mlpractical/pytorch_mlp_framework/experiment_builder.py
2024-11-19 09:42:31 +00:00

456 lines
20 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import tqdm
import os
import numpy as np
import time
from pytorch_mlp_framework.storage_utils import save_statistics
from matplotlib import pyplot as plt
import matplotlib
matplotlib.rcParams.update({"font.size": 8})
class ExperimentBuilder(nn.Module):
def __init__(
self,
network_model,
experiment_name,
num_epochs,
train_data,
val_data,
test_data,
weight_decay_coefficient,
use_gpu,
continue_from_epoch=-1,
):
"""
Initializes an ExperimentBuilder object. Such an object takes care of running training and evaluation of a deep net
on a given dataset. It also takes care of saving per epoch models and automatically inferring the best val model
to be used for evaluating the test set metrics.
:param network_model: A pytorch nn.Module which implements a network architecture.
:param experiment_name: The name of the experiment. This is used mainly for keeping track of the experiment and creating and directory structure that will be used to save logs, model parameters and other.
:param num_epochs: Total number of epochs to run the experiment
:param train_data: An object of the DataProvider type. Contains the training set.
:param val_data: An object of the DataProvider type. Contains the val set.
:param test_data: An object of the DataProvider type. Contains the test set.
:param weight_decay_coefficient: A float indicating the weight decay to use with the adam optimizer.
:param use_gpu: A boolean indicating whether to use a GPU or not.
:param continue_from_epoch: An int indicating whether we'll start from scrach (-1) or whether we'll reload a previously saved model of epoch 'continue_from_epoch' and continue training from there.
"""
super(ExperimentBuilder, self).__init__()
self.experiment_name = experiment_name
self.model = network_model
if torch.cuda.device_count() >= 1 and use_gpu:
self.device = torch.device("cuda")
self.model.to(self.device) # sends the model from the cpu to the gpu
print("Use GPU", self.device)
else:
print("use CPU")
self.device = torch.device("cpu") # sets the device to be CPU
print(self.device)
print("here")
self.model.reset_parameters() # re-initialize network parameters
self.train_data = train_data
self.val_data = val_data
self.test_data = test_data
print("System learnable parameters")
num_conv_layers = 0
num_linear_layers = 0
total_num_parameters = 0
for name, value in self.named_parameters():
print(name, value.shape)
if all(item in name for item in ["conv", "weight"]):
num_conv_layers += 1
if all(item in name for item in ["linear", "weight"]):
num_linear_layers += 1
total_num_parameters += np.prod(value.shape)
print("Total number of parameters", total_num_parameters)
print("Total number of conv layers", num_conv_layers)
print("Total number of linear layers", num_linear_layers)
self.optimizer = optim.Adam(
self.parameters(), amsgrad=False, weight_decay=weight_decay_coefficient
)
self.learning_rate_scheduler = optim.lr_scheduler.CosineAnnealingLR(
self.optimizer, T_max=num_epochs, eta_min=0.00002
)
# Generate the directory names
self.experiment_folder = os.path.abspath(experiment_name)
self.experiment_logs = os.path.abspath(
os.path.join(self.experiment_folder, "result_outputs")
)
self.experiment_saved_models = os.path.abspath(
os.path.join(self.experiment_folder, "saved_models")
)
# Set best models to be at 0 since we are just starting
self.best_val_model_idx = 0
self.best_val_model_acc = 0.0
if not os.path.exists(
self.experiment_folder
): # If experiment directory does not exist
os.mkdir(self.experiment_folder) # create the experiment directory
os.mkdir(self.experiment_logs) # create the experiment log directory
os.mkdir(
self.experiment_saved_models
) # create the experiment saved models directory
self.num_epochs = num_epochs
self.criterion = nn.CrossEntropyLoss().to(
self.device
) # send the loss computation to the GPU
if (
continue_from_epoch == -2
): # if continue from epoch is -2 then continue from latest saved model
self.state, self.best_val_model_idx, self.best_val_model_acc = (
self.load_model(
model_save_dir=self.experiment_saved_models,
model_save_name="train_model",
model_idx="latest",
)
) # reload existing model from epoch and return best val model index
# and the best val acc of that model
self.starting_epoch = int(self.state["model_epoch"])
elif continue_from_epoch > -1: # if continue from epoch is greater than -1 then
self.state, self.best_val_model_idx, self.best_val_model_acc = (
self.load_model(
model_save_dir=self.experiment_saved_models,
model_save_name="train_model",
model_idx=continue_from_epoch,
)
) # reload existing model from epoch and return best val model index
# and the best val acc of that model
self.starting_epoch = continue_from_epoch
else:
self.state = dict()
self.starting_epoch = 0
def get_num_parameters(self):
total_num_params = 0
for param in self.parameters():
total_num_params += np.prod(param.shape)
return total_num_params
def plot_func_def(self, all_grads, layers):
"""
Plot function definition to plot the average gradient with respect to the number of layers in the given model
:param all_grads: Gradients wrt weights for each layer in the model.
