1003 lines
38 KiB
Python
1003 lines
38 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""Layer definitions.
|
||
|
||
This module defines classes which encapsulate a single layer.
|
||
|
||
These layers map input activations to output activation with the `fprop`
|
||
method and map gradients with repsect to outputs to gradients with respect to
|
||
their inputs with the `bprop` method.
|
||
|
||
Some layers will have learnable parameters and so will additionally define
|
||
methods for getting and setting parameter and calculating gradients with
|
||
respect to the layer parameters.
|
||
"""
|
||
|
||
import numpy as np
|
||
import mlp.initialisers as init
|
||
from mlp import DEFAULT_SEED
|
||
|
||
class Layer(object):
|
||
"""Abstract class defining the interface for a layer."""
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
|
||
class LayerWithParameters(Layer):
|
||
"""Abstract class defining the interface for a layer with parameters."""
|
||
|
||
def grads_wrt_params(self, inputs, grads_wrt_outputs):
|
||
"""Calculates gradients with respect to layer parameters.
|
||
|
||
Args:
|
||
inputs: Array of inputs to layer of shape (batch_size, input_dim).
|
||
grads_wrt_to_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
List of arrays of gradients with respect to the layer parameters
|
||
with parameter gradients appearing in same order in tuple as
|
||
returned from `get_params` method.
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
def params_penalty(self):
|
||
"""Returns the parameter dependent penalty term for this layer.
|
||
|
||
If no parameter-dependent penalty terms are set this returns zero.
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
@property
|
||
def params(self):
|
||
"""Returns a list of parameters of layer.
|
||
|
||
Returns:
|
||
List of current parameter values. This list should be in the
|
||
corresponding order to the `values` argument to `set_params`.
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
@params.setter
|
||
def params(self, values):
|
||
"""Sets layer parameters from a list of values.
|
||
|
||
Args:
|
||
values: List of values to set parameters to. This list should be
|
||
in the corresponding order to what is returned by `get_params`.
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
class StochasticLayerWithParameters(Layer):
|
||
"""Specialised layer which uses a stochastic forward propagation."""
|
||
|
||
def __init__(self, rng=None):
|
||
"""Constructs a new StochasticLayer object.
|
||
|
||
Args:
|
||
rng (RandomState): Seeded random number generator object.
|
||
"""
|
||
if rng is None:
|
||
rng = np.random.RandomState(DEFAULT_SEED)
|
||
self.rng = rng
|
||
|
||
def fprop(self, inputs, stochastic=True):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
stochastic: Flag allowing different deterministic
|
||
forward-propagation mode in addition to default stochastic
|
||
forward-propagation e.g. for use at test time. If False
|
||
a deterministic forward-propagation transformation
|
||
corresponding to the expected output of the stochastic
|
||
forward-propagation is applied.
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
raise NotImplementedError()
|
||
def grads_wrt_params(self, inputs, grads_wrt_outputs):
|
||
"""Calculates gradients with respect to layer parameters.
|
||
|
||
Args:
|
||
inputs: Array of inputs to layer of shape (batch_size, input_dim).
|
||
grads_wrt_to_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
List of arrays of gradients with respect to the layer parameters
|
||
with parameter gradients appearing in same order in tuple as
|
||
returned from `get_params` method.
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
def params_penalty(self):
|
||
"""Returns the parameter dependent penalty term for this layer.
|
||
|
||
If no parameter-dependent penalty terms are set this returns zero.
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
@property
|
||
def params(self):
|
||
"""Returns a list of parameters of layer.
|
||
|
||
Returns:
|
||
List of current parameter values. This list should be in the
|
||
corresponding order to the `values` argument to `set_params`.
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
@params.setter
|
||
def params(self, values):
|
||
"""Sets layer parameters from a list of values.
|
||
|
||
Args:
|
||
values: List of values to set parameters to. This list should be
|
||
in the corresponding order to what is returned by `get_params`.
