#!/bin/sh #SBATCH -N 1 # nodes requested #SBATCH -n 1 # tasks requested #SBATCH --gres=gpu:1 #SBATCH --mem=16000 # memory in Mb #SBATCH -o sample_experiment_outfile # send stdout to sample_experiment_outfile #SBATCH -e sample_experiment_errfile # send stderr to sample_experiment_errfile #SBATCH -t 2:00:00 # time requested in hour:minute:secon export CUDA_HOME=/opt/cuda-8.0.44 export CUDNN_HOME=/opt/cuDNN-6.0_8.0 export STUDENT_ID=$(whoami) export LD_LIBRARY_PATH=${CUDNN_HOME}/lib64:${CUDA_HOME}/lib64:$LD_LIBRARY_PATH export LIBRARY_PATH=${CUDNN_HOME}/lib64:$LIBRARY_PATH export CPATH=${CUDNN_HOME}/include:$CPATH export PATH=${CUDA_HOME}/bin:${PATH} export PYTHON_PATH=$PATH mkdir -p /disk/scratch/${STUDENT_ID} export TMPDIR=/disk/scratch/${STUDENT_ID}/ export TMP=/disk/scratch/${STUDENT_ID}/ # Activate the relevant virtual environment: source /home/${STUDENT_ID}/miniconda3/bin/activate mlp python emnist_network_trainer.py --batch_size 128 --epochs 200 --experiment_prefix vgg-net-emnist-sample-exp --dropout_rate 0.4 --batch_norm_use True --strided_dim_reduction True --seed 25012018