import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import tqdm import os import numpy as np import time from pytorch_mlp_framework.storage_utils import save_statistics from matplotlib import pyplot as plt import matplotlib matplotlib.rcParams.update({"font.size": 8}) class ExperimentBuilder(nn.Module): def __init__( self, network_model, experiment_name, num_epochs, train_data, val_data, test_data, weight_decay_coefficient, learning_rate, use_gpu, continue_from_epoch=-1, ): """ Initializes an ExperimentBuilder object. Such an object takes care of running training and evaluation of a deep net on a given dataset. It also takes care of saving per epoch models and automatically inferring the best val model to be used for evaluating the test set metrics. :param network_model: A pytorch nn.Module which implements a network architecture. :param experiment_name: The name of the experiment. This is used mainly for keeping track of the experiment and creating and directory structure that will be used to save logs, model parameters and other. :param num_epochs: Total number of epochs to run the experiment :param train_data: An object of the DataProvider type. Contains the training set. :param val_data: An object of the DataProvider type. Contains the val set. :param test_data: An object of the DataProvider type. Contains the test set. :param weight_decay_coefficient: A float indicating the weight decay to use with the adam optimizer. :param use_gpu: A boolean indicating whether to use a GPU or not. :param continue_from_epoch: An int indicating whether we'll start from scrach (-1) or whether we'll reload a previously saved model of epoch 'continue_from_epoch' and continue training from there. """ super(ExperimentBuilder, self).__init__() self.experiment_name = experiment_name self.model = network_model if torch.cuda.device_count() >= 1 and use_gpu: self.device = torch.device("cuda") self.model.to(self.device) # sends the model from the cpu to the gpu print("Use GPU", self.device) else: print("use CPU") self.device = torch.device("cpu") # sets the device to be CPU print(self.device) print("here") self.model.reset_parameters() # re-initialize network parameters self.train_data = train_data self.val_data = val_data self.test_data = test_data print("System learnable parameters") num_conv_layers = 0 num_linear_layers = 0 total_num_parameters = 0 for name, value in self.named_parameters(): print(name, value.shape) if all(item in name for item in ["conv", "weight"]): num_conv_layers += 1 if all(item in name for item in ["linear", "weight"]): num_linear_layers += 1 total_num_parameters += np.prod(value.shape) print("Total number of parameters", total_num_parameters) print("Total number of conv layers", num_conv_layers) print("Total number of linear layers", num_linear_layers) print(f"Learning rate: {learning_rate}") self.optimizer = optim.Adam( self.parameters(), amsgrad=False, weight_decay=weight_decay_coefficient, lr=learning_rate, ) self.learning_rate_scheduler = optim.lr_scheduler.CosineAnnealingLR( self.optimizer, T_max=num_epochs, eta_min=0.00002 ) # Generate the directory names self.experiment_folder = os.path.abspath(experiment_name) self.experiment_logs = os.path.abspath( os.path.join(self.experiment_folder, "result_outputs") ) self.experiment_saved_models = os.path.abspath( os.path.join(self.experiment_folder, "saved_models") ) # Set best models to be at 0 since we are just starting self.best_val_model_idx = 0 self.best_val_model_acc = 0.0 if not os.path.exists( self.experiment_folder ): # If experiment directory does not exist os.mkdir(self.experiment_folder) # create the experiment directory os.mkdir(self.experiment_logs) # create the experiment log directory os.mkdir( self.experiment_saved_models ) # create the experiment saved models directory self.num_epochs = num_epochs self.criterion = nn.CrossEntropyLoss().to( self.device ) # send the loss computation to the GPU if ( continue_from_epoch == -2 ): # if continue from epoch is -2 then continue from latest saved model self.state, self.best_val_model_idx, self.best_val_model_acc = ( self.load_model( model_save_dir=self.experiment_saved_models, model_save_name="train_model", model_idx="latest", ) ) # reload existing model from epoch and return best val model index # and the best val acc of that model self.starting_epoch = int(self.state["model_epoch"]) elif continue_from_epoch > -1: # if continue from epoch is greater than -1 then self.state, self.best_val_model_idx, self.best_val_model_acc = ( self.load_model( model_save_dir=self.experiment_saved_models, model_save_name="train_model", model_idx=continue_from_epoch, ) ) # reload existing model from epoch and return best val model index # and the best val acc of that model self.starting_epoch = continue_from_epoch else: self.state = dict() self.starting_epoch = 0 def get_num_parameters(self): total_num_params = 0 for param in self.parameters(): total_num_params += np.prod(param.shape) return total_num_params def plot_func_def(self, all_grads, layers): """ Plot function definition to plot the average gradient with respect to the number of layers in the given model :param all_grads: Gradients wrt weights for each layer in the model. :param layers: Layer names corresponding to the model parameters :return: plot for gradient flow """ plt.plot(all_grads, alpha=0.3, color="b") plt.hlines(0, 0, len(all_grads) + 1, linewidth=1, color="k") plt.xticks(range(0, len(all_grads), 1), layers, rotation="vertical") plt.xlim(xmin=0, xmax=len(all_grads)) plt.xlabel("Layers") plt.ylabel("Average Gradient") plt.title("Gradient flow") plt.grid(True) plt.tight_layout() return plt def plot_grad_flow(self, named_parameters): """ The function is being called in Line 298 of this file. Receives the parameters of the model being trained. Returns plot of gradient flow for the given model parameters. """ all_grads = [] layers = [] """ Complete the code in the block below to collect absolute mean of the gradients for each layer in all_grads with the layer names in layers. """ for name, param in named_parameters: if "bias" in name: continue # Check if the parameter requires gradient and has a gradient if param.requires_grad and param.grad is not None: try: _, a, _, b, _ = name.split(".", 4) except: b, a = name.split(".", 1) layers.append(f"{a}_{b}") # Collect the mean of the absolute gradients all_grads.append(param.grad.abs().mean().item()) plt = self