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
class StochasticLayer(Layer):
|
||
"""Specialised layer which uses a stochastic forward propagation."""
|
||
|
||
def __init__(self, rng=None):
|
||
"""Constructs a new StochasticLayer object.
|
||
|
||
Args:
|
||
rng (RandomState): Seeded random number generator object.
|
||
"""
|
||
if rng is None:
|
||
rng = np.random.RandomState(DEFAULT_SEED)
|
||
self.rng = rng
|
||
|
||
def fprop(self, inputs, stochastic=True):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
stochastic: Flag allowing different deterministic
|
||
forward-propagation mode in addition to default stochastic
|
||
forward-propagation e.g. for use at test time. If False
|
||
a deterministic forward-propagation transformation
|
||
corresponding to the expected output of the stochastic
|
||
forward-propagation is applied.
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs. This should correspond to
|
||
default stochastic forward-propagation.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
raise NotImplementedError()
|
||
|
||
|
||
class AffineLayer(LayerWithParameters):
|
||
"""Layer implementing an affine tranformation of its inputs.
|
||
|
||
This layer is parameterised by a weight matrix and bias vector.
|
||
"""
|
||
|
||
def __init__(self, input_dim, output_dim,
|
||
weights_initialiser=init.UniformInit(-0.1, 0.1),
|
||
biases_initialiser=init.ConstantInit(0.),
|
||
weights_penalty=None, biases_penalty=None):
|
||
"""Initialises a parameterised affine layer.
|
||
|
||
Args:
|
||
input_dim (int): Dimension of inputs to the layer.
|
||
output_dim (int): Dimension of the layer outputs.
|
||
weights_initialiser: Initialiser for the weight parameters.
|
||
biases_initialiser: Initialiser for the bias parameters.
|
||
weights_penalty: Weights-dependent penalty term (regulariser) or
|
||
None if no regularisation is to be applied to the weights.
|
||
biases_penalty: Biases-dependent penalty term (regulariser) or
|
||
None if no regularisation is to be applied to the biases.
|
||
"""
|
||
self.input_dim = input_dim
|
||
self.output_dim = output_dim
|
||
self.weights = weights_initialiser((self.output_dim, self.input_dim))
|
||
self.biases = biases_initialiser(self.output_dim)
|
||
self.weights_penalty = weights_penalty
|
||
self.biases_penalty = biases_penalty
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
For inputs `x`, outputs `y`, weights `W` and biases `b` the layer
|
||
corresponds to `y = W.dot(x) + b`.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
return self.weights.dot(inputs.T).T + self.biases
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
return grads_wrt_outputs.dot(self.weights)
|
||
|
||
def grads_wrt_params(self, inputs, grads_wrt_outputs):
|
||
"""Calculates gradients with respect to layer parameters.
|
||
|
||
Args:
|
||
inputs: array of inputs to layer of shape (batch_size, input_dim)
|
||
grads_wrt_to_outputs: array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim)
|
||
|
||
Returns:
|
||
list of arrays of gradients with respect to the layer parameters
|
||
`[grads_wrt_weights, grads_wrt_biases]`.
|
||
"""
|
||
|
||
grads_wrt_weights = np.dot(grads_wrt_outputs.T, inputs)
|
||
grads_wrt_biases = np.sum(grads_wrt_outputs, axis=0)
|
||
|
||
if self.weights_penalty is not None:
|
||
grads_wrt_weights += self.weights_penalty.grad(self.weights)
|
||
|
||
if self.biases_penalty is not None:
|
||
grads_wrt_biases += self.biases_penalty.grad(self.biases)
|
||
|
||
return [grads_wrt_weights, grads_wrt_biases]
|
||
|
||
def params_penalty(self):
|
||
"""Returns the parameter dependent penalty term for this layer.
|
||
|
||
If no parameter-dependent penalty terms are set this returns zero.
|
||
"""
|
||
params_penalty = 0
|
||
if self.weights_penalty is not None:
|
||
params_penalty += self.weights_penalty(self.weights)
|
||
if self.biases_penalty is not None:
|
||
params_penalty += self.biases_penalty(self.biases)
|
||
return params_penalty
|
||
|
||
@property
|
||
def params(self):
|
||
"""A list of layer parameter values: `[weights, biases]`."""
