#!/bin/sh #SBATCH -N 1 # nodes requested #SBATCH -n 1 # tasks requested #SBATCH --partition=Teach-Standard #SBATCH --gres=gpu:4 #SBATCH --mem=12000 # memory in Mb #SBATCH --time=0-08:00:00 export CUDA_HOME=/opt/cuda-9.0.176.1/ export CUDNN_HOME=/opt/cuDNN-7.0/ export STUDENT_ID=$(whoami) export LD_LIBRARY_PATH=${CUDNN_HOME}/lib64:${CUDA_HOME}/lib64:$LD_LIBRARY_PATH export LIBRARY_PATH=${CUDNN_HOME}/lib64:$LIBRARY_PATH export CPATH=${CUDNN_HOME}/include:$CPATH export PATH=${CUDA_HOME}/bin:${PATH} export PYTHON_PATH=$PATH mkdir -p /disk/scratch/${STUDENT_ID} export TMPDIR=/disk/scratch/${STUDENT_ID}/ export TMP=/disk/scratch/${STUDENT_ID}/ mkdir -p ${TMP}/datasets/ export DATASET_DIR=${TMP}/datasets/ # Activate the relevant virtual environment: source /home/${STUDENT_ID}/miniconda3/bin/activate mlp cd .. python train_evaluate_emnist_classification_system.py --batch_size 100 --continue_from_epoch -1 --seed 0 \ --image_num_channels 1 --image_height 28 --image_width 28 \ --dim_reduction_type "strided" --num_layers 4 --num_filters 64 \ --num_epochs 100 --experiment_name 'emnist_test_multi_gpu_exp' \ --use_gpu "True" --weight_decay_coefficient 0. \ --dataset_name "emnist"