mlpractical/mlp/layers.py
2016-09-19 07:31:31 +01:00

326 lines
11 KiB
Python

# -*- coding: utf-8 -*-
"""Layer definitions.
This module defines classes which encapsulate a single layer.
These layers map input activations to output activation with the `fprop`
method and map gradients with repsect to outputs to gradients with respect to
their inputs with the `bprop` method.
Some layers will have learnable parameters and so will additionally define
methods for getting and setting parameter and calculating gradients with
respect to the layer parameters.
"""
import numpy as np
import mlp.initialisers as init
class Layer(object):
"""Abstract class defining the interface for a layer."""
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
raise NotImplementedError()
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
raise NotImplementedError()
class LayerWithParameters(Layer):
"""Abstract class defining the interface for a layer with parameters."""
def grads_wrt_params(self, inputs, grads_wrt_outputs):
"""Calculates gradients with respect to layer parameters.
Args:
inputs: Array of inputs to layer of shape (batch_size, input_dim).
grads_wrt_to_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
List of arrays of gradients with respect to the layer parameters
with parameter gradients appearing in same order in tuple as
returned from `get_params` method.
"""
raise NotImplementedError()
def params_cost(self):
"""Returns the parameter dependent cost term for this layer.
If no parameter-dependent cost terms are set this returns zero.
"""
raise NotImplementedError()
@property
def params(self):
"""Returns a list of parameters of layer.
Returns:
List of current parameter values. This list should be in the
corresponding order to the `values` argument to `set_params`.
"""
raise NotImplementedError()
@params.setter
def params(self, values):
"""Sets layer parameters from a list of values.
Args:
values: List of values to set parameters to. This list should be
in the corresponding order to what is returned by `get_params`.
"""
raise NotImplementedError()
class AffineLayer(LayerWithParameters):
"""Layer implementing an affine tranformation of its inputs.
This layer is parameterised by a weight matrix and bias vector.
"""
def __init__(self, input_dim, output_dim,
weights_initialiser=init.UniformInit(-0.1, 0.1),
biases_initialiser=init.ConstantInit(0.),
weights_cost=None, biases_cost=None):
"""Initialises a parameterised affine layer.
Args:
input_dim (int): Dimension of inputs to the layer.
output_dim (int): Dimension of the layer outputs.
weights_initialiser: Initialiser for the weight parameters.
biases_initialiser: Initialiser for the bias parameters.
weights_cost: Weights-dependent cost term.
biases_cost: Biases-dependent cost term.
"""
self.input_dim = input_dim
self.output_dim = output_dim
self.weights = weights_initialiser((self.output_dim, self.input_dim))
self.biases = biases_initialiser(self.output_dim)
self.weights_cost = weights_cost
self.biases_cost = biases_cost
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
For inputs `x`, outputs `y`, weights `W` and biases `b` the layer
corresponds to `y = W.dot(x) + b`.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
return self.weights.dot(inputs.T).T + self.biases
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
return grads_wrt_outputs.dot(self.weights)
def grads_wrt_params(self, inputs, grads_wrt_outputs):
"""Calculates gradients with respect to layer parameters.
Args:
inputs: array of inputs to layer of shape (batch_size, input_dim)
grads_wrt_to_outputs: array of gradients with respect to the layer
outputs of shape (batch_size, output_dim)
Returns:
list of arrays of gradients with respect to the layer parameters
`[grads_wrt_weights, grads_wrt_biases]`.
"""
grads_wrt_weights = np.dot(grads_wrt_outputs.T, inputs)
grads_wrt_biases = np.sum(grads_wrt_outputs, axis=0)
if self.weights_cost is not None:
grads_wrt_weights += self.weights_cost.grad(self.weights)
if self.biases_cost is not None:
grads_wrt_biases += self.biases_cost.grads(self.biases)
return [grads_wrt_weights, grads_wrt_biases]
def params_cost(self):
"""Returns the parameter dependent cost term for this layer.
If no parameter-dependent cost terms are set this returns zero.
"""
params_cost = 0
if self.weights_cost is not None:
params_cost += self.weights_cost(self.weights)
if self.biases_cost is not None:
params_cost += self.biases_cost(self.biases)
return params_cost
@property
def params(self):
"""A list of layer parameter values: `[weights, biases]`."""
return [self.weights, self.biases]
@params.setter
def params(self, values):
self.weights = values[0]
self.biases = values[1]
def __repr__(self):
return 'AffineLayer(input_dim={0}, output_dim={1})'.format(
self.input_dim, self.output_dim)
class SigmoidLayer(Layer):
"""Layer implementing an element-wise logistic sigmoid transformation."""
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
For inputs `x` and outputs `y` this corresponds to
`y = 1 / (1 + exp(-x))`.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
return 1. / (1. + np.exp(-inputs))
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
return grads_wrt_outputs * outputs * (1. - outputs)
def __repr__(self):
return 'SigmoidLayer'
class ReluLayer(Layer):
"""Layer implementing an element-wise rectified linear transformation."""
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
For inputs `x` and outputs `y` this corresponds to `y = max(0, x)`.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
return np.maximum(inputs, 0.)
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
return (outputs > 0) * grads_wrt_outputs
def __repr__(self):
return 'ReluLayer'
class TanhLayer(Layer):
"""Layer implementing an element-wise hyperbolic tangent transformation."""
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
For inputs `x` and outputs `y` this corresponds to `y = tanh(x)`.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
return np.tanh(inputs)
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
return (1. - outputs**2) * grads_wrt_outputs
def __repr__(self):
return 'TanhLayer'