mlpractical/mlp/costs.py
2016-09-19 11:16:21 +01:00

106 lines
2.4 KiB
Python

# -*- coding: utf-8 -*-
"""Model costs."""
import numpy as np
class MeanSquaredErrorCost(object):
"""
"""
def __call__(self, outputs, targets):
return 0.5 * np.mean(np.sum((outputs - targets)**2, axis=1))
def grad(self, outputs, targets):
return outputs - targets
def __repr__(self):
return 'MeanSquaredErrorCost'
class BinaryCrossEntropyCost(object):
"""
"""
def __call__(self, outputs, targets):
return -np.mean(
targets * np.log(outputs) + (1. - targets) * np.log(1. - ouputs))
def grad(self, outputs, targets):
return (1. - targets) / (1. - outputs) - (targets / outputs)
def __repr__(self):
return 'BinaryCrossEntropyCost'
class BinaryCrossEntropySigmoidCost(object):
"""
"""
def __call__(self, outputs, targets):
probs = 1. / (1. + np.exp(-outputs))
return -np.mean(
targets * np.log(probs) + (1. - targets) * np.log(1. - probs))
def grad(self, outputs, targets):
probs = 1. / (1. + np.exp(-outputs))
return probs - targets
def __repr__(self):
return 'BinaryCrossEntropySigmoidCost'
class BinaryAccuracySigmoidCost(object):
"""
"""
def __call__(self, outputs, targets):
return ((outputs > 0) == targets).mean()
def ___repr__(self):
return 'BinaryAccuracySigmoidCost'
class CrossEntropyCost(object):
"""
"""
def __call__(self, outputs, targets):
return -np.mean(np.sum(targets * np.log(outputs), axis=1))
def grad(self, outputs, targets):
return -targets / outputs
def __repr__(self):
return 'CrossEntropyCost'
class CrossEntropySoftmaxCost(object):
"""
"""
def __call__(self, outputs, targets):
probs = np.exp(outputs)
probs /= probs.sum(-1)[:, None]
return -np.mean(np.sum(targets * np.log(probs), axis=1))
def grad(self, outputs, targets):
probs = np.exp(outputs)
probs /= probs.sum(-1)[:, None]
return probs - targets
def __repr__(self):
return 'CrossEntropySoftmaxCost'
class MulticlassAccuracySoftmaxCost(object):
"""
"""
def __call__(self, outputs, targets):
probs = np.exp(outputs)
return np.mean(np.argmax(probs, -1) == np.argmax(targets, -1))
def __repr__(self):
return 'MulticlassAccuracySoftmaxCost'