mlpractical/mlp/models.py
2016-09-19 07:31:31 +01:00

93 lines
2.3 KiB
Python

"""
Model definitions.
"""
from mlp.layers import LayerWithParameters
class SingleLayerModel(object):
"""
"""
def __init__(self, layer):
self.layer = layer
@property
def params(self):
"""
"""
return self.layer.params
def fprop(self, inputs):
"""
"""
activations = [inputs, self.layer.fprop(inputs)]
return activations
def grads_wrt_params(self, activations, grads_wrt_outputs):
"""
"""
return self.layer.grads_wrt_params(activations[0], grads_wrt_outputs)
def params_cost(self):
"""
"""
return self.layer.params_cost()
def __repr__(self):
return 'SingleLayerModel(' + str(layer) + ')'
class MultipleLayerModel(object):
"""
"""
def __init__(self, layers):
self.layers = layers
@property
def params(self):
"""
"""
params = []
for layer in self.layers:
if isinstance(layer, LayerWithParameters):
params += layer.params
return params
def fprop(self, inputs):
"""
"""
activations = [inputs]
for i, layer in enumerate(self.layers):
activations.append(self.layers[i].fprop(activations[i]))
return activations
def grads_wrt_params(self, activations, grads_wrt_outputs):
"""
"""
grads_wrt_params = []
for i, layer in enumerate(self.layers[::-1]):
inputs = activations[-i - 2]
outputs = activations[-i - 1]
grads_wrt_inputs = layer.bprop(inputs, outputs, grads_wrt_outputs)
if isinstance(layer, LayerWithParameters):
grads_wrt_params += layer.grads_wrt_params(
inputs, grads_wrt_outputs)[::-1]
grads_wrt_outputs = grads_wrt_inputs
return grads_wrt_params[::-1]
def params_cost(self):
"""
"""
params_cost = 0.
for layer in self.layers:
if isinstance(layer, LayerWithParameters):
params_cost += layer.params_cost()
return params_cost
def __repr__(self):
return (
'MultiLayerModel(\n ' +
'\n '.join([str(layer) for layer in self.layers]) +
'\n)'
)