|
||
return [self.weights, self.biases]
|
||
|
||
@params.setter
|
||
def params(self, values):
|
||
self.weights = values[0]
|
||
self.biases = values[1]
|
||
|
||
def __repr__(self):
|
||
return 'AffineLayer(input_dim={0}, output_dim={1})'.format(
|
||
self.input_dim, self.output_dim)
|
||
|
||
class BatchNormalizationLayer(StochasticLayerWithParameters):
|
||
"""Layer implementing an affine tranformation of its inputs.
|
||
|
||
This layer is parameterised by a weight matrix and bias vector.
|
||
"""
|
||
|
||
def __init__(self, input_dim, rng=None):
|
||
"""Initialises a parameterised affine layer.
|
||
|
||
Args:
|
||
input_dim (int): Dimension of inputs to the layer.
|
||
output_dim (int): Dimension of the layer outputs.
|
||
weights_initialiser: Initialiser for the weight parameters.
|
||
biases_initialiser: Initialiser for the bias parameters.
|
||
weights_penalty: Weights-dependent penalty term (regulariser) or
|
||
None if no regularisation is to be applied to the weights.
|
||
biases_penalty: Biases-dependent penalty term (regulariser) or
|
||
None if no regularisation is to be applied to the biases.
|
||
"""
|
||
super(BatchNormalizationLayer, self).__init__(rng)
|
||
self.beta = np.random.normal(size=(input_dim))
|
||
self.gamma = np.random.normal(size=(input_dim))
|
||
self.epsilon = 0.00001
|
||
self.cache = None
|
||
self.input_dim = input_dim
|
||
|
||
def fprop(self, inputs, stochastic=True):
|
||
"""Forward propagates inputs through a layer."""
|
||
|
||
raise NotImplementedError
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
|
||
raise NotImplementedError
|
||
|
||
def grads_wrt_params(self, inputs, grads_wrt_outputs):
|
||
"""Calculates gradients with respect to layer parameters.
|
||
|
||
Args:
|
||
inputs: array of inputs to layer of shape (batch_size, input_dim)
|
||
grads_wrt_to_outputs: array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim)
|
||
|
||
Returns:
|
||
list of arrays of gradients with respect to the layer parameters
|
||
`[grads_wrt_weights, grads_wrt_biases]`.
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
def params_penalty(self):
|
||
"""Returns the parameter dependent penalty term for this layer.
|
||
|
||
If no parameter-dependent penalty terms are set this returns zero.
|
||
"""
|
||
params_penalty = 0
|
||
|
||
return params_penalty
|
||
|
||
@property
|
||
def params(self):
|
||
"""A list of layer parameter values: `[gammas, betas]`."""
|
||
return [self.gamma, self.beta]
|
||
|
||
@params.setter
|
||
def params(self, values):
|
||
self.gamma = values[0]
|
||
self.beta = values[1]
|
||
|
||
def __repr__(self):
|
||
return 'BatchNormalizationLayer(input_dim={0})'.format(
|
||
self.input_dim)
|
||
|
||
|
||
class SigmoidLayer(Layer):
|
||
"""Layer implementing an element-wise logistic sigmoid transformation."""
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
For inputs `x` and outputs `y` this corresponds to
|
||
`y = 1 / (1 + exp(-x))`.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
return 1. / (1. + np.exp(-inputs))
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
return grads_wrt_outputs * outputs * (1. - outputs)
|
||
|
||
def __repr__(self):
|
||
return 'SigmoidLayer'
|
||
|
||
class ConvolutionalLayer(LayerWithParameters):
|
||
"""Layer implementing a 2D convolution-based transformation of its inputs.
|
||
The layer is parameterised by a set of 2D convolutional kernels, a four
|
||
dimensional array of shape
|
||
(num_output_channels, num_input_channels, kernel_dim_1, kernel_dim_2)
|
||
and a bias vector, a one dimensional array of shape
|
||
(num_output_channels,)
|
||
i.e. one shared bias per output channel.
