mlpractical/mlp/layers.py
AntreasAntoniou c949119603 Init Lab_4
2017-10-15 13:13:09 +01:00

320 lines
12 KiB
Python

# -*- coding: utf-8 -*-
"""Layer definitions.
This module defines classes which encapsulate a single layer.
These layers map input activations to output activation with the `fprop`
method and map gradients with repsect to outputs to gradients with respect to
their inputs with the `bprop` method.
Some layers will have learnable parameters and so will additionally define
methods for getting and setting parameter and calculating gradients with
respect to the layer parameters.
"""
import numpy as np
import mlp.initialisers as init
class Layer(object):
"""Abstract class defining the interface for a layer."""
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
raise NotImplementedError()
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
raise NotImplementedError()
class LayerWithParameters(Layer):
"""Abstract class defining the interface for a layer with parameters."""
def grads_wrt_params(self, inputs, grads_wrt_outputs):
"""Calculates gradients with respect to layer parameters.
Args:
inputs: Array of inputs to layer of shape (batch_size, input_dim).
grads_wrt_to_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
List of arrays of gradients with respect to the layer parameters
with parameter gradients appearing in same order in tuple as
returned from `get_params` method.
"""
raise NotImplementedError()
@property
def params(self):
"""Returns a list of parameters of layer.
Returns:
List of current parameter values. This list should be in the
corresponding order to the `values` argument to `set_params`.
"""
raise NotImplementedError()
@params.setter
def params(self, values):
"""Sets layer parameters from a list of values.
Args:
values: List of values to set parameters to. This list should be
in the corresponding order to what is returned by `get_params`.
"""
raise NotImplementedError()
class AffineLayer(LayerWithParameters):
"""Layer implementing an affine tranformation of its inputs.
This layer is parameterised by a weight matrix and bias vector.
"""
def __init__(self, input_dim, output_dim,
weights_initialiser=init.UniformInit(-0.1, 0.1),
biases_initialiser=init.ConstantInit(0.)):
"""Initialises a parameterised affine layer.
Args:
input_dim (int): Dimension of inputs to the layer.
output_dim (int): Dimension of the layer outputs.
weights_initialiser: Initialiser for the weight parameters.
biases_initialiser: Initialiser for the bias parameters.
"""
self.input_dim = input_dim
self.output_dim = output_dim
self.weights = weights_initialiser((self.output_dim, self.input_dim))
self.biases = biases_initialiser(self.output_dim)
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
For inputs `x`, outputs `y`, weights `W` and biases `b` the layer
corresponds to `y = W.dot(x) + b`.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
return inputs.dot(self.weights.T) + self.biases
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
return grads_wrt_outputs.dot(self.weights)
def grads_wrt_params(self, inputs, grads_wrt_outputs):
"""Calculates gradients with respect to layer parameters.
Args:
inputs: array of inputs to layer of shape (batch_size, input_dim)
grads_wrt_to_outputs: array of gradients with respect to the layer
outputs of shape (batch_size, output_dim)
Returns:
list of arrays of gradients with respect to the layer parameters
`[grads_wrt_weights, grads_wrt_biases]`.
"""
grads_wrt_weights = np.dot(grads_wrt_outputs.T, inputs)
grads_wrt_biases = np.sum(grads_wrt_outputs, axis=0)
return [grads_wrt_weights, grads_wrt_biases]
@property
def params(self):
"""A list of layer parameter values: `[weights, biases]`."""
return [self.weights, self.biases]
@params.setter
def params(self, values):
self.weights = values[0]
self.biases = values[1]
def __repr__(self):
return 'AffineLayer(input_dim={0}, output_dim={1})'.format(
self.input_dim, self.output_dim)
class SigmoidLayer(Layer):
"""Layer implementing an element-wise logistic sigmoid transformation."""
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
For inputs `x` and outputs `y` this corresponds to
`y = 1 / (1 + exp(-x))`.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
return 1. / (1. + np.exp(-inputs))
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
return grads_wrt_outputs * outputs * (1. - outputs)
def __repr__(self):
return 'SigmoidLayer'
class SoftmaxLayer(Layer):
"""Layer implementing a softmax transformation."""
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
For inputs `x` and outputs `y` this corresponds to
`y = exp(x) / sum(exp(x))`.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
exp_inputs = np.exp(inputs)
return exp_inputs / exp_inputs.sum(-1)[:, None]
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
return (outputs * (grads_wrt_outputs -
(grads_wrt_outputs * outputs).sum(-1)[:, None]))
def __repr__(self):
return 'SoftmaxLayer'
class RadialBasisFunctionLayer(Layer):
"""Layer implementing projection to a grid of radial basis functions."""
def __init__(self, grid_dim, intervals=[[0., 1.]]):
"""Creates a radial basis function layer object.
Args:
grid_dim: Integer specifying how many basis function to use in
grid across input space per dimension (so total number of
basis functions will be grid_dim**input_dim)
intervals: List of intervals (two element lists or tuples)
specifying extents of axis-aligned region in input-space to
tile basis functions in grid across. For example for a 2D input
space spanning [0, 1] x [0, 1] use intervals=[[0, 1], [0, 1]].
"""
num_basis = grid_dim**len(intervals)
self.centres = np.array(np.meshgrid(*[
np.linspace(low, high, grid_dim) for (low, high) in intervals])
).reshape((len(intervals), -1))
self.scales = np.array([
[(high - low) * 1. / grid_dim] for (low, high) in intervals])
def fprop(self, inputs):
"""Forward propagates activations through the layer transformation.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
Returns:
outputs: Array of layer outputs of shape (batch_size, output_dim).
"""
return np.exp(-(inputs[..., None] - self.centres[None, ...])**2 /
self.scales**2).reshape((inputs.shape[0], -1))
def bprop(self, inputs, outputs, grads_wrt_outputs):
"""Back propagates gradients through a layer.
Given gradients with respect to the outputs of the layer calculates the
gradients with respect to the layer inputs.
Args:
inputs: Array of layer inputs of shape (batch_size, input_dim).
outputs: Array of layer outputs calculated in forward pass of
shape (batch_size, output_dim).
grads_wrt_outputs: Array of gradients with respect to the layer
outputs of shape (batch_size, output_dim).
Returns:
Array of gradients with respect to the layer inputs of shape
(batch_size, input_dim).
"""
num_basis = self.centres.shape[1]
return -2 * (
((inputs[..., None] - self.centres[None, ...]) / self.scales**2) *
grads_wrt_outputs.reshape((inputs.shape[0], -1, num_basis))
).sum(-1)
def __repr__(self):
return 'RadialBasisFunctionLayer(grid_dim={0})'.format(self.grid_dim)