mlpractical/gpu_cluster_tutorial_training_script.sh
2018-02-11 15:06:07 +00:00

34 lines
1.1 KiB
Bash

#!/bin/sh
#SBATCH -N 1 # nodes requested
#SBATCH -n 1 # tasks requested
#SBATCH --gres=gpu:1
#SBATCH --mem=16000 # memory in Mb
#SBATCH -o sample_experiment_outfile # send stdout to sample_experiment_outfile
#SBATCH -e sample_experiment_errfile # send stderr to sample_experiment_errfile
#SBATCH -t 2:00:00 # time requested in hour:minute:secon
export CUDA_HOME=/opt/cuda-8.0.44
export CUDNN_HOME=/opt/cuDNN-6.0_8.0
export STUDENT_ID=$(whoami)
export LD_LIBRARY_PATH=${CUDNN_HOME}/lib64:${CUDA_HOME}/lib64:$LD_LIBRARY_PATH
export LIBRARY_PATH=${CUDNN_HOME}/lib64:$LIBRARY_PATH
export CPATH=${CUDNN_HOME}/include:$CPATH
export PATH=${CUDA_HOME}/bin:${PATH}
export PYTHON_PATH=$PATH
mkdir -p /disk/scratch/${STUDENT_ID}
export TMPDIR=/disk/scratch/${STUDENT_ID}/
export TMP=/disk/scratch/${STUDENT_ID}/
# Activate the relevant virtual environment:
source /home/${STUDENT_ID}/miniconda3/bin/activate mlp
python emnist_network_trainer.py --batch_size 128 --epochs 200 --experiment_prefix vgg-net-emnist-sample-exp --dropout_rate 0.4 --batch_norm_use True --strided_dim_reduction True --seed 25012018