|
||
Assuming no-padding is applied to the inputs so that outputs are only
|
||
calculated for positions where the kernel filters fully overlap with the
|
||
inputs, and that unit strides are used the outputs will have spatial extent
|
||
output_dim_1 = input_dim_1 - kernel_dim_1 + 1
|
||
output_dim_2 = input_dim_2 - kernel_dim_2 + 1
|
||
"""
|
||
|
||
def __init__(self, num_input_channels, num_output_channels,
|
||
input_dim_1, input_dim_2,
|
||
kernel_dim_1, kernel_dim_2,
|
||
kernels_init=init.UniformInit(-0.01, 0.01),
|
||
biases_init=init.ConstantInit(0.),
|
||
kernels_penalty=None, biases_penalty=None):
|
||
"""Initialises a parameterised convolutional layer.
|
||
Args:
|
||
num_input_channels (int): Number of channels in inputs to
|
||
layer (this may be number of colour channels in the input
|
||
images if used as the first layer in a model, or the
|
||
number of output channels, a.k.a. feature maps, from a
|
||
a previous convolutional layer).
|
||
num_output_channels (int): Number of channels in outputs
|
||
from the layer, a.k.a. number of feature maps.
|
||
input_dim_1 (int): Size of first input dimension of each 2D
|
||
channel of inputs.
|
||
input_dim_2 (int): Size of second input dimension of each 2D
|
||
channel of inputs.
|
||
kernel_dim_1 (int): Size of first dimension of each 2D channel of
|
||
kernels.
|
||
kernel_dim_2 (int): Size of second dimension of each 2D channel of
|
||
kernels.
|
||
kernels_intialiser: Initialiser for the kernel parameters.
|
||
biases_initialiser: Initialiser for the bias parameters.
|
||
kernels_penalty: Kernel-dependent penalty term (regulariser) or
|
||
None if no regularisation is to be applied to the kernels.
|
||
biases_penalty: Biases-dependent penalty term (regulariser) or
|
||
None if no regularisation is to be applied to the biases.
|
||
"""
|
||
self.num_input_channels = num_input_channels
|
||
self.num_output_channels = num_output_channels
|
||
self.input_dim_1 = input_dim_1
|
||
self.input_dim_2 = input_dim_2
|
||
self.kernel_dim_1 = kernel_dim_1
|
||
self.kernel_dim_2 = kernel_dim_2
|
||
self.kernels_init = kernels_init
|
||
self.biases_init = biases_init
|
||
self.kernels_shape = (
|
||
num_output_channels, num_input_channels, kernel_dim_1, kernel_dim_2
|
||
)
|
||
self.inputs_shape = (
|
||
None, num_input_channels, input_dim_1, input_dim_2
|
||
)
|
||
self.kernels = self.kernels_init(self.kernels_shape)
|
||
self.biases = self.biases_init(num_output_channels)
|
||
self.kernels_penalty = kernels_penalty
|
||
self.biases_penalty = biases_penalty
|
||
|
||
self.cache = None
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
For inputs `x`, outputs `y`, kernels `K` and biases `b` the layer
|
||
corresponds to `y = conv2d(x, K) + b`.
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
raise NotImplementedError
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
Args:
|
||
inputs: Array of layer inputs of shape
|
||
(batch_size, num_input_channels, input_dim_1, input_dim_2).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape
|
||
(batch_size, num_output_channels, output_dim_1, output_dim_2).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape
|
||
(batch_size, num_output_channels, output_dim_1, output_dim_2).