:param layers: Layer names corresponding to the model parameters
:return: plot for gradient flow
"""
plt.plot(all_grads, alpha=0.3, color="b")
plt.hlines(0, 0, len(all_grads) + 1, linewidth=1, color="k")
plt.xticks(range(0, len(all_grads), 1), layers, rotation="vertical")
plt.xlim(xmin=0, xmax=len(all_grads))
plt.xlabel("Layers")
plt.ylabel("Average Gradient")
plt.title("Gradient flow")
plt.grid(True)
plt.tight_layout()
return plt
def plot_grad_flow(self, named_parameters):
"""
The function is being called in Line 298 of this file.
Receives the parameters of the model being trained. Returns plot of gradient flow for the given model parameters.
"""
all_grads = []
layers = []
"""
Complete the code in the block below to collect absolute mean of the gradients for each layer in all_grads with the layer names in layers.
"""
for name, param in named_parameters:
# Check if the parameter requires gradient and has a gradient
if param.requires_grad and param.grad is not None:
try:
_, a, _, b, _ = name.split(".", 4)
except:
b, a = name.split(".", 1)
layers.append(f"{a}_{b}")
# Collect the mean of the absolute gradients
all_grads.append(param.grad.abs().mean().item())
plt = self.plot_func_def(all_grads, layers)
return plt
def run_train_iter(self, x, y):
self.train() # sets model to training mode (in case batch normalization or other methods have different procedures for training and evaluation)
x, y = x.float().to(device=self.device), y.long().to(
device=self.device
) # send data to device as torch tensors
out = self.model.forward(x) # forward the data in the model
loss = F.cross_entropy(input=out, target=y) # compute loss
self.optimizer.zero_grad() # set all weight grads from previous training iters to 0
loss.backward() # backpropagate to compute gradients for current iter loss
self.optimizer.step() # update network parameters
self.learning_rate_scheduler.step() # update learning rate scheduler
_, predicted = torch.max(out.data, 1) # get argmax of predictions
accuracy = np.mean(list(predicted.eq(y.data).cpu())) # compute accuracy
return loss.cpu().data.numpy(), accuracy
def run_evaluation_iter(self, x, y):
"""
Receives the inputs and targets for the model and runs an evaluation iterations. Returns loss and accuracy metrics.
