# -*- coding: utf-8 -*- """Parameter penalties. This module defines parameter penalty functions which can be used to regularise training by adding an additional term to the objective function being minimised which aims to restrict 'model complexity' by some measure. """ import numpy as np class L1Penalty(object): """L1 parameter penalty. Term to add to the objective function penalising parameters based on their L1 norm. """ def __init__(self, coefficient): """Create a new L1 penalty object. Args: coefficient: Positive constant to scale penalty term by. """ assert coefficient > 0., 'Penalty coefficient must be positive.' self.coefficient = coefficient def __call__(self, parameter): """Calculate L1 penalty value for a parameter. Args: parameter: Array corresponding to a model parameter. Returns: Value of penalty term. """ return self.coefficient * abs(parameter).sum() def grad(self, parameter): """Calculate the penalty gradient with respect to the parameter. Args: parameter: Array corresponding to a model parameter. Returns: Value of penalty gradient with respect to parameter. This should be an array of the same shape as the parameter. """ return self.coefficient * np.sign(parameter) def __repr__(self): return 'L1Penalty({0})'.format(self.coefficient) class L2Penalty(object): """L1 parameter penalty. Term to add to the objective function penalising parameters based on their L2 norm. """ def __init__(self, coefficient): """Create a new L2 penalty object. Args: coefficient: Positive constant to scale penalty term by. """ assert coefficient > 0., 'Penalty coefficient must be positive.' self.coefficient = coefficient def __call__(self, parameter): """Calculate L2 penalty value for a parameter. Args: parameter: Array corresponding to a model parameter. Returns: Value of penalty term. """ return 0.5 * self.coefficient * (parameter**2).sum() def grad(self, parameter): """Calculate the penalty gradient with respect to the parameter. Args: parameter: Array corresponding to a model parameter. Returns: Value of penalty gradient with respect to parameter. This should be an array of the same shape as the parameter. """ return self.coefficient * parameter def __repr__(self): return 'L2Penalty({0})'.format(self.coefficient)