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
# Pad the grads_wrt_outputs
|
||
|
||
raise NotImplementedError
|
||
|
||
def grads_wrt_params(self, inputs, grads_wrt_outputs):
|
||
"""Calculates gradients with respect to layer parameters.
|
||
Args:
|
||
inputs: array of inputs to layer of shape (batch_size, input_dim)
|
||
grads_wrt_to_outputs: array of gradients with respect to the layer
|
||
outputs of shape
|
||
(batch_size, num_output-_channels, output_dim_1, output_dim_2).
|
||
Returns:
|
||
list of arrays of gradients with respect to the layer parameters
|
||
`[grads_wrt_kernels, grads_wrt_biases]`.
|
||
"""
|
||
|
||
raise NotImplementedError
|
||
|
||
def params_penalty(self):
|
||
"""Returns the parameter dependent penalty term for this layer.
|
||
If no parameter-dependent penalty terms are set this returns zero.
|
||
"""
|
||
params_penalty = 0
|
||
if self.kernels_penalty is not None:
|
||
params_penalty += self.kernels_penalty(self.kernels)
|
||
if self.biases_penalty is not None:
|
||
params_penalty += self.biases_penalty(self.biases)
|
||
return params_penalty
|
||
|
||
@property
|
||
def params(self):
|
||
"""A list of layer parameter values: `[kernels, biases]`."""
|
||
return [self.kernels, self.biases]
|
||
|
||
@params.setter
|
||
def params(self, values):
|
||
self.kernels = values[0]
|
||
self.biases = values[1]
|
||
|
||
def __repr__(self):
|
||
return (
|
||
'ConvolutionalLayer(\n'
|
||
' num_input_channels={0}, num_output_channels={1},\n'
|
||
' input_dim_1={2}, input_dim_2={3},\n'
|
||
' kernel_dim_1={4}, kernel_dim_2={5}\n'
|
||
')'
|
||
.format(self.num_input_channels, self.num_output_channels,
|
||
self.input_dim_1, self.input_dim_2, self.kernel_dim_1,
|
||
self.kernel_dim_2)
|
||
)
|
||
|
||
|
||
class ReluLayer(Layer):
|
||
"""Layer implementing an element-wise rectified linear transformation."""
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
For inputs `x` and outputs `y` this corresponds to `y = max(0, x)`.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
return np.maximum(inputs, 0.)
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
return (outputs > 0) * grads_wrt_outputs
|
||
|
||
def __repr__(self):
|
||
return 'ReluLayer'
|
||
|
||
class LeakyReluLayer(Layer):
|
||
"""Layer implementing an element-wise rectified linear transformation."""
|
||
def __init__(self, alpha=0.01):
|
||
self.alpha = alpha
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
For inputs `x` and outputs `y` this corresponds to `y = max(0, x)`.
|
||
"""
|
||
positive_inputs = np.maximum(inputs, 0.)
|
||
|
||
negative_inputs = inputs
|
||
negative_inputs[negative_inputs>0] = 0.
|
||
negative_inputs = negative_inputs * self.alpha
|
||
|
||
outputs = positive_inputs + negative_inputs
|
||
return outputs
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
"""
|
||
positive_gradients = (outputs > 0) * grads_wrt_outputs
|
||
negative_gradients = self.alpha * (outputs < 0) * grads_wrt_outputs
|
||
gradients = positive_gradients + negative_gradients
|
||
return gradients
|
||
|
||
def __repr__(self):
|
||
return 'LeakyReluLayer'
|
||
|
||
class ELULayer(Layer):
|
||
"""Layer implementing an ELU activation."""
|
||
def __init__(self, alpha=1.0):
|
||
self.alpha = alpha
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
For inputs `x` and outputs `y` this corresponds to `y = max(0, x)`.
|
||
"""
|
||
positive_inputs = np.maximum(inputs, 0.)
|
||
|
||
negative_inputs = np.copy(inputs)
|
||
negative_inputs[negative_inputs>0] = 0.
|
||
negative_inputs = self.alpha * (np.exp(negative_inputs) - 1)
|
||
|
||
outputs = positive_inputs + negative_inputs
|
||
return outputs
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
"""
|
||
positive_gradients = (outputs >= 0) * grads_wrt_outputs
|
||
outputs_to_use = (outputs < 0) * outputs
|
||
negative_gradients = (outputs_to_use + self.alpha)
|
||
negative_gradients[outputs >= 0] = 0.
