mlpractical/pytorch_mlp_framework/arg_extractor.py
2024-11-19 10:38:54 +00:00

134 lines
3.8 KiB
Python

import argparse
def str2bool(v):
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def get_args():
"""
Returns a namedtuple with arguments extracted from the command line.
:return: A namedtuple with arguments
"""
parser = argparse.ArgumentParser(
description="Welcome to the MLP course's Pytorch training and inference helper script"
)
parser.add_argument(
"--batch_size",
nargs="?",
type=int,
default=100,
help="Batch_size for experiment",
)
parser.add_argument(
"--continue_from_epoch",
nargs="?",
type=int,
default=-1,
help="Epoch you want to continue training from while restarting an experiment",
)
parser.add_argument(
"--seed",
nargs="?",
type=int,
default=7112018,
help="Seed to use for random number generator for experiment",
)
parser.add_argument(
"--image_num_channels",
nargs="?",
type=int,
default=3,
help="The channel dimensionality of our image-data",
)
parser.add_argument(
"--learning-rate",
nargs="?",
type=float,
default=1e-3,
help="The learning rate (default 1e-3)",
)
parser.add_argument(
"--image_height", nargs="?", type=int, default=32, help="Height of image data"
)
parser.add_argument(
"--image_width", nargs="?", type=int, default=32, help="Width of image data"
)
parser.add_argument(
"--num_stages",
nargs="?",
type=int,
default=3,
help="Number of convolutional stages in the network. A stage is considered a sequence of "
"convolutional layers where the input volume remains the same in the spacial dimension and"
" is always terminated by a dimensionality reduction stage",
)
parser.add_argument(
"--num_blocks_per_stage",
nargs="?",
type=int,
default=5,
help="Number of convolutional blocks in each stage, not including the reduction stage."
" A convolutional block is made up of two convolutional layers activated using the "
" leaky-relu non-linearity",
)
parser.add_argument(
"--num_filters",
nargs="?",
type=int,
default=16,
help="Number of convolutional filters per convolutional layer in the network (excluding "
"dimensionality reduction layers)",
)
parser.add_argument(
"--num_epochs",
nargs="?",
type=int,
default=100,
help="Total number of epochs for model training",
)
parser.add_argument(
"--num_classes",
nargs="?",
type=int,
default=100,
help="Number of classes in the dataset",
)
parser.add_argument(
"--experiment_name",
nargs="?",
type=str,
default="exp_1",
help="Experiment name - to be used for building the experiment folder",
)
parser.add_argument(
"--use_gpu",
nargs="?",
type=str2bool,
default=True,
help="A flag indicating whether we will use GPU acceleration or not",
)
parser.add_argument(
"--weight_decay_coefficient",
nargs="?",
type=float,
default=0,
help="Weight decay to use for Adam",
)
parser.add_argument(
"--block_type",
type=str,
default="conv_block",
help="Type of convolutional blocks to use in our network"
"(This argument will be useful in running experiments to debug your network)",
)
args = parser.parse_args()
print(args)
return args