{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction\n", "\n", "This tutorial focuses on implementation of three reqularisaion techniques, two of them are norm based approaches which are added to optimised objective and the third technique, called *droput*, is a form of noise injection by random corruption of information carried by hidden units during training.\n", "\n", "\n", "## Virtual environments\n", "\n", "Before you proceed onwards, remember to activate your virtual environment:\n", " * If you were in last week's Tuesday or Wednesday group type `activate_mlp` or `source ~/mlpractical/venv/bin/activate`\n", " * If you were in the Monday group:\n", " + and if you have chosen the **comfy** way type: `workon mlpractical`\n", " + and if you have chosen the **generic** way, `source` your virutal environment using `source` and specyfing the path to the activate script (you need to localise it yourself, there were not any general recommendations w.r.t dir structure and people have installed it in different places, usually somewhere in the home directories. If you cannot easily find it by yourself, use something like: `find . -iname activate` ):\n", "\n", "## Syncing the git repository\n", "\n", "Look here for more details. But in short, we recommend to create a separate branch for this lab, as follows:\n", "\n", "1. Enter the mlpractical directory `cd ~/mlpractical/repo-mlp`\n", "2. List the branches and check which is currently active by typing: `git branch`\n", "3. If you have followed our recommendations, you should be in the `coursework1` branch, please commit your local changed to the repo index by typing:\n", "```\n", "git commit -am \"finished coursework\"\n", "```\n", "4. Now you can switch to `master` branch by typing: \n", "```\n", "git checkout master\n", " ```\n", "5. To update the repository (note, assuming master does not have any conflicts), if there are some, have a look here\n", "```\n", "git pull\n", "```\n", "6. And now, create the new branch & swith to it by typing:\n", "```\n", "git checkout -b lab4\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Regularisation\n", "\n", "Regularisation add some *complexity term* to the cost function. It's purpose is to put some prior on the model's parameters. The most common prior is perhaps the one which assumes smoother solutions (the one which are not able to fit training data too well) are better as they are more likely to better generalise to unseen data. \n", "\n", "A way to incorporate such prior in the model is to add some term that penalise certain configurations of the parameters -- either from growing too large ($L_2$) or the one that prefers solution that could be modelled with less parameters ($L_1$), hence encouraging some parameters to become 0. One can, of course, combine many such priors when optimising the model, however, in the lab we shall use $L_1$ and/or $L_2$ priors.\n", "\n", "They can be easily incorporated into the training objective by adding some additive terms, as follows:\n", "\n", "(1) $\n", " \\begin{align*}\n", " E^n &= \\underbrace{E^n_{\\text{train}}}_{\\text{data term}} + \n", " \\underbrace{\\beta_{L_1} E^n_{L_1}}_{\\text{prior term}} + \\underbrace{\\beta_{L_2} E^n_{L_2}}_{\\text{prior term}}\n", "\\end{align*}\n", "$\n", "\n", "where $ E^n_{\\text{train}} = - \\sum_{k=1}^K t^n_k \\ln y^n_k $, $\\beta_{L_1}$ and $\\beta_{L_2}$ some non-negative constants specified a priori (hyper-parameters) and $E^n_{L_1}$ and $E^n_{L_2}$ norm metric specifying certain properties of parameters:\n", "\n", "(2) $\n", " \\begin{align*}\n", " E^n_{L_p}(\\mathbf{W}) = \\left ( \\sum_{i,j \\in \\mathbf{W}} |w_{i,j}|^p \\right )^{\\frac{1}{p}}\n", "\\end{align*}\n", "$\n", "\n", "where $p$ denotes the norm-order (for regularisation either 1 or 2). (TODO: explain here why we usualy skip square root for p=2)\n", "\n", "## $L_{p=2}$ (Weight Decay)\n", "\n", "(3) $\n", " \\begin{align*}\n", " E^n &= \\underbrace{E^n_{\\text{train}}}_{\\text{data term}} + \n", " \\underbrace{\\beta E^n_{L_2}}_{\\text{prior term}} = E^n_{\\text{train}} + \\beta_{L_2} \\frac{1}{2}|w_i|^2\n", "\\end{align*}\n", "$\n", "\n", "(4) $\n", "\\begin{align*}\\frac{\\partial E^n}{\\partial w_i} &= \\frac{\\partial (E^n_{\\text{train}} + \\beta_{L_2} E_{L_2}) }{\\partial w_i} \n", " = \\left( \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_2} \\frac{\\partial\n", " E_{L_2}}{\\partial w_i} \\right) \n", " = \\left( \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_2} w_i \\right)\n", "\\end{align*}\n", "$\n", "\n", "(5) $\n", "\\begin{align*}\n", " \\Delta w_i &= -\\eta \\left( \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_2} w_i \\right) \n", "\\end{align*}\n", "$\n", "\n", "where $\\eta$ is learning rate.