:param x: The inputs to the model. A numpy array of shape batch_size, channels, height, width
:param y: The targets for the model. A numpy array of shape batch_size, num_classes
:return: the loss and accuracy for this batch
"""
self.eval() # sets the system to validation mode
x, y = x.float().to(device=self.device), y.long().to(
device=self.device
) # convert data to pytorch tensors and send to the computation device
out = self.model.forward(x) # forward the data in the model
loss = F.cross_entropy(input=out, target=y) # compute loss
_, predicted = torch.max(out.data, 1) # get argmax of predictions
accuracy = np.mean(list(predicted.eq(y.data).cpu())) # compute accuracy
return loss.cpu().data.numpy(), accuracy
def save_model(
self,
model_save_dir,
model_save_name,
model_idx,
best_validation_model_idx,
best_validation_model_acc,
):
"""
Save the network parameter state and current best val epoch idx and best val accuracy.
:param model_save_name: Name to use to save model without the epoch index
:param model_idx: The index to save the model with.
:param best_validation_model_idx: The index of the best validation model to be stored for future use.
:param best_validation_model_acc: The best validation accuracy to be stored for use at test time.
:param model_save_dir: The directory to store the state at.
:param state: The dictionary containing the system state.
"""
self.state["network"] = (
self.state_dict()
) # save network parameter and other variables.
self.state["best_val_model_idx"] = (
best_validation_model_idx # save current best val idx
)
self.state["best_val_model_acc"] = (
best_validation_model_acc # save current best val acc
)
torch.save(
self.state,
f=os.path.join(
model_save_dir, "{}_{}".format(model_save_name, str(model_idx))
),
) # save state at prespecified filepath
def load_model(self, model_save_dir, model_save_name, model_idx):
"""
Load the network parameter state and the best val model idx and best val acc to be compared with the future val accuracies, in order to choose the best val model
:param model_save_dir: The directory to store the state at.
:param model_save_name: Name to use to save model without the epoch index
:param model_idx: The index to save the model with.
:return: best val idx and best val model acc, also it loads the network state into the system state without returning it
"""
state = torch.load(
f=os.path.join(
model_save_dir, "{}_{}".format(model_save_name, str(model_idx))
)
)
self.load_state_dict(state_dict=state["network"])
return state, state["best_val_model_idx"], state["best_val_model_acc"]
def run_experiment(self):
"""
Runs experiment train and evaluation iterations, saving the model and best val model and val model accuracy after each epoch
:return: The summary current_epoch_losses from starting epoch to total_epochs.
"""
total_losses = {
"train_acc": [],
"train_loss": [],
"val_acc": [],
"val_loss": [],
} # initialize a dict to keep the per-epoch metrics
for i, epoch_idx in enumerate(range(self.starting_epoch, self.num_epochs)):
epoch_start_time = time.time()
current_epoch_losses = {
"train_acc": [],
"train_loss": [],
"val_acc": [],
"val_loss": [],
}
self.current_epoch = epoch_idx
with tqdm.tqdm(
total=len(self.train_data)
) as pbar_train: # create a progress bar for training
for idx, (x, y) in enumerate(self.train_data): # get data batches
loss, accuracy = self.run_train_iter(
x=x, y=y
) # take a training iter step
current_epoch_losses["train_loss"].append(
loss
) # add current iter loss to the train loss list
current_epoch_losses["train_acc"].append(
accuracy
) # add current iter acc to the train acc list
pbar_train.update(1)
pbar_train.set_description(
"loss: {:.4f}, accuracy: {:.4f}".format(loss, accuracy)
)
with tqdm.tqdm(
total=len(self.val_data)
) as pbar_val: # create a progress bar for validation
for x, y in self.val_data: # get data batches
loss, accuracy = self.run_evaluation_iter(
x=x, y=y
) # run a validation iter
current_epoch_losses["val_loss"].append(
loss
) # add current iter loss to val loss list.
current_epoch_losses["val_acc"].append(
accuracy
) # add current iter acc to val acc lst.
