You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
import tensorflow as tf
|
|
|
|
mnist = tf.keras.datasets.mnist
|
|
|
|
|
|
|
|
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
|
|
|
x_train, x_test = x_train / 255.0, x_test / 255.0
|
|
|
|
|
|
|
|
model = tf.keras.models.Sequential([
|
|
|
|
tf.keras.layers.Flatten(input_shape=(28, 28)),
|
|
|
|
tf.keras.layers.Dense(128, activation='relu'),
|
|
|
|
tf.keras.layers.Dropout(0.2),
|
|
|
|
tf.keras.layers.Dense(10)
|
|
|
|
])
|
|
|
|
|
|
|
|
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
|
|
|
|
|
|
|
model.compile(optimizer='adam',
|
|
|
|
loss=loss_fn,
|
|
|
|
metrics=['accuracy'])
|
|
|
|
|
|
|
|
model.fit(x_train, y_train, epochs=10)
|
|
|
|
|
|
|
|
|