{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import sys\n", "# sys.path.append('/path/to/mlpractical')\n", "from mlp.test_methods import test_dropout_layer\n", "import numpy as np\n", "\n", "fprop_test, fprop_output, fprop_correct, \\\n", "bprop_test, bprop_output, bprop_correct = test_dropout_layer()\n", "\n", "assert fprop_test == 1.0, (\n", "'The dropout layer fprop functionality test failed'\n", "'Correct output is \\n\\n{0}\\n\\n but returned output is \\n\\n{1}\\n\\n difference is \\n\\n{2}'\n", ".format(fprop_correct, fprop_output, fprop_output-fprop_correct)\n", ")\n", "\n", "print(\"Dropout Layer Fprop Functionality Test Passed\")\n", "\n", "assert bprop_test == 1.0, (\n", "'The dropout layer bprop functionality test failed'\n", "'Correct output is \\n\\n{0}\\n\\n but returned output is \\n\\n{1}\\n\\n difference is \\n\\n{2}'\n", ".format(bprop_correct, bprop_output, bprop_output-bprop_correct)\n", ")\n", "\n", "print(\"Dropout Layer Bprop Test Passed\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from mlp.test_methods import test_L1_Penalty\n", "\n", "\n", "call_test, call_output, call_correct, \\\n", "grad_test, grad_output, grad_correct = test_L1_Penalty()\n", "\n", "\n", "assert call_test == 1.0, (\n", "'The call function for L1 Penalty test failed'\n", "'Correct output is \\n\\n{0}\\n\\n but returned output is \\n\\n{1}\\n\\n difference is \\n\\n{2}'\n", ".format(call_correct, call_output, call_output-call_correct)\n", ")\n", "\n", "print(\"L1 Penalty Call Functionality Test Passed\")\n", "\n", "assert grad_test == 1.0, (\n", "'The grad function for L1 Penalty test failed'\n", "'Correct output is \\n\\n{0}\\n\\n but returned output is \\n\\n{1}\\n\\n difference is \\n\\n{2}'\n", ".format(grad_correct, grad_output, grad_output-grad_correct, grad_output/grad_correct)\n", ")\n", "\n", "\n", "\n", "print(\"L1 Penalty Grad Function Test Passed\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from mlp.test_methods import test_L2_Penalty\n", "\n", "\n", "call_test, call_output, call_correct, \\\n", "grad_test, grad_output, grad_correct = test_L2_Penalty()\n", "\n", "\n", "assert call_test == 1.0, (\n", "'The call function for L2 Penalty test failed'\n", "'Correct output is \\n\\n{0}\\n\\n but returned output is \\n\\n{1}\\n\\n difference is \\n\\n{2}'\n", ".format(call_correct, call_output, call_output-call_correct)\n", ")\n", "\n", "print(\"L2 Penalty Call Functionality Test Passed\")\n", "\n", "assert grad_test == 1.0, (\n", "'The grad function for L2 Penalty test failed'\n", "'Correct output is \\n\\n{0}\\n\\n but returned output is \\n\\n{1}\\n\\n difference is \\n\\n{2}'\n", ".format(grad_correct, grad_output, grad_output-grad_correct, grad_output/grad_correct)\n", ")\n", "\n", "\n", "\n", "print(\"L2 Penalty Grad Function Test Passed\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 1 }