|
||
negative_gradients = negative_gradients * grads_wrt_outputs
|
||
gradients = positive_gradients + negative_gradients
|
||
return gradients
|
||
|
||
def __repr__(self):
|
||
return 'ELULayer'
|
||
|
||
class SELULayer(Layer):
|
||
"""Layer implementing an element-wise rectified linear transformation."""
|
||
#α01 ≈ 1.6733 and λ01 ≈ 1.0507
|
||
def __init__(self):
|
||
self.alpha = 1.6733
|
||
self.lamda = 1.0507
|
||
self.elu = ELULayer(alpha=self.alpha)
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
For inputs `x` and outputs `y` this corresponds to `y = max(0, x)`.
|
||
"""
|
||
outputs = self.lamda * self.elu.fprop(inputs)
|
||
return outputs
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
"""
|
||
scaled_outputs = outputs / self.lamda
|
||
gradients = self.lamda * self.elu.bprop(inputs=inputs, outputs=scaled_outputs,
|
||
grads_wrt_outputs=grads_wrt_outputs)
|
||
return gradients
|
||
|
||
def __repr__(self):
|
||
return 'SELULayer'
|
||
|
||
class TanhLayer(Layer):
|
||
"""Layer implementing an element-wise hyperbolic tangent transformation."""
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
For inputs `x` and outputs `y` this corresponds to `y = tanh(x)`.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
return np.tanh(inputs)
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
return (1. - outputs**2) * grads_wrt_outputs
|
||
|
||
def __repr__(self):
|
||
return 'TanhLayer'
|
||
|
||
|
||
class SoftmaxLayer(Layer):
|
||
"""Layer implementing a softmax transformation."""
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
For inputs `x` and outputs `y` this corresponds to
|
||
|
||
`y = exp(x) / sum(exp(x))`.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
# subtract max inside exponential to improve numerical stability -
|
||
# when we divide through by sum this term cancels
|
||
exp_inputs = np.exp(inputs - inputs.max(-1)[:, None])
|
||
return exp_inputs / exp_inputs.sum(-1)[:, None]
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
return (outputs * (grads_wrt_outputs -
|
||
(grads_wrt_outputs * outputs).sum(-1)[:, None]))
|
||
|
||
def __repr__(self):
|
||
return 'SoftmaxLayer'
|
||
|
||
|
||
class RadialBasisFunctionLayer(Layer):
|
||
"""Layer implementing projection to a grid of radial basis functions."""
|
||
|
||
def __init__(self, grid_dim, intervals=[[0., 1.]]):
|
||
"""Creates a radial basis function layer object.
|
||
|
||
Args:
|
||
grid_dim: Integer specifying how many basis function to use in
|
||
grid across input space per dimension (so total number of
|
||
basis functions will be grid_dim**input_dim)
|
||
intervals: List of intervals (two element lists or tuples)
|
||
specifying extents of axis-aligned region in input-space to
|
||
tile basis functions in grid across. For example for a 2D input
|
||
space spanning [0, 1] x [0, 1] use intervals=[[0, 1], [0, 1]].
|
||
"""
|
||
num_basis = grid_dim**len(intervals)
|
||
self.centres = np.array(np.meshgrid(*[
|
||
np.linspace(low, high, grid_dim) for (low, high) in intervals])
|
||
).reshape((len(intervals), -1))
|
||
self.scales = np.array([
|
||
[(high - low) * 1. / grid_dim] for (low, high) in intervals])
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
return np.exp(-(inputs[..., None] - self.centres[None, ...])**2 /
|
||
self.scales**2).reshape((inputs.shape[0], -1))
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
num_basis = self.centres.shape[1]
|
||
return -2 * (
|
||
((inputs[..., None] - self.centres[None, ...]) / self.scales**2) *
|
||
grads_wrt_outputs.reshape((inputs.shape[0], -1, num_basis))
|
||
).sum(-1)
|
||
|
||
def __repr__(self):
|
||
return 'RadialBasisFunctionLayer(grid_dim={0})'.format(self.grid_dim)
|
||
|
||
class DropoutLayer(StochasticLayer):
|
||
"""Layer which stochastically drops input dimensions in its output."""