pbar_val.update(1) # add 1 step to the progress bar
pbar_val.set_description(
"loss: {:.4f}, accuracy: {:.4f}".format(loss, accuracy)
)
val_mean_accuracy = np.mean(current_epoch_losses["val_acc"])
if (
val_mean_accuracy > self.best_val_model_acc
): # if current epoch's mean val acc is greater than the saved best val acc then
self.best_val_model_acc = val_mean_accuracy # set the best val model acc to be current epoch's val accuracy
self.best_val_model_idx = epoch_idx # set the experiment-wise best val idx to be the current epoch's idx
for key, value in current_epoch_losses.items():
total_losses[key].append(
np.mean(value)
) # get mean of all metrics of current epoch metrics dict, to get them ready for storage and output on the terminal.
save_statistics(
experiment_log_dir=self.experiment_logs,
filename="summary.csv",
stats_dict=total_losses,
current_epoch=i,
continue_from_mode=(
True if (self.starting_epoch != 0 or i > 0) else False
),
) # save statistics to stats file.
# load_statistics(experiment_log_dir=self.experiment_logs, filename='summary.csv') # How to load a csv file if you need to
out_string = "_".join(
[
"{}_{:.4f}".format(key, np.mean(value))
for key, value in current_epoch_losses.items()
]
)
# create a string to use to report our epoch metrics
epoch_elapsed_time = (
time.time() - epoch_start_time
) # calculate time taken for epoch
epoch_elapsed_time = "{:.4f}".format(epoch_elapsed_time)
print(
"Epoch {}:".format(epoch_idx),
out_string,
"epoch time",
epoch_elapsed_time,
"seconds",
)
self.state["model_epoch"] = epoch_idx
self.save_model(
model_save_dir=self.experiment_saved_models,
# save model and best val idx and best val acc, using the model dir, model name and model idx
model_save_name="train_model",
model_idx=epoch_idx,
best_validation_model_idx=self.best_val_model_idx,
best_validation_model_acc=self.best_val_model_acc,
)
self.save_model(
model_save_dir=self.experiment_saved_models,
# save model and best val idx and best val acc, using the model dir, model name and model idx
model_save_name="train_model",
model_idx="latest",
best_validation_model_idx=self.best_val_model_idx,
best_validation_model_acc=self.best_val_model_acc,
)
################################################################
##### Plot Gradient Flow at each Epoch during Training ######
print("Generating Gradient Flow Plot at epoch {}".format(epoch_idx))
plt = self.plot_grad_flow(self.model.named_parameters())
if not os.path.exists(
os.path.join(self.experiment_saved_models, "gradient_flow_plots")
):
os.mkdir(
os.path.join(self.experiment_saved_models, "gradient_flow_plots")
)
# plt.legend(loc="best")
plt.savefig(
os.path.join(
self.experiment_saved_models,
"gradient_flow_plots",
"epoch{}.pdf".format(str(epoch_idx)),
)
)
################################################################
print("Generating test set evaluation metrics")
self.load_model(
model_save_dir=self.experiment_saved_models,
model_idx=self.best_val_model_idx,
# load best validation model
model_save_name="train_model",
)
current_epoch_losses = {
"test_acc": [],
"test_loss": [],
} # initialize a statistics dict
with tqdm.tqdm(total=len(self.test_data)) as pbar_test: # ini a progress bar
for x, y in self.test_data: # sample batch
loss, accuracy = self.run_evaluation_iter(
x=x, y=y
) # compute loss and accuracy by running an evaluation step
current_epoch_losses["test_loss"].append(loss) # save test loss
current_epoch_losses["test_acc"].append(accuracy) # save test accuracy
pbar_test.update(1) # update progress bar status
pbar_test.set_description(
"loss: {:.4f}, accuracy: {:.4f}".format(loss, accuracy)
) # update progress bar string output
test_losses = {
key: [np.mean(value)] for key, value in current_epoch_losses.items()
} # save test set metrics in dict format
save_statistics(
experiment_log_dir=self.experiment_logs,
filename="test_summary.csv",
# save test set metrics on disk in .csv format
stats_dict=test_losses,
current_epoch=0,
continue_from_mode=False,
)
return total_losses, test_losses