
|
\begin{figure}
|
|
|
|
\begin{subfigure}[b]{\textwidth}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
|
|
|
height = 0.7\textwidth, ymin = 0.92, legend style={at={(0.9825,0.75)},anchor=north east},
|
|
|
|
xlabel = {epoch}, ylabel = {Classification Accuracy}]
|
|
|
|
\addplot table
|
|
|
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
|
|
|
{Data/adagrad.log};
|
|
|
|
\addplot table
|
|
|
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
|
|
|
{Data/adadelta.log};
|
|
|
|
\addplot table
|
|
|
|
[x=epoch, y=val_accuracy, col sep=comma, mark = none]
|
|
|
|
{Data/adam.log};
|
|
|
|
|
|
|
|
\addlegendentry{\footnotesize{ADAGRAD}}
|
|
|
|
\addlegendentry{\footnotesize{ADADELTA}}
|
|
|
|
\addlegendentry{\footnotesize{ADAM}}
|
|
|
|
\addlegendentry{SGD$_{0.01}$}
|
|
|
|
\end{axis}
|
|
|
|
\end{tikzpicture}
|
|
|
|
%\caption{Classification accuracy}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}[b]{\textwidth}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{axis}[tick style = {draw = none}, width = \textwidth,
|
|
|
|
height = 0.7\textwidth, ymax = 0.5,
|
|
|
|
xlabel = {epoch}, ylabel = {Error Measure\vphantom{y}},ytick ={0,0.1,0.2,0.3,0.4,0.45,0.5}, yticklabels =
|
|
|
|
{0,0.1,0.2,0.3,0.4,\phantom{0.94},0.5}]
|
|
|
|
\addplot table
|
|
|
|
[x=epoch, y=val_loss, col sep=comma, mark = none] {Data/adagrad.log};
|
|
|
|
\addplot table
|
|
|
|
[x=epoch, y=val_loss, col sep=comma, mark = none] {Data/adadelta.log};
|
|
|
|
\addplot table
|
|
|
|
[x=epoch, y=val_loss, col sep=comma, mark = none] {Data/adam.log};
|
|
|
|
|
|
|
|
\addlegendentry{\footnotesize{ADAGRAD}}
|
|
|
|
\addlegendentry{\footnotesize{ADADELTA}}
|
|
|
|
\addlegendentry{\footnotesize{ADAM}}
|
|
|
|
\addlegendentry{SGD$_{0.01}$}
|
|
|
|
|
|
|
|
\end{axis}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\caption{Performance metrics during training}
|
|
|
|
\end{subfigure}
|
|
|
|
\\~\\
|
|
|
|
\begin{subfigure}[b]{1.0\linewidth}
|
|
|
|
\begin{tabu} to \textwidth {@{} *3{X[c]}c*3{X[c]} @{}}
|
|
|
|
\multicolumn{3}{c}{Classification Accuracy}
|
|
|
|
&~&\multicolumn{3}{c}{Error Measure}
|
|
|
|
\\\cline{1-3}\cline{5-7}
|
|
|
|
ADAGRAD&ADADELTA&ADAM&&ADAGRAD&ADADELTA&ADAM
|
|
|
|
\\\cline{1-3}\cline{5-7}
|
|
|
|
1&1&1&&1&1&1
|
|
|
|
\end{tabu}
|
|
|
|
\caption{Performace metrics after 20 epochs}
|
|
|
|
\end{subfigure}
|
|
|
|
\caption{The neural network given in ?? trained with different
|
|
|
|
algorithms on the MNIST handwritten digits data set. For gradient
|
|
|
|
descent the learning rated 0.01, 0.05 and 0.1 are (GD$_{
|
|
|
|
rate}$). For
|
|
|
|
stochastic gradient descend a batch size of 32 and learning rate
|
|
|
|
of 0.01 is used (SDG$_{0.01}$)}
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
\begin{center}
|
|
|
|
\begin{figure}[h]
|
|
|
|
\centering
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist0.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist1.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist2.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist3.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist4.pdf}
|
|
|
|
\end{subfigure}\\
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist5.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist6.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist7.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist8.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{0.19\textwidth}
|
|
|
|
\includegraphics[width=\textwidth]{Data/mnist9.pdf}
|
|
|
|
\end{subfigure}
|
|
|
|
\caption{The MNIST data set contains 70.000 images of preprocessed handwritten
|
|
|
|
digits. Of these images 60.000 are used as training images, while
|
|
|
|
the rest are used to validate the models trained.}
|
|
|
|
\end{figure}
|
|
|
|
\end{center}
|
|
|
|
|
|
|
|
\begin{figure}
|
|
|
|
\begin{adjustbox}{width=\textwidth}
|
|
|
|
\begin{tikzpicture}
|
|
|
|
\begin{scope}[x = (0:1cm), y=(90:1cm), z=(15:-0.5cm)]
|
|
|
|
\node[canvas is xy plane at z=0, transform shape] at (0,0)
|
|
|
|
{\includegraphics[width=5cm]{Data/klammern_r.jpg}};
|
|
|
|
\node[canvas is xy plane at z=2, transform shape] at (0,-0.2)
|
|
|
|
{\includegraphics[width=5cm]{Data/klammern_g.jpg}};
|
|
|
|
\node[canvas is xy plane at z=4, transform shape] at (0,-0.4)
|
|
|
|
{\includegraphics[width=5cm]{Data/klammern_b.jpg}};
|
|
|
|
\node[canvas is xy plane at z=4, transform shape] at (-8,-0.2)
|
|
|
|
{\includegraphics[width=5.3cm]{Data/klammern_rgb.jpg}};
|
|
|
|
\end{scope}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\end{adjustbox}
|
|
|
|
\caption{On the right the red, green and blue chanels of the picture
|
|
|
|
are displayed. In order to better visualize the color channes the
|
|
|
|
black and white picture of each channel has been colored in the
|
|
|
|
respective color. Combining the layers results in the image on the
|
|
|
|
left}
|
|
|
|
\end{figure}
|
|
|
|
|
|
|
|
|
|
|
|
\end{document}
|
|
|
|
|
|
|
|
%%% Local Variables:
|
|
|
|
%%% mode: latex
|
|
|
|
%%% TeX-master: t
|
|
|
|
%%% End:
|