\n", "\n", "## $L_{p=1}$ (Sparsity)\n", "\n", "(6) $\n", " \\begin{align*}\n", " E^n &= \\underbrace{E^n_{\\text{train}}}_{\\text{data term}} + \n", " \\underbrace{\\beta E^n_{L_1}}_{\\text{prior term}} \n", " = E^n_{\\text{train}} + \\beta_{L_1} |w_i|\n", "\\end{align*}\n", "$\n", "\n", "(7) $\\begin{align*}\n", " \\frac{\\partial E^n}{\\partial w_i} = \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_1} \\frac{\\partial E_{L_1}}{\\partial w_i} = \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_1} \\mbox{sgn}(w_i)\n", "\\end{align*}\n", "$\n", "\n", "(8) $\\begin{align*}\n", " \\Delta w_i &= -\\eta \\left( \\frac{\\partial E^n_{\\text{train}}}{\\partial w_i} + \\beta_{L_1} \\mbox{sgn}(w_i) \\right) \n", "\\end{align*}$\n", "\n", "Where $\\mbox{sgn}(w_i)$ is the sign of $w_i$: $\\mbox{sgn}(w_i) = 1$ if $w_i>0$ and $\\mbox{sgn}(w_i) = -1$ if $w_i<0$\n", "\n", "One can also apply those penalty terms for biases, however, this is usually not necessary as biases have secondary impact on smoothnes of the given solution.\n", "\n", "## Dropout\n", "\n", "Dropout, for a given layer's output $\\mathbf{h}^i \\in \\mathbb{R}^{BxH^l}$ (where $B$ is batch size and $H^l$ is the $l$-th layer output dimensionality) implements the following transformation:\n", "\n", "(9) $\\mathbf{\\hat h}^l = \\mathbf{d}^l\\circ\\mathbf{h}^l$\n", "\n", "where $\\circ$ denotes an elementwise product and $\\mathbf{d}^l \\in \\{0,1\\}^{BxH^i}$ is a matrix in which $d^l_{ij}$ element is sampled from the Bernoulli distribution:\n", "\n", "(10) $d^l_{ij} \\sim \\mbox{Bernoulli}(p^l_d)$\n", "\n", "with $0
"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAD7CAYAAABOi672AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVlsXVt63/lbZ54nTudwkkhRw9WV7q0BdW9VKh2X3V1A\nxX4M4CCNvMQxAiQx2kY/JHA/xHY/Bmi3O4Ef/GAHSMqdFNoBjAAu23GcOCk7VXWdKlXpStekJE46\nhzw88zwPux/EtbQPNVEcxHM21w/YIEWRR0v8n/Xfa3/rW98nDMNAo9FoNOOP7aIHoNFoNJrjoQ1b\no9FoJgRt2BqNRjMhaMPWaDSaCUEbtkaj0UwI2rA1Go1mQjixYQshviGE+FQI8ZkQ4p+e5aA0F4vW\n1ppoXScfcZI8bCGEG1gH/jqQAb4L/APDMO6d7fA07xqtrTXRulqDk66wPwYeGoaxZxhGH/gW8DNn\nNyzNBaK1tSZaVwvgOOHPLQJJ059TwNfM3yCE0EcoxwjDMMQxv1VrO0FoXa3Jq3Q96QpbC2tdtLbW\nROtqAU5q2ClgyfTnJUbv3prJRWtrTbSuFuCkhv2XwB0hxIIQwgn8LPCHZzcszQWitbUmWlcLcKIY\ntmEYbSHEPwT+mGem/28Mw/jhmY5McyFoba2J1tUanCit71gvrDcwxoq32Jx6I1rb8UHrak3OetNR\no9FoNO8YbdgajUYzIWjD1mg0mglBG7ZGo9FMCNqwNRqNZkLQhq3RaDQTgjZsjUajmRC0YWs0Gs2E\noA1bo9FoJoSTllcFQAixA1SBAdAzDOOjsxiU5mLRuloTrevkcyrD5lnJxq8ZhlE8i8FoxgatqzXR\nuk44ZxESObNaBpqxQutqTbSuE8xpDdsA/kQIcV8I8QtnMSDNWKB1tSZa1wnntCGRLxuGkRVCzAB/\nJIRYNwzjP53FwDQXitbVmmhdJ5xTrbANw8gefswBvwd86SwGpblYtK7WROs6+ZzYsIUQPiGE7/Bz\nP/AN4OFZDUxzMWhdrYnW1RqcJiQyB/z+YdFzH/DvDMP4D2czrPHDbrfjcDhwOBwjnzscDmw2Gzab\nDSGE+ijEs70dIQTmJhHdbpdOp0On06Hb7TIYDBgOhwwGA86rmcRbcql0PYrT6cTj8eDxeHC5XEpb\nqSug9DXr1e/3la6dTofBYKAureu7RwgxMkePzt/X6QoozbrdLs1mk2azSavVurD/j0R3nDkmXq8X\nv99PIBAgEAjg9/vV5fF4cDqdOJ3Ol05ywzDUVSwWyeVy5HI5SqUSrVaLdrtNq9ViOBye2/h1Z5Lj\nEYlEiMfjzM3NMT09PaLr0YkuNQWo1WpK11wuN6Jrv98/t/FqXV+O3W5X89Q8ZwOBAD6fT2nqdDqV\nrna7fcSw5XxNJpM8ffqUZPLd9Sx+la6n3XS8NDidTkKhEFNTUyNXLBYjGAzi9XrxeDx4vd6Ru7k0\n7OFwiGEY7O7usrW1xebmJkIIqtUqhmHQ6XTO1bA1x8Pv9zM/P8+NGzdYWVnB6/Wqy+l0qhWa3W5X\nk3o4HJLP59nc3OTJkycYhkG1WgWerdDO07A1L8dms+H1eonFYkxPT4/M2Wg0qjSVT1Jyzkpdh8Mh\nw+GQVCrFvXv3aDQa79SwX4U27GPicrkIBoPMzMywuLhIIpFgYWGB+fl5YrGYuosHAgG1KnM6ndhs\nNiX+cDjk4cOH+Hw+er0ejUZDmbW8s2suFmnYt2/f5sMPP1SaBoNB3G73iLZmXZPJJMFgkOFwOGLW\njUbjgv9HlxObzYbP5yMWi6m5KudrIpF4o64yVLm+vk6z2WR3d/ei/0vAJTRsuTqSd1S32z1yuVwu\n9VE+JtntdsLhMNPT08zMzLxwx5YrbK/Xi9vtHlmFybiYNO5gMMjs7CxXr16l1+vhcrnodruUSiV6\nvd5F/3omFiHEiLZSx5dd8nukJvl8nkKhQKFQwOFw4PV6CYVCRKNRfD6fWonJFbbct5D/rjSHqakp\nlpaWaDabeDweBoMB1WqVZrN5wb8d6+DxePD5fPh8PhwOh4ovN5tNgsEgU1NTTE9PEw6HgWf6FItF\nfD4fs7OzeDyekRW2nOvm2LZEzn9znPuiuZSGLWNXPp+PUCj00svv96vvczqd+P1+gsGguiubY2Jy\nMsvvN8fDzELbbDb8fj+zs7N0Oh0Mw6DX61EqlbDb7Rf4W5l85CaTy+VST0Mv0zUcDqsVlbxZbmxs\nsL6+TrVaxW63K8OOxWIjukqjNm9SSTweD1NTUywvLyOEUCvtdDp9Ub8SS+L1epUpezwe8vk8+Xye\ndrtNJBJhbW2NW7duMTc3x97eHnt7e6RSKbxeL91uF7fbTTQaVZqa9ybMG8lS26NJBBfNpTVsj8dD\nKBRiZmbmpVc0GlXZAjLOdXTyvm7X+WimiPzo9/uZmZlRq7xyuUwqldKGfUqkYbvdbrxeL5FIhNnZ\n2Rd0nZ2dVRvFHo+HVquFy+WiWq2ytbWFw+HA4/EQDAaJRCIjuppX1Uc/ejweYrEYAD6fj2q1yv7+\nPk6n82J+IRZF3hiXlpbw+/3YbDba7TbFYpFwOMza2hoff/wxV65c4ZNPPlFPTj6fb8SwXzZfJUez\nRsbFrMGihm1Or3M4HMpoXS4XPp9PZXfIST07O8vc3Jya4LOzs8RiMbWJ6PF4RnaQ5QpKbiQOBgP6\n/b6KfZkfzY+GRVwuF36/H8Mw1GOc2+0eeRTTvBzzBBJCjNxEj944zSGKxcXFEZ39fr/StdVqkc1m\nSafTJJNJ4vG4emSWIZN+v89gMHgh7GKe7A6HA5/Pp74vHA6rDWjN63mTruaU2YWFBa5evcrVq1fx\ner10Oh1KpZLSXaZlynkeDAbVHBsMBiqbR/qCOXz5Ml3l03UsFmNubm4kLXcwGLzz35XlDPto/qWM\na8lLmrUMbUQiEcLhsPooH5t9Pt/IGwae52YOBgN6vR7dblcJ2G63abfbdDodFWMzxz6dTudIxki/\n31dGYE4P07was7ZOp5NYLKZ0dTqdlEoldQGEQiEWFhZYXV0lHA4TDodVCEs+CrtcLhKJBHfu3EEI\nQSgUYnFxEbvdTqlUUrq2Wi1lylJb80aV1FW+N+QNXOv6Zl6naygUGnmynZqaUjdfmXaXSqWw2WyU\ny2WePHmCy+UilUpRrVaJxWJ89atfVXtSGxsbpNNpNddDoZBK9ZOXNHKn04nX6yWRSHDr1i3a7TaZ\nTIZsNksmk7mQDWXLGTaMhj1isRhXrlxRd2VzNod5pSU/mkMg5jsuMLKi7nQ6arOj0WhQrVapVqvU\n63UikQjRaJRoNMpwOMTj8ag3pXlF3uv11G605s3I36HH48HtdqvN25WVFVwuF0+ePKHb7ZJOp5X5\nSsOWP+PxeEZWVdKwhRBMT09js9kIBoM4HA6KxSLVapVarUa1WsXlcildI5EIHo8HYCQVzHwj1roe\nj5fpurKywtWrV4nH4yOplea86kajQSqVIhgMYrPZqFQqPHnyhGq1SjweJ5FIMD8/z507d2g0GqTT\naTY2NiiVSiQSCfU9MtUvGo1iGIbyALmfEY/HuXXrFi6Xi0ePHiGEoFKpjKdhCyF+B/gZIGsYxt3D\nr8WAb/Hs9FQa+NuGYZTPc6DH5WgsMxaLcfXqVe7evcvdu3fVyjoYDOLxeF4be5avB6jJJ1dR7XZb\nGXWpVFKxsmKxSDwep9vtvhCakT//son9rldik6YroB553W43Pp+Pubk5rl+/zt27d3G73fR6PdLp\nNO12GxhdYQMv1dZut5NIJJiZmeG9996j2WxSr9ep1+sUi0Wlaz6fx+v10m63MQxD6Wm323G73WOz\nwraCrvF4nLW1NT744ANWVlbUfA0EAiMni3O5HI8fPyYQCKj9ILkXEYvF+Kmf+inu3LnDX/trf429\nvT0ODg7Y2NjgRz/6Eaurq1y7do3V1VUWFxeVrnLPQd7M5Qrb5XIxMzODzWajWq3y9OnTC/ldHWeF\n/a+Afwn8a9PXfg34A8MwfkMI8UuHf/7FcxjfsZAC2u12nE6nikfPzc2xvLzM2toai4uLxGIx9Tgr\nH2nNE1geJZZmKo+Py5iVfDxut9tqUsvLvMIWQqgY6tENi263S61Wo1AokM1mKZfL6s3yjhl7XWE0\ntSoQCDA3N6f0lRMukUjgdDpZW1uj0+ngcrm4ceMGy8vLBIPBkaeawWAwoulRbRuNxgu6yhV2JBLB\n7XYTiURe2HgcDAY0Gg2KxSIHBweUSiWazeZFxDknQlczclWdSCTUitcwDJLJJJ1OR4WoYrEYjUZD\nhb2ePn3KxsYGuVyOfr+vdB4MBjSbTTKZDJubm0xNTZHNZnn69KkKc1UqFbLZrMrqkpuRRxkMBrRa\nLWq1GsVikVqtRrvdvrCnpzcatmEY3xFCXD3y5Z8GZHuhbwLf44INW8YSfT4fiUSCtbU1ZdTyqHEo\nFFKbj3Iz0Hxs3ByPbrVayoTlVavV1NVqtVRIxDzxu92uygSRG1DmlZ007Fwux8HBAeVymWaz+c7f\nAJOgK6Buwk6nk0gkwtLSEtevX2dtbY1EIqHM2+FwsLa2hs/nY35+nrm5Oa5evYrf71c3X7nHIA34\nqLYyZ1rWjWg2myPmLjck5UEn881YHoQqFArs7+9TLBap1+vv/JTjpOhqxu12Mzc3x61bt7h9+zbN\nZpNKpcLjx4+VaUtdy+Uyjx8/5tGjRzx+/Jjt7W3S6fQLZxj6/T7ZbJb19XX6/T6VSoXt7W0qlQrD\n4ZBms0mhUMAwDBXq6nQ6L+RcH9W1UCjQaDQu7PTqSWPYM4ZhFAAMw8gLIWbPcExvjfmRKhAIkEgk\nuHnzJl/4whdYWFgYqfthXrEdjn8kLt1oNFSoI5fLkc1myWaz5PN5isUi+XyeUqn0QqEfM9PT0ywt\nLdHv9194A3Q6HarVKtlsVq3EzruOyFswVrrC6H5EJBJheXmZ999/ny984QuEw2Glq91ux+/3s7Cw\nwPvvv4/b7cbv96tTpa1WS2krn26y2Sy5XE6FPORkNN98zQyHQ+bn5+l2uy8UDur3+9Tr9bGZ2EcY\nO13NeDwe4vE47733Hl/5ylfY2Nggn8/z6NEjut0uXq+XhYUFDMNQhv3f//t/58GDB2oBdfT33Ov1\nyGQydLtdMpkMnU6HYrFIpVJRGVryo9frZX5+fuRGfFTXfD7P3t4ehULhQm7EEktsOspfsFyNhcNh\n4vE4KysrzM/Pj5xslDFjWeNBZnrIla+8SqUSmUyGg4MDDg4OVFEfady9Xk9dMl1PXu12m8Fg8MLN\nYTgcqscxucKWj85jYthjh9wHsNvt6pTawsICa2tramNI1mzxer1Eo9GRLB65WjavouXv/uDggEwm\no3TN5XI0m02l62AwGNFV/h2gHqXlU5p8/5gn9hgZ9lgiTVE+Pc3Pz7O2tkalUsHv9zMcDqnX65TL\nZaVZMplka2uLx48f8/jxY7VPcHT+DAYDKpUKzWaTbDbLcDhUusoDazI9t9FoKF0dDge9Xo9arUa9\nXieXy7G/v6+ui9b1pIadE0JMH96tZ4DsWQ7qbTFv9nQ6nRc2fWR82DAMFe6Q2R2VSuWlj8bVapVy\nuUypVFKbGdVqVYlrfn1pJnIHOxKJqHQhr9erNqjk45W8GaTT6XFbYY+VroDaoJWhCWmk5lCWfEKS\nukqDPqqt1LdcLr+grYxNmlMtZU6w1DUajb5U136/T6vVolwuk8lkSCaTlEqll678Loix09W8kjU/\nqRiGQSwW48aNG6psQDgcJp1O86d/+qc8ffqUvb09BoMBgUBAmXC3231hH0j6gnzd4+jq8XjUk5d8\nCpZmnU6nLyzUJTmpYX8b+LvAbxx+/PaZjegEGIZBv99HCEG3233lpJaGXalUKJfLFAqFkbzKSqWi\nDLter4+UyJTxz3a7TbfbHckAsNlsI6fjwuEwwWBQnaiT/3av16PZbI4YtoyZjolhj5Wu8NywpbYv\ny12Xk7HRaCgjzuVyZDIZMpkM+Xz+hTh1q9VSukptO53OyI3YPLFlqqbM5fb5fCP/drPZpFwuk81m\nSaVS6uYxJoY9drqazfpo2FAadiwWGzHNe/fuUS6XqVQqDAYDgsEgrVZLzS2zYZvTLM2r8Dfp6vF4\nqFQqbGxs8ODBA/b29tT7plarqYXe2Bq2EOLfAj8BTAshksA/A34F+JYQ4ueAA+Bnz3WUb8B8Jz3a\nGMA8qWVlPLlDvL+/z+7uLk+fPmV3d3dkJS1XvWahzZd8TUCtsIPBILFYbGSF7fF41Cqg3+8rU5Fv\nRLmr/a4NexJ0heeGLcMOr7oZ9/t9ms0mxWKRTCajNN3d3WV/f3/kyeno05e5TKpEpu6ZJ7ZZVxkb\nl1er1VLvq1QqNfK+eZdMiq7ASEqtObwUi8WIRqPcuHGDdDrNn/3Zn3Hv3j3+63/9rwyHQ5XpFQgE\nlFnLVE4z5nMTkjfp6vF4KJfLPHr0iO985zs8ffp0ZM6bG1NcBMfJEvk7r/irr5/xWE6MebL1ej0V\ne0omky9sHMlVl7zS6TTpdJpsNjtyB+10Oq/9N+XqAFAbYolEgqWlJeLxOOFwGJfLpWJkMjYu49aN\nRkM9xl3EScdJ0BVGtZU320wmw87OzkidjlarNaKrXJUdHByQz+eVro1G47U3R7nSs9ls6qTs7Ows\ny8vLLC4uMjU1hc/nQwhBu91WK690Oq02pC6y6uKk6ArPF1Htdpt0Os36+ro6bSir6Mk0yUKhoMrW\nyp+T8ebXdfV52dfNNX2O6ir3o+QNQdYgkdfRMOu7xhKbjjD6CFSpVEin02xublIsFtVjdL/fV7Ep\nmR0gwyOVSkU9Gh9ntWt+pJObYfPz81y7do1EIqEMu9/vU6vVlJHs7++rXNCLMutJwmzYsshPKpVS\nJ85kznyz2RzRVsanK5UK9Xpdxb+P87s2H3YKhULqROXS0hJTU1N4vV4Mw6DRaJDP58lkMqRSKQqF\nwli0kZoEzLrK5gDy8Iu5o5OsRV0qlZRZyrljt9vfSleJzOl/ma7mMxSLi4v0ej215zEOc9YShm0O\nUfT7farVKgcHByqty5yDa659XK1WVQhFxkfN4ZXXYc5ekCcqZfbCzMwMkUgEp9NJr9ejWq2SyWTY\n3t5WObrm5Htt2K9HTm5Z6CeVSuHxeOj3+yO51eb0vFar9cJG5XF1NWcchUIhlXF01LCbzSb5fF61\nj9KG/XZIXaVhl8tlNjc3Vd2XSCSimkOUSqWRMKfc1zhJeEIIMWLYy8vLTE9Pv2DYS0tLKoWz3W6r\nGjUXiSUMG56bnnlFKyed3GCSG0PypNRJJ5d5QjudTgKBALFYjHg8ztLSkloh2O12tckpH+PT6TTl\nclnVw9a8HvPNuNvtUi6X2d/fRwhBp9NRutbrdaVruVw+cYzRfAjL3EZK1rmQKYSDwUDl56ZSKVKp\nFMViURv2MTmaudVut8nlcgAqrhyNRnE4HJRKJdVKT5Z2OE3YydyNZmFhgenpaZWOKxMD4HkfV3nQ\nbhzmq2UMW2IYBq1Wi1KppB5rzUfMG42GypM+KUI8q38si9DIhq0yPUgKLLMHpGEnk0my2SzVavWF\n2LrmzZgPp8jNJvPpVPO+wElxOBxK11AoxGAwUE0I8vk8KysrDIdDnE4n1WpV5V3LFM2XbX5p3g5p\nmvIJ9ix0PYosNhUIBBgOh+rJt1gsqn2tdDpNJpM51eLurLG0YbfbbWw220gdCWnep8nKkIYdDoeZ\nmppShi13m+X3yNzgUqlENpslmUyqPE5t2G+PTN2T4Qhz7RdzudvTTGz5xDQ1NUUkEmEwGChDzufz\nqs1bLBZTJQZSqRTpdFqVLNCcDmnYsrTDWehqRta5PmrYn332GRsbGyN5+7KmzLjoajnDlnUCpFmb\n64XIvz/tpoHZsGdmZl5YYcv0M/nGMx+oMB+80bwdcoUtV19HUzbPIpXOHOKSecDyKhaLBINBFhcX\nWV5eVitseahC3jg0p0POD/m0ctYpkvLJW2aCyDDbD3/4Q/7iL/5iJHXP3JB3HLCcYcPzEqZniTlf\nVGaFJBIJVldXuXLlCjMzMwQCAWw2mzraKjc/ZTaKLBR1HuO7DMic2rPMgTUf3rDZbCorZHl5mUQi\noWKpsqi+1+ul2Wyyv7+vslHq9brKINC6np6X5cW/LUd1BUaM15w0IPejZAkCuVEtz3OME5Y07PPA\nvBkVCASYmZlRleOuXLmiegXKx3VZYCiZTJLP52k0GhdW+1rzemR3EafTOXIjXllZUTUlarWaSvPr\ndrvs7OyQyWTUfsRF5+dqXsSsq9yoNIcipV4ul0vVH7py5YpK47vIAzKvQhv2MZGGLR+jpqenWVxc\n5Pr16ywsLKgke7Nhp1IpkskkuVyOer0+cofXE3s8kBk/shuNPAC1srLC7du3VUqgDMdUKhUqlYoq\nHlWpVEb2RLSu48FRXaXxvsyAzembV69eZX9/X2UBvekA3bvmjZ1fhRC/I4TICCE+NX3tV4UQKSHE\nvcPrG+c7zIvHvKscjUaZnZ1lYWGBK1eusLCwQDQaVY0+5YEKadj5fF4Z9riswrSuz5B1JXw+H5FI\nhOnpaZWeubKywq1bt7h79y5f/OIXuXHjBqFQiEaj8cIKW+s6XhzVVYa2ZGKA0+lUKcDmNL5YLDbS\njWrcOGnHGQP4dcMwfv1cRjWGuN1ulRGysLDA/Py8MmmZEdLr9RgOh6q4UzKZVCfgZP3dMULryrM6\nMMFgkHg8rh6J5X6E3W5Xj9LD4VCVZt3b22NnZ4dcLjdOFfkkWlee6RoKhZibmyMej6u+qnLDcXZ2\nlnK5zHe/+111NF5uHo+prsDJO84AiJd8zbLIhr5LS0tcu3ZNrarlndhcAtRs2MlkUmU2jJNha12f\nISd2PB7n2rVryrDlwSdzbW1Zx3xvb4/d3V0V3x6nia11fYb5Rnzt2jXVHlAehJGnnTc3N0eKvsna\nMOOmq+Q0Mex/LIT4eeAHwP9mGEbxjMY0lhw17JetsGUn9aMr7IuqyHdCLpWuskt6PB5/IeNHnm6T\n1fjMB2V2dnYuvHLbW3JpdZULrOnpaaanp3G73fzFX/wFm5ubfO9731NVM+VZjXHW9aRBmt8ErgG3\ngU3gX5zZiMYEmVzv8/kIhULEYjFmZmZIJBJKfNnFWcatC4UCe3t7ZLNZVcBe1rQYR/FfguV1hefl\ncGWzCXOoa3Z2lnA4jNvtBp4VnCqXy2qT8WiKpiz9OuZcSl2np6eVrtFoFJvNpipmFgoFarWaOkhn\nbmwyzrqeaIVtGEZefi6E+C3gv5zZiMYEm82G1+tV5R5lF3Z5ya4jsl5IuVwmnU6rU28ye2CSuAy6\nwrOsAFkYTE5qeU1NTREMBlVpXFmqV9YLKRQKE3f8/LLqOjs7qxpwG4ahmpXIWvj1ep1IJIJhGCp1\ncxzDIGZOZNhCiFnDMGSbob8FPDy7IY0HNpsNt9tNKBRSWSFyUs/OzqpEe7vdruKb6XSara0tle41\naafeLoOu8HxiRyKREV3j8TixWAyXy4XT6VQlVHO5HLu7uxNb4Oky6yo/5vN5stks9+7dY319XR2a\niUQiOBwObDYb3W6XRqNx0f+N13KSjjO/AvykEOIDwAXsAn//XEf5DpEF7B0OB36/n2g0SjweJ5FI\nMDc3x8zMDFNTUyPHoWXpxXQ6zfb29kQY9mXVVQihbsQzMzPMz8+riT09PU0wGASe16Sp1Wpks1me\nPn06ETWvL5uuZlwuF8FgUIUuZX0fv9+vmi1vbGzwwx/+cMTM7XY7zWZT9egcZ07aceZ3zmEsF47s\nwG3eYV5ZWWFlZYXV1VXi8bg6zSgzQrrdrrp7y9SgYrE49h2zL5OuMpVL6iuL06+urrK6usry8rIq\n5WkuEFatVlW/T3kUvVarjXWo6zLpehSfz8fc3Bxra2tcuXIFp9OpamnLbkDxeJzPfe5z6gYu5+q4\n6yoZ/1vKO8Rut6t6AubC9e+//z6Li4sq3QtQj0+yYpu5WahsrDvOhn2ZkIbtdrtVPv3S0hI3btzg\nxo0bzM7OKsOWHdBlGVepq8zPlZtSmvHDbNgrKyuqv2Y2m6Xf72O329XK2twZXTZmngRdtWGbkIbt\n8/lUbYFr165x584dZmZmVDF747CZryyaLzt0S8OesDQ+y2M2bHM3kZs3b3L79m3VqMDhcKibbblc\nVk9OZsPWuo4vPp+PeDzO9evXWV1dpVQqkUwm+d73voff7+fWrVvcuHGDRCLBgwcPKJVKqgb2pOiq\nDduEjG3KThSJRILZ2VlmZmYIh8OqXKtsBiuzQra2tlQoRB5z1YwPdrtd7UdMTU0xPz9PPB5ndnaW\nqakpVdFNpmfKwzGy9ZcMhUxadojVkWl88oa7uLio5mw0GlWxadkuUJYdCIfD6sYsSzFPCtqwTXi9\nXlWF7+rVq+pwjMvlUodj5CZjNptla2uL9fV1dnZ2SKVSqquzZryQpxnn5+dZWlp64TSjbN4sywok\nk0k2NjZ4/Pix6tU4CfHNy4bcj5BZPu+99x4LCwuEQiHsdrtaYAE0m03S6TQOh0P14czn82OdGPAy\ntGGbkPmbV65cYW1tjfn5eSKRiDJsObGbzaYy7E8//ZRkMkmlUtGGPabIsqiJREJtSEnDttlsSlfZ\nITuVSrG+vs6nn36qqvNN2sS+DDidTqamplhZWeH69evqRGMwGFR1rmX9ELnSbrVapFIpdRx90m7E\nl96wzele0rCXl5dZXV1VoRCXy6WK57fbbdXkd3t7m4cPH5JOp3Wd6zFEaut0OgmHwyQSCa5du8bi\n4iLT09NqhS1bULVaLVUW99GjRzx48EA1m9Dajg9mXaPRKIuLi7z33nssLi4yOztLIBDAMIwXVtiy\n0a9cfE2irpfasGUMTGYPyFNRMrYZCASUWdfr9ZFTUltbW+TzedVBZlzKa2qe4XK5lLYzMzMqZj07\nO0skEsHr9WKz2eh0OmpzMZvNsr6+zt7eHrVabWRCa23HA7OuoVCIfr/PwcEB9+/fVwWbfD4fXq/3\nBUOWXWxk20D5tUni0hu21+slFAoRDoeVWcvDMW63W514q9VqpNNpNjc32dzcZGtri1wuR6fT0WY9\nhrhcLgK7UlrfAAAgAElEQVSBgMr2kWYtn5pklcVut0uhUGBnZ0dpu7+/rwwbJm9SWxmzrn6/n8Fg\nwMHBAcVikW63q1L73G73yELqqHGbP04Sl96wfT4f0WhUrcLMK2wZ/5Ir7P39fTY2Nnjw4AH5fF4b\n9hgjT71NTU2pWtfypKrf71fayjDIzs4O9+/fH8kKmeSJbVXMuvp8PqrVqqrdA6g87Gg0+tIVtplJ\n1PW11fqEEEtCiP8mhPhUCLEhhPgnh1+PCSH+RAhxXwjxx0KIyLsZ7tkij5/HYjGVDiQ7TpirtVUq\nFfL5PJlMhr29vZG2X+Na1et1WF1XQB1+kjfi6elptSozV1gsFosqzPX06VMODg4ol8uqqa7Wdrww