|
||
|
||
def __init__(self, rng=None, incl_prob=0.5, share_across_batch=True):
|
||
"""Construct a new dropout layer.
|
||
|
||
Args:
|
||
rng (RandomState): Seeded random number generator.
|
||
incl_prob: Scalar value in (0, 1] specifying the probability of
|
||
each input dimension being included in the output.
|
||
share_across_batch: Whether to use same dropout mask across
|
||
all inputs in a batch or use per input masks.
|
||
"""
|
||
super(DropoutLayer, self).__init__(rng)
|
||
assert incl_prob > 0. and incl_prob <= 1.
|
||
self.incl_prob = incl_prob
|
||
self.share_across_batch = share_across_batch
|
||
self.rng = rng
|
||
|
||
def fprop(self, inputs, stochastic=True):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
stochastic: Flag allowing different deterministic
|
||
forward-propagation mode in addition to default stochastic
|
||
forward-propagation e.g. for use at test time. If False
|
||
a deterministic forward-propagation transformation
|
||
corresponding to the expected output of the stochastic
|
||
forward-propagation is applied.
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
if stochastic:
|
||
mask_shape = (1,) + inputs.shape[1:] if self.share_across_batch else inputs.shape
|
||
self._mask = (self.rng.uniform(size=mask_shape) < self.incl_prob)
|
||
return inputs * self._mask
|
||
else:
|
||
return inputs * self.incl_prob
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs. This should correspond to
|
||
default stochastic forward-propagation.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
return grads_wrt_outputs * self._mask
|
||
|
||
def __repr__(self):
|
||
return 'DropoutLayer(incl_prob={0:.1f})'.format(self.incl_prob)
|
||
|
||
class ReshapeLayer(Layer):
|
||
"""Layer which reshapes dimensions of inputs."""
|
||
|
||
def __init__(self, output_shape=None):
|
||
"""Create a new reshape layer object.
|
||
|
||
Args:
|
||
output_shape: Tuple specifying shape each input in batch should
|
||
be reshaped to in outputs. This **excludes** the batch size
|
||
so the shape of the final output array will be
|
||
(batch_size, ) + output_shape
|
||
Similarly to numpy.reshape, one shape dimension can be -1. In
|
||
this case, the value is inferred from the size of the input
|
||
array and remaining dimensions. The shape specified must be
|
||
compatible with the input array shape - i.e. the total number
|
||
of values in the array cannot be changed. If set to `None` the
|
||
output shape will be set to
|
||
(batch_size, -1)
|
||
which will flatten all the inputs to vectors.
|
||
"""
|
||
self.output_shape = (-1,) if output_shape is None else output_shape
|
||
|
||
def fprop(self, inputs):
|
||
"""Forward propagates activations through the layer transformation.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
|
||
Returns:
|
||
outputs: Array of layer outputs of shape (batch_size, output_dim).
|
||
"""
|
||
return inputs.reshape((inputs.shape[0],) + self.output_shape)
|
||
|
||
def bprop(self, inputs, outputs, grads_wrt_outputs):
|
||
"""Back propagates gradients through a layer.
|
||
|
||
Given gradients with respect to the outputs of the layer calculates the
|
||
gradients with respect to the layer inputs.
|
||
|
||
Args:
|
||
inputs: Array of layer inputs of shape (batch_size, input_dim).
|
||
outputs: Array of layer outputs calculated in forward pass of
|
||
shape (batch_size, output_dim).
|
||
grads_wrt_outputs: Array of gradients with respect to the layer
|
||
outputs of shape (batch_size, output_dim).
|
||
|
||
Returns:
|
||
Array of gradients with respect to the layer inputs of shape
|
||
(batch_size, input_dim).
|
||
"""
|
||
return grads_wrt_outputs.reshape(inputs.shape)
|
||
|
||
def __repr__(self):
|
||
return 'ReshapeLayer(output_shape={0})'.format(self.output_shape)
|