\nr5hlAkC5XFaHYPL5PIVCgXK5TKPRUN2AXvbzk8ibyqt2gX9kGMZd4IvAzwshPgR+DfgDwzA+AP7w\n8M8Th8zPjcVizM/Pq1oSMm7dbDYpFoukUin29vbIZDIUi8WRsqmTkGz/EiytK7xo2NFoFJ/Pp7ra\nVyoVMpkMqVSKg4MD8vk8lUpF9fGbkHK4L8PS2vZ6PWq1mtp3qFQqtNtthsOhOh8hF1aFQkE1v7YK\nrw2JGIaRATKHn9eFEPeBBeCngY8Ov+2bwPeAXzzHcZ4LRw17ZmZmpLSmrHEtTzBms1kKhQLVapV+\nvz+Rq2uwvq7w/BDU7OwsiURCGbbdblfNCGSTiXQ6TT6fp1wuq6emSS0rYHVtu90u9XqdbreL3W6n\n0+mosKSsmnlwcIAQgnw+T6PRmNRF1Us5dgz7sO3Ql4CfA2YMwyjAs1q7QojZcxndOSNDIvL0m3mF\nPRwOR7qfm1fYVsq3tqKu8HyFfdSw5UajnNjJZFKtsOVjtFWworbdbveVOfFS10wmw2AwuHwrbIkQ\nIgD8HvCLhmFUZW7jJCJT+GQanzkrJBgMqm7KnU5HdZDZ2tpStZAn6Rjrm7CSrna7/aXaTk9PE41G\n8Xq9I2UFMpkMT58+ZXt7m0wmQ61Ws9TEtoq2R3UNBAIEg0GCwaBK3ZN1QDweD36/n0qlos5KWE3X\n49TDdgL/HvhdwzB+//DLOSHE9OGdegbIvvoVxgv5qCyr8cnMgenpaXw+H06nc2RDan9/n+3tbfb2\n9ixl2FbTVXYIktqaUzRlJT6zYcsa11tbW6pdlFUena2k7VFd4/E4CwsL6hSyDF/1+32q1SqlUkkV\ndbKarvAGwxbPbsu/DXxmGMb/bfqrbwN/F/iNw4/fPrcRnjHm4vXmFfb09DR2u1014pTx6/39fTY3\nN8nlcqrv26RjRV1flqJpXmFLXTudjopfyxV2q9Wi1WpZYiVmNW2P6rq2tsatW7e4efMmiURipC79\nkydPuH//Pjs7O5bTVfKmFfZXeSbufSHEvcOv/TLPulh8Swjxc8AB8LPnN8Szxe12Ew6HR9K9ZFcK\nWVNC1rqWd2yZJjSunZRPgOV0lRNbpmiGQiEA1TFGIoSgVqtRqVTUKsxi5XAtpe1RXWVhNlk3RJqy\nzKeXJXItqCvw5iyRP+fVqX9fP/vhnC9CCDwejzrVKNO95DFlWQCo3W6r2gPdbldVcpvEjJCXYTVd\n4cWMH4fDoU7Aeb1eotGoulqtFp1Oh16vpya01nY8kbpOTU2xsLDAzMwMoVBInZOQT03NZtPSukou\n3UlHj8dDJBJRp9/M2QPD4ZBer0er1aLRaIwYtiytarU3gFWQKzGZ8VOv1zk4OCCbzdLr9VQ7MJvN\nNjKxZWqm1nY8OWrYs7OzhEIhXC4XgHoiPmrYVtX1Uhq2eYVtLgRkNuyjK2yLhEIsy9EVtuxef+/e\nPZU7b7PZmJ6eVu2g5EpMM74c1fWoYb9uhW1FLG/Ysp29bMAaCoWIRCJEo1EVu5bim7ufp1IplXhv\nVfEnHbOusiCQ7Cojb7wOh4NCoUAikcBms5FOp9Xx80no4XcZMevqdDqp1+ukUincbjepVIpwOKzC\nIuYYdjqdtryul8KwZWNdj8ejKvPFYjG1upbt7VutljLsZDJJPp+nXq9batPCSphzdIPBoLoZx2Ix\nXC4Xbreb2dlZisWiSv3a399XxYKsPLEnGbOuLpeLer3O7u4u1WoVn8+n2oK53W7V3s1ut2vDtgI2\nmw2n04nX68Xv97+wwnY4HNjtdgzDUIa9v7+vDNtqR1uthLmxbjAYJBwOK22npqaYnZ3l+vXrlMtl\ntre32d7eVicbrT6xJxmzrk6nU2X1bG9vq9W3NHV5iCYUClEqlSiXyxPXReZtsLxhm2tey8kcDocJ\nBAJ4vV61KdHr9Wg0GpRKJdUlWzbV1YY9vgghsNlsOBwOXC4XXq+XQCCgutvLPo2yf5/ciKxWq7rt\n15jidDrx+XxEIhHcbjftdpt2u63i01JX2WS3Xq9TrVZVKq427AnG6XQSCASYmZlhbm5upF4IPN9l\nlhXczKekZOU2bdjjidxwEkLQaDRUlT3ZAkrqWq1WKZfLStdKpUKz2dSGPaa43W4ikQhzc3PqlKrT\n6cTpdNLr9ej1eurATKPRoNlsUqlU1OdW1tXyhu1wOAgGg6obuszjlIYtN6dardbIpC4Wi+oElZXS\ngqzEYDBQJW5fZdjNZnPEsGWRp06nM7EV+ayOPNwWj8eZn58fyaE3p/CVSiW2t7fZ2dlhf39fLbCs\nrOubjqYvAb8LRAEX8NuGYfxzIcSvAj8P5A6/9ZcNw/ij8xzoSXE6nQSDQaanp5Vhm1fY8qCMjJOV\ny2Vl2FbM4wRr6AqMHDc/jmHL0Ii5m4zVsIK28qzE3NwcKysrLC0tsby8zNLSEu12m2q1Sq1WY29v\nj36/rzaRrayr5E0rbFkM/cFh9a8fCiH+GDCAXzcM49fPfYSnRMY4zZsVspuyEGIk9unxeHC5XDid\nTux2+8R2Vj4GE68rgNfrxefzqT5+g8GA3d1dvvvd76p0Tamt7M8pN5mlthZk4rU1p9f6fD7VbNfj\n8agOM8lkkp2dHdLpNPV6HSGE1XUFTt7AAGAy6zWakCl/spNyIBBQHZfdbvdIkwIrmbZVdPX7/ap4\nVywWo9/vs7m5SSaTYWFhgStXrrC8vEwgEFDaejwe2u220tZqOfZW0LbRaJDJZFRJiHA4zOLiIsPh\nkGq1yu7uLg8ePODRo0dkMhkqlQp2ux2Xy2VZXSVvahGmMBVD/87hl/6xEOKvhBDfFELEzmFs544Q\nQqX8BYPBkUktV2R2u51JrSV8HCZZV2nYq6urLC0tMRgM2Nzc5D//5//MD37wA1KpFP1+n2AwiN/v\nH3mKcjgc2GzHfvtPJJOqbaPRIJvNsr29zePHj0mn06pMaq1W4+nTp9y/f5//8T/+B9vb21QqFfWk\nbHVdj/U/O3y0+v94Vgy9BvwmcA24DWwC/+LcRnhKZArQYDBQd15ZF0QiwyPysUqGTWToxKpMsq7w\nrKtMIBBgamqKWCyG0+mk2WxycHCguo30+/2XamtlXWGyte31eirzQ3YBMrcBq9frFAoF8vm8SuOT\noU+r6/o2DQz+X1kM3TCMvOnvfwv4L+c2wlMiN59arRa1Wm2kjoQ5Q6TValEsFlV6kNxtPmruVmHS\ndQVUZ6BGo4HH42Fqagqv18vVq1fVBnO/31eZIebmyZPaj/M4TLq2Ho8Hn8+H3+8nkUgQiURUXr3X\n6yUej3Pz5k214pabkFbXFU7YwEAIMWsYhiwy/LeAh+c3xNNhzhYwG7YspSqT7avVqurXKL9Hrsyt\nhhV0hdHCP+FwmKmpKa5evUowGFQT3tyJpFarqYJeVt2csoK2Mq1vampKFWhzu90YhoHP5yMej3Pj\nxg1sNhvJZFIdjrKyrpKTNDD4P4D/VQjxAc/ShnaBv39+Qzwdr1phS8OWu875fF4dqpArbIkF79gT\nryswktLX7/eZmpri+vXrrK2t0W63KZfLVCoVcrkcpVKJer2uVthgSV3BAtqaD84cXWH7fD4SiYSq\nbW8YBqVSSR2AA8vqCpy8gcEfns9wzp5+v6/6M8r6A7Ijus/no1wuqxzdnZ0dcrkcrVbL0qJbQVeA\nTqdDrVYjl8upk3A2m43BYKAOVpTLZQ4ODtjb26NcLlv+kdkK2vb7fVqtFtVqlVwux+7urjrNKg+4\nlUolMpkMxWJR3bCtrKvE8icde72eytPM5/O0223y+Tw7Ozu43W6azaY60prNZslkMjSbzYsetuYY\ndDodyuUyw+GQXC6nmhY8efJEtXmTm1eZTIZSqWTJEJfVeJOucs5Wq1UODg4ula6XwrBrtZraaOx2\nu+zu7uL1erHb7ao7hblxgRUa7V4G2u02w+FQhTlarZZK3ZPNKMwdSXRt88ngVbp6vV6V7SXncrPZ\npNlsXhpdxXk9RgghrP98MkEYhnFm+U5a2/FB62pNXqWrdTPMNRqNxmJow9ZoNJoJ4dxCIhqNRqM5\nW/QKW6PRaCYEbdgajUYzIWjD1mg0mgnhXA1bCPENIcSnQojPhBD/9ISvsSOEuC+EuCeE+OQtfu53\nhBAZIcSnpq/FhBB/cvh6fyyEiJzwdX5VCJE6HNM9IcQ33vAaS0KI/3b4u9gQQvyTk4znNa/zVuM5\nLWeh6+HrvLW2WtfzQ+uqvn98dTW3wTrLC3AD2zwrnu4A/hL4/AleZxuIneDn/ifg88Cnpq/9S+CX\nDj//JeD/OeHr/Arwv7/FWOaAO4efB4BHwIdvO57XvM5bjWccdD2ptlpXretl1vU8V9gfAw8Nw9gz\nDKMPfAv4mRO+1lsfDjAM4ztA6ciXfxr4N4eff/M443nF67zVmAzDyBiG8eDw8zogu4C81Xhe8zpv\nNZ5Tcpa6wluOW+t6bmhdn7/G2Op6noa9CCRNf04dfu1tMQD5GPILpxzTjGEYBVD1gWdP8Von6t4h\nnncB+fPTjEdcXDeRs9IVzk5brevp0bq+hHHT9TwN+6wSvL9sGMYXgP8Z+HtCiP/ljF73NJyoe4d4\n1gXk93jWBaR60n9cXGw3kbNM3B83bbWuZ4PW9cXXORNdz9OwU8CS6c9LjN7Bj4VxWHTdMIwcz355\nXzrFmHJCiGkAIcQMkH3D979qTHnjEOC3jjMm8bwLyO8ah11ATjIe8YpuIm87nlNwJrrCmWqrdT09\nWlcT46rreRr2XwJ3hBALh4P+Wd6yJq8QwieE8B1+7ge+wek6ZXybZ8XdOfz47ZO8iBDC/Cj0xu4d\nQry8C8jbjudVr/O24zklp9YVzlxbrevp0bo+//7x1fUkO5XHvYC/CTwAPgN++QQ/vwL8GPgRz3ZY\n/8+3+Nl/C+wDXZ6tFP4eEAP+hGfB//8IRE7wOj/Hs42HHwN/BfwRsPCG1/jrwPDw/3Hv8PrG247n\nFa/zN992PBet62m01bpqXS+zrrqWiEaj0UwI+qSjRqPRTAjasDUajWZC0Iat0Wg0E4I2bI1Go5kQ\ntGFrNBrNhKANW6PRaCYEbdgajUYzIZzYsMUZ1c7VjB9aW2uidZ18TnRwRgjhBtZ5dpInA3wX+AeG\nYdw72+Fp3jVaW2uidbUGjhP+nKqdCyCEkLVzlfhCCH2EcowwDOO49Xe1thOE1tWavErXk4ZEzrJ2\nrma80NpaE62rBTipYes7sXXR2loTrasFOKlhn1ntXM3YobW1JlpXC3BSwz6T2rmasURra020rhbg\nRJuOhmG0hRD/EPhjnpn+vzEM44dnOjLNhaC1tSZaV2twbvWw9Y7zePEW2QRvRGs7PmhdrclZZ4lo\nNBqN5h2jDVuj0WgmBG3YGo1GMyFow9ZoNJoJQRu2RqPRTAjasDUajWZC0Iat0Wg0E4I2bI1Go5kQ\ntGFrNBrNhHDSetgACCF2gCowAHqGYXx0FoPSXCxaV2uidZ18TmXYPCvZ+DXDMIpnMRjN2KB1tSZa\n1wnnLEIiZ1bLQDNWaF2tidZ1gjmtYRvAnwgh7gshfuEsBqQZC7Su1kTrOuGcNiTyZcMwskKIGeCP\nhBDrhmH8p7MYmOZC0bpaE63rhHOqFbZhGNnDjzng94AvncWgNBeL1tWaaF0nnxOvsIUQPgDDMJpC\nCD/wDeD/OquBjRs2m+2V13A4pN/vq+vozzmdTlwuF06nk36/T6/Xo9frvfC948Bl0/WyoHW1BqcJ\nicwBv39Y9NwH/DvDMP7D2Qxr/HA6nfh8Pnw+H16vd+Rju92mUCioy4zX6yWRSBCPx0kkEhQKBQ4O\nDkin05RKpQv637yWS6XrJULragFObNiGYWwDH57hWMYal8tFMBgkFosRjUZHrlqtxubmJv1+/6WG\nvbi4yJ07d7hz5w7b29s8ePCARqMxloZ92XS9LGhdrcFpNx0vDS6Xi1AoxMzMzMiKOR6PUygU6PV6\n5PP5F37O4/GwuLjIhx9+yNe+9jV+9KMf0Wg02N3dvYD/hUajmWQutWHb7Xbcbre6nE6nugDq9bq6\nPB4PsViM5eVlrly5gtvtxmazUalUaDab+Hw+rly5ghCCarVKrVajWq1it9vxer2Ew2FmZmaYn5/n\n6tWr3Lhxg263S71ep9FoUK/XGQwGF/wbuXw4HA5CoZC6ut0u1WqVarVKvV6/6OFdeoQQI/tFhmEw\nGAwYDoecVz/aceZSG7bT6SQcDhOJRIhGowSDQQKBAIFAAIBkMkkymaTT6eD1epmdnWVlZYXr169T\nKBTI5XLk83l6vR4ul4vr169z+/Zttra22NzcZHt7G3j2ppNvvGg0ytWrV5XJp1IpUqkUnU5HG/YF\n4HQ6SSQSrK6ucu3aNSqVitJPG/bFI4TA4XCohZR50/4yzpdLbdhydZVIJFhYWGB6epqpqSmmpqYw\nDENtKKbTabxeLzMzM6yurnLr1i1+/OMf8+TJEx4+fIjT6eS9997j+vXr3Lx5k08++YR+v082m0WI\nZwfLpGlHIhGuXr2K2+0mGo3i8/nodDocHBxc8G/jciIN++7du3z88cdks1nsdjvFYpFUKnXRw7v0\nSMN2u914PB663S4Ag8FAG7aVMBulfJySpim/7vf7iUQiKlQhY9LxeBzDMCiVSuzu7uJwOFRIZGlp\nidXVVTY3N2m1Wuzu7hIIBLhz5w7Ly8t8+ctfplqt8vTpU7xeL+12W6X9dTod3G43c3Nz6hG8Xq+z\nt7eHw2FZKS4Em82G3W5Xug+HQ/UoLd8TdrudQCBAPB7n+vXrfOELX+Dp06ekUimCweBF/xc0PJun\ndrsdp9OpwpByHtvt9hFdzypEIt83drsdeH5zGA6HZ/L6p8FyLiGFlJfP5yMcDqvL4XCoSwozGAzY\n2dmhVCqRTqeJRqMAbGxskMvl6PV6GIaBYRhKNBna+PznP4/dbicUCtFoNHjy5An7+/uUy2W63S6t\nVotkMsm9e/cACIVCeL1evF4v/X7/UsfjzpNoNMrc3Bxzc3N4PB6y2SyZTIZMJkMwGGR2dpa5uTni\n8TgzMzMUCgX+/M//nL29PR4/fjyWGTyXEcMw1GIHUE/EkUgEu90+omuv1zv1v2ez2dR7Y25ujsFg\noF4/m82e+vVPi+UMG57dIV0uF263W62KFxcXWVhYwOPxqMerdrtNKpVib2+PZDI5kmsNcHBwQDab\nVW8Es2HL0IaMp4XD4RHDrlQq9Ho9ZdiGYZDP59U4FhcXsdvtDAYDbdbnQDQa5fr167z//vtEIhEe\nPnyIzWajUCgQDodZW1vj/fffZ2lpiVqtRqFQYHt7m3Q6TTKZ1IY9JkjDhmcr3Xg8zsrKCjdv3iQY\nDCpdi8XimRn23Nwct2/f5v3336fX6/Hw4UMGg4E27PNArrDdbjder1dldty+fZtbt27h9/vVVSgU\n+O53v0symWRnZ4d+v69W5gDtdptOp0O/3x9ZYZtj0X6/n1qtRqvVol6vk8/nSafTL6yw8/k8Gxsb\nvPfee3zwwQf4/X7C4fDYPGpZDWnYX/nKV5ibm1OTemNjg0gkwtraGl/+8pdZXV3lk08+YXt7m+9/\n//vkcjmazSatVuui/wsanhv2YDCg2+3i9Xq5evUqH330EXNzcwghlK5ngVxh3759m7/xN/4G7Xab\nwWAwNntMbzRsIcTvAD8DZA3DuHv4tRjwLZ6dnkoDf9swjPJ5DvQNY1SxLbvdjsPhQAihDHYwGNDr\n9eh0OiMhkX6/j9PpJBgMMjMzo+LN8mc8Ho/a8HA4HDQaDfb393n06JFK92s2m+oQjLzkCrvb7dLv\n96nVatRqNeDZQRoZv47FYuRyuQtJ6ZsEXQ/HpPYgABU+Gg6H+Hw+AoEAfr8fm81Go9FQl3nfoNPp\n0Ov1Rn5W/l2z2aRcLpPJZEgmkxSLJysVLd93MqNBlh6Q/+67YlJ0PS5yn0EushKJBMFgECEE/X5f\nbd4vLi5SLBZptVpqoXVSBoOBen90u913ruHrOM4K+18B/xL416av/RrwB4Zh/IYQ4pcO//yL5zC+\nY2Gz2UaMWMal2+02xWKR3d1der0ehUJB5Vx7PB4Mw6DVahGPx/na175Gt9tVV7vdVvnR9Xodr9dL\noVDgxz/+Mfv7+7TbbXXJ1bU0i3w+T7lcfukjWq1WI5lMYrPZCAQCPH36lEKhcBF1RcZeV3huhDI3\nXtZrGQ6HTE1NceXKFZV1s7u7y87ODru7u5RKJR4/fozdbiccDrO+vk46nabf71Mul3ny5AkOh4PN\nzU3W19fZ29tTGQgnweFwjKSF1mo16vU6tVrtVK97AiZC1+MiD55JnQOBAP1+nwcPHiCEoFwu4/f7\n+fDDD8lms6rsw0kNezgcks1mefjwIcPhkG63y/r6+ksPxV0EbzRswzC+I4S4euTLPw3I9kLfBL7H\nBRu23EWWuZr9fp9ut0uxWKTf7yvjNm84hsNhlpaW1NXr9dTjsIxryksafqFQUCtw+e/0ej1l9L1e\nj0ajQbPZfKVhp1Ip6vU6LpeLcrlMpVJ554Y9CbrC6H4EQKfTUWGpqakpbt68yRe/+EUCgQA/+MEP\naLVapFIpZdilUgmPx0M+nyeXy9Hv96lUKjx58oRKpYLP5yOfz5PP509lrE6nk0AgwPT0NNPT0+Ry\nOQBardY7NexJ0fW4eDweFhYW+NznPscXv/hFNY8fPnxIpVJRabjLy8vs7e1ht9up1WonflKShj0c\nDsnlcgwGA/L5/AslJy6Kk8awZwzDKAAYhpEXQsye4ZjeGrnCdrvduFwuWq0WnU6HdrtNvV6nWCyq\ndD4zy8vLhMNhtcI2hy+KxSL7+/vs7e2xv7+vDrikUikymcwrx/KmDUR5ik7m+I7ZhuNY6QqolC6P\nx6PCXPLmFovFuHHjBl/96leJRCK0222SySR2u51SqUS5XObx48fqteTvulwuUy6X2dzcfOHvTorD\n4SAQCDAzM8PCwgLwbA+kXB6LyMPY6Xpc5Ar785//PF//+te5d+8eW1tbPHjwgJ2dHT7++GOWl5f5\n8MMPiUaj1Ov1U+XPD4fDl2aEjMs8tcSmozkmKYQgHA6zsLBAIBDA6XSqvE0hhIppdjodwuEwTqeT\nbDbLD3/4QzqdjjpSXqlUKBQK6u6az+epVqt0Op0XxHM4HLhcLnV1u10V/3I6ncRiMWKxGFNTU1Sr\nVUqlEsViceQk3bi8IcYNuf/QbrfVaVMZdrhy5QqdTof79+8D8Nlnn5HNZtV+wJt+p2/6eyGE0tTt\ndqtHZHmZ6ff7atNZZgTV6/WxLKE7bsjkALlaNudaB4NBIpEI6XSaP/uzP2NjY4OtrS2q1aqq3/Pk\nyRM1j/f29s7khOq4zseTGnZOCDF9eLeeAS4032U4HKrwg81mY35+ntXVVVZWVgiFQiMHZ6Qh12o1\nhsMhLpeLbDZLs9mk2Wyqv5MxSPP1qnikzPc+Gr8cDofqkW5tbY21tTX29/dVZb9GowGM1ZtjrHSF\n54ZtGMZIeYCVlRWGwyHtdpv79+9TLpfZ2dkhk8mc2QauEAKPx6N0HQwGr3wf9Ho96vU6Qgja7bZ6\nD4yJYY+drmbkKvrGjRtcv34dp9M5Umu+0+mQTqfZ2dkhlUqxvb2tDDuXy+FwONTcTafTal5ZkZMa\n9reBvwv8xuHHb5/ZiE6AXGEPBgPsdjuRSITr16/z8ccfMzc3N3JySdb/yOfzFItFlSGwsbGhwhW1\nWo1Go6Hi00c/HsXhcOD1eolEIsRiMXUCq9Vq4fF4mJ+fV0ef19fXVU5nJpNRu89jYtpjpSugVrX9\nfh8hBLOzs9y5c4ePP/6Yx48f8+mnn/LgwQO2t7fVxu9ZGrbb7VYZPVL7TqfzginIcFq73aZUKo3U\nvBgDxk5XM16vl4WFBT744AO+8pWv4Ha7VXptqVTixz/+Mdvb2/zoRz+iVCqpBZRcYTcaDfb29tS5\nByunZB4nre/fAj8BTAshksA/A34F+JYQ4ueAA+Bnz3WUb0BW8ALUBJEm6vf7lfg2m02tpL1er0oF\nkyldskKbnHhvQsbFnU7nSOlVn8+n0pBCoRCLi4vMz88Tj8fJZrMqVHORTIKugLqhyXx1l8tFOBxm\ndnaW3d1d6vU6u7u7I7Hqs0SmFTocDobDoXpSO4o8vnyadLKzYFJ0NSOEUPsUfr8fn8/3QrGnbDbL\nxsYGzWZz5GeleZ8l5owz6S0v6yZ1ERwnS+TvvOKvvn7GYzkT5Op1fX0dIQTRaHSkPGOlUqFSqahY\nsoxRyzKpMgvhTZhzv71eL9FoVIViFhYWVMqfy+VStUmSyaTqNCNzvuWBnHfNpOkKz27G5XJZHR+X\n2SDnlYVhGAadTodqtQo8j1O/4zS9t2ISdW232+zt7XH//n16vR6BQECVb6jVaipN813kQgsh8Pl8\nBINBgsEgw+FwJER60Vhi09GM+QhpoVDA6/WObDrKpHqZPy1T8BqNhgp7HOeR2nygQxaGkrHqo/0e\n5aPx06dP2d/fV4Z9UWY9qZgNOxQKqYMu57WqlYYN0O12VTx1TMIclkGmYna7XdLptDpYFgwG6fV6\nqs7PuzhcJg17amqK2dlZ5SfyZn3RWM6wZVnTQqHAo0ePRir0Acok5Ym3o0Wdjmui5hrXcoUtDVtu\nUkOIU1sAABR1SURBVPn9ftrtNpubm2xubr5g2ONyempSkIadSqWw2Wyk0+lzN2x5g5fvIX2TPXuk\nYafTaex2u2q9J/eD8vn8O19hT01Nsbi4qEIh8qTyRWM5w4Z3VytXGn2r1SKfz7Ozs4PX61WlWuXq\nvtVqUSwWSSaTZDIZdWxd83aYU+dkISeZLXBemA3aXPkxGAyqQ0+VSuXCY9eTjMytlzFic1lTu91O\ntVpVT6TvYizdblcdnJOZQeMyXy1p2O8C86pcJuvLGtq3bt2i3+/j9/sxDGOkVkUulzt3k7Eq0rBt\nNptqr1ar1d7Z79Lv97O8vKz2Kba2ttja2lJ5/ZqzQZ44NgwDm82mTou+qyebRqOhzHo4HFIul8cm\n80Qb9gkxh1ZkE4Jyuczu7i6DwYBAIEAikcDpdFIul8lmsySTSSqVCu12e2zu2JOEebUjb3qyHMC7\nIBAIsLy8zOc+9zlu376N3+9XOcKVSuWdjOEyIPPuu92uKvL0rjI0DMOg2WwyGAxUGGScbsjasI/J\n0Q42R1N/ms2mqgkSi8WIx+MsLi6q4vnyarVaqhaJ5u2Qoa7jpFy+DeZNaXMI5OiKzlxf/fr16+zv\n76vTspqz4yJTJOVG87gY9FG0YR8TadKy1rYs8jMzM0O32+Xg4ICDgwMymQyFQoHHjx+rXNL19XXV\nCEGWb9WMB7JnoNTWHE89elPtdruUy2UODg7Y3d0lk8lQq9XGIj9XcznQhn1MzBUB/X6/WmWtra3R\nbDZ58OCBMu5isciTJ0+o1WrY7XZVTEaWBdVZBuODNGxZL0Su7MyHsSTdbpdKpUI6ncbv95PNZrVh\na94p2rCPiTRsj8dDKBRieXmZu3fv8qUvfUllfciuFIVCgVqtxs7ODkKIkVirNuvxQz41+Xw+1V3o\nZSYsDfvg4ACHw6ENW/POsb3pG4QQvyOEyAghPjV97VeFECkhxL3D6xvnO8yLx9ypZDAYqHKaU1NT\nxGIxgsEgLpcLQNXELpfLqvbBu9zlPg5a1+ccPX4sn4JsNhuhUIj5+Xlu3LjB0tISHo9Hnb4bR8PW\nulqbk3acMYBfNwzj189lVGOIuSJgs9lUJ99kUamjB3QmAK0rz3OA5Q1VFpsaDofY7Xamp6dVgwu7\n3a5qV+RyOYrFItVqdawMG62rpTlpxxmAiXKn0yIn8mAweKlhv6oo0LiidX2ODIPIkJXM4nG5XExP\nT3P9+nU++OADOp0Ojx49IpfLsbOzo+rFjFNOvdbV2rwxJPIa/rEQ4q+EEN88bPJ5aTCHR4426TSb\n9yQZuIlLpasMh8g+nuaGvTabTTXDuHXrFleuXMHv99Nqtdjb26NQKJxpOddz5lLpalVOati/CVwD\nbgObwL84sxGNKeFwmGvXrvHxxx/zkz/5kyQSCSqVCt///vf5/ve/r9oSzc/PMzU1RSAQwOGYuD3d\nS6fr65D9/B4/fswnn3zCvXv32N7eHpe2X2+D1tUinMhRDMNQLYSFEL8F/JczG9GYIg37/fffZ2Vl\nRbURk3W0a7UahmEwPz8/0lh3nB6X38Rl1PV1mA27Xq/T6XQ4ODiYuFONWlfrcCLDFkLMGoYh2wz9\nLeDh2Q1pPAmFQqyurvLRRx/x/vvv85d/+Zckk0k++eQTarUawWCQUChEIpHAbrePtACbFC6jrq9D\nGnatViOZTKqWZON6Cu5VaF2tw0k6zvwK8JNCiA8AF7AL/P1zHeU7Qsae5Ud5KlGmecmYdavVGqkP\n0mg0mJ2dVb0dB4PB2JfhvEy6vg0ulwuPx4PH48HlctFqtVSPxkmIVWtdrY04L1MRQoyvW70Ch8Oh\njpPbbDbVeKDX67G0tMTNmzd57733WFhYYH19nfX1df7qr/6Kdrutym6GQqGRrjZnXffipBiGcWY7\noJOo7XGJRCLMzc0xNzdHJBJR5QYymczYaGlG62pNXqXrxO2KnSd2u12tsOx2u6rB2+/3qVQqbG1t\nqfCHbOTbbrdV+EOW/5QdbcYsP1dzDHw+H4lEghs3bpBIJHj06BGDwUA1ndBoLhJt2CakYXu9XlWF\nT3brlqvmra0t9f3mp5PzaAaqeff4/X7m5+e5desW165dU2a9s7Nz0UPTaLRhm5H5uPIwTKfTUYcq\nJPLzl+VZj3PMWnM8ms0m6XSajY0NqtUqW1tb5PP5icr20VgXbdgmpGHLOhKyKe+rjNhs2q+qoayZ\nLKRhD4dDVTI3n8/rhhOasUBvOpp4XZbIq77XbNjjXDpVb04dDxkSO5ol0mq1xjJLROtqTV6lqzbs\nV2Cz2VR6l8fjUbVE5NFlycu6sI8jemI/x5y653Q6lSFPYid7ras10Vkib4nL5SKRSLCwsMDCwgLt\ndptsNksul6NQKKhTjLJg0LgateZFwuEwi4uLLCwsEAqFSKVS7O3tsbe3pzNBNGONNuxXIA37zp07\nfPjhh1QqFZ48ecLjx4/p9Xqqi7KMcWvDnhzC4TCrq6t88MEHxONx7t+/j2EY5HI5bdiasea1hi2E\nWAJ+F4jy7JTUbxuG8c8Pq319C5gD0sDfNgxj4irivA5p2Hfv3uUnfuInyOVyuFwums0mxWIRQIVG\nJu0x+jLrCs/rwnz00Uesrq4yHA7J5XJ89tlnFz20U3PZtbU6b6rW1wX+kWEYd4EvAj8vhPgQ+DXg\nDwzD+AD4w8M/WwpZH7nZbFKr1ajVatTrdRqNBs1mU6X8TZpZH2J5XX0+H7Ozs6yurnLz5k0WFhYI\nh8PY7XaazSYHBwc8efKEhw8f8vTpU0qlklUOOlle28vMa1fYhmFkgMzh53UhxH1gAfhp4KPDb/sm\n8D3gF89xnO+cwWBAo9GgUCiwt7dHPp8nm81SLBap1Wpq83ESQyGXQddAIKD2H7xeL/v7++zv79Nq\ntdQBKMMwiEajbG9vs7+/b4lc68ug7WXm2DHswy4WXwJ+DpgxDKMAz0o3CiFmz2V0F8hwOFSGnUql\nKBQKZLNZSqUS1WqVwWDAYDCY1BW2wqq6BoNBFhYWeO+99wiHwypFT5ZH3dzcJJfL4Xa7qVarVKtV\ny+VaW1Xby8yxDFsIEQB+D/hFwzCqE9pJ5QVsNhsul0sVfJIYhoHX6wWgWq2yt7dHsVgkl8tRLpdp\nNpsXNeQzxaq6AjidTtUkORqNsr+/j9frxWaz0Wg0aDQapNPpix7muWFlbS8zxymv6gT+PfC7hmH8\n/uGXc0KI6cM79QyQffUrjC9e7//f3rn8tnHccfwz4mtFUnyJlONISmA0huLGcZMCRQ3UDQK0BZz2\nWCCHope0uaUogh5apJcG/QPSF3rIob00bVG0ZzdpAhRIckqiWk4iGbbV6EHKEuUlxfeSFMXpgdw1\nrehhvmpxdz7Agqsld/CzvuLPszO/me84p0+ftg4hhNVzBizHGLOHnclkbFNFYGddobW3y8bGBl6v\nl4mJCVZXV8lms3YZpz4Su2vrZI6rEhHAH4AlKeWvOt66Anwf+HX79crQIhwi4+PjzM7Ocv78eZ58\n8kmEEFZ9dblcJp1Os7W1RTKZJJvNksvlbJGw7a4rtBL27du3qVar+Hw+stks2Wz2RK5WHCRO0NbJ\nHLnSUQhxCXgX+BgwP/gK8AF3S4S2gOf3lwiNwqqp2dlZnn32WeswN3yq1Wrous78/Dzz8/N89NFH\nZLPZA1c6jgqdK6f60bV9/4nX1u12W0fnvjBH7Q0ziuxfEWf376xT6Gmlo5TyfQ4v/ftWv0E9CPx+\nP4FAAL/fz8MPP4zf76darXL79m38fr9lYmCOd5q97Uqlcs9wyShjR133YyZnp+EEbZ2M41Y6hsNh\na8x6cnISl8vF2toauq4Tj8dJJBIkEgnLv69er9NoNKyKEDv1zhQKxWjhqIQthCAcDvPII48wNzdH\nMBgknU6zurpKOp3m0Ucf5ezZs0gprZ53Z8JWyVqhUDxIHJGwzZImM2FPT0/z+OOP4/P5yOVy6LrO\nwsICpVIJj8dDNBolFothGAb1et0W9dZ2x9wW1+VyMTY2hpTS0q3ZbH7OcELtX24PnKar7RP22NiY\nNfnk8XgIhUJEIhGi0SihUIi5uTncbjexWIxgMEg0GrWWoN+5c4dSqWSLcWu7o2kaU1NT1pHP59ne\n3iadTlMsFvF6vfh8PrxeL3t7e9RqNer1+khOICtamOsonKSrIxK2KaqmaYRCIcLhMNFolEQigcvl\nYnJykjNnzlAul6lWq5RKJXZ2dtB1nXK5rHrXI4DP52N6eponnniCc+fOkUwmWVpawjAMyuUymqYR\nDAYJBoPUajVKpRLNZtO2X2wnYO5Z7yRdHZGwzaqPQCDAxMQE4XCYSCTCQw89RCwW48yZM9TrdT77\n7DNu3brF9vY2yWRS9bBHCE3TmJ6e5sKFCzzzzDMsLi5iGAapVIp0Oo3P52NiYoJoNIphGNaksmJ0\nGRsbc5yutk/Ybrcbv99POBwmFosRi8UIhUIEAgF8Pp81odjZszYfpXO5nPVHoDjZmGPWu7u790wW\nm5U9piOQedh1jNNJOFFXRyTsYDBIIpHg9OnTJBIJQqEQXq+XarVKKpVifX2dtbU1kskkqVSKVCpF\nNpulVCpRq9Vs/0dgB6rVKhsbG1y7ds06X1lZoVAoIKWkVqtRLBYtq7dKpeLIOm074URdbZ+wPR4P\nExMTxONxZmZmiMfjBINBPB4PtVrN+pLPz8+TyWQoFArk83nK5TL1et1yUVecbEwtzddCoYCu69aX\nuVarWa97e3u2nphyCk7UtVfHmVeBF4E77Y++IqV8c5iB9oq5a1sikWBmZuaeHnY+nyeVSrGwsMA7\n77xj2X7ZPUHbQdf9mE9LGxsb1rVOHavVqq3HNk3sqO1hmOPVTtDV5Lgetule8Wl7u8b/CCHeorVH\nwWtSyteGHuEA6KzT1HUdwzBIJpPs7OywtLREOp223R4Tx2ALXQ/C1DASiRCPx5mcnETTNHRdJ5PJ\noOu6rR+ZsZm2mqYRj8etw3xy0nWdQqHwoMP7v9Or4wzASG6wq+s6yWQSwzDIZDKsrq6yvb3tqIlF\nO+q6n2g0ymOPPcbc3ByhUIibN29y48YN8vm8rRO23bQ1yzXPnTvH3NwcGxsbXL9+nXq9rhL2UXS4\nV7zQfn1JCPEiMA/8WEqZHUaAg0bXddbX10mlUmxvb1Mulx1dumcXXfcTiUQ4e/YsFy9eZGpqCo/H\nYznNOAU7aKtpGjMzMzz11FNcunSJpaUl6vW6rc0njuI4E17Acq/4Oy33iiLwe+ALwBeB/wK/HVqE\nfWKWezUaDer1Orlcjs3NTZaXl1leXmZzc5Niseik4RCLUdYVwOVy4fV68fv9+P1+fD4fbrcbIYT1\n3vj4OH6/H03TrPecwKhra2Kuo9A0jUAgwPj4OB6Ph7Gx+0pdtqMbx5m/mO4VUkq94/3XgX8PLcI+\nMct9DMOgWCxa+4M4aQjkIEZdV2g9LgcCAQKBAC6Xy7L+KpfL5HI5lpeX8Xq9RCIRFhcX2drasnUF\ngYkdtDUxJ5MXFhZoNBqsr69b5ZpOpCfHGSHElJTStBj6LrA4vBD7w1ymaibsSqXi+IRtB12h9bgc\nDoeZnJzE4/GQyWRoNptUKhV2dna4desWhUIBTdOsxVB2Hr8G+2hrYibsRqPB5uYmuVyOra0tlbAP\n4Wu07IQ+FkJcbV/7OfA9IcQFWmVDa8APhxdif3QW1JdKJQzDYHd319EJGxvoCq0edjgc5tSpU3i9\nXitZCyHI5XIUi0VWVlbu8ep0wFyFLbQ1MRP25uYmLpeLZrPpFB0PpFfHmX8OJ5zBYzrGZLNZXC4X\n2WyWcrls+57WUdhBV2hpW6lUyOVyeL1eSqWStdDJqV9qu2hrIqV0rHvQQdh+pWOj0aBYLCKEQNd1\npJSUSiVHjGXanVqtRj6fR0pJtVplb28PwzAcOYGscAa2T9i7u7tWz6ter+PxeCxDVsVoU61WaTab\nGIaBYRi43W52d3dVwlbYliNd0/tqWDkwnygOc2HuBaXtyUHpak8O09WZxYwKhUIxgqiErVAoFCPC\n0IZEFAqFQjFYVA9boVAoRgSVsBUKhWJEUAlboVAoRoShJmwhxGUhxCdCiCUhxM96bGNVCPGxEOKq\nEOKDLu77oxAiLYT4pONaTAjxdru9t4QQkR7beVUIkWrHdFUIcfmYNmaFEO+2fxc3hBA/7SWeI9rp\nKp5+GYSu7Xa61lbpOjyUrtbnT66upvPwoA/AB6zQ2jzdDXwIPN1DOytArIf7vg48DXzSce13wMvt\n85eB3/TYzi+An3QRyyngfPs8CNwEvtRtPEe001U8J0HXXrVVuipdnazrMHvYXwUWpZQbUsoG8Dfg\nOz221fXiACnle8DOvsvfBv7UPn/jfuI5pJ2uYpJSpqWUn7bPS4DpAtJVPEe001U8fTJIXaHLuJWu\nQ0PpereNE6vrMBP2DJDs+DnVvtYtEjAfQ37UZ0wJKWUGrP2Bp/po6yUhxHUhxBtCiNj93iTuuoC8\n3088He281088PTAoXWFw2ipd+0fpegAnTddhJuxBFXhflFJ+GfgG8IIQ4psDarcfenLvEC0XkH/Q\ncgHpeUNf8WDdRAZZuH/StFW6Dgal6+fbGYiuw0zYKWC24+dZ7v0f/L6Q7U3XpZR3aP3yvtJHTHeE\nEHEAIUQC2D7m84fFpMs2wOv3E5O46wLyZ9l2AeklHnGIm0i38fTBQHSFgWqrdO0fpWsHJ1XXYSbs\nD4HzQojpdtDP0+WevEIIvxDC3z4PAJfpzynjCq3N3Wm/XumlESFE56PQse4dQhzsAtJtPIe10208\nfdK3rjBwbZWu/aN0vfv5k6trLzOV93sAzwGfAkvAKz3cfwa4BizQmmH9ZRf3/hW4DdRp9RReAGLA\n27QG//8FRHpo5we0Jh6uAdeBN4HpY9q4BDTb/46r7eNyt/Ec0s5z3cbzoHXtR1ulq9LVybqqvUQU\nCoViRFArHRUKhWJEUAlboVAoRgSVsBUKhWJEUAlboVAoRgSVsBUKhWJEUAlboVAoRgSVsBUKhWJE\n+B95ZPpm8QyaLgAAAABJRU5ErkJggg==\n",
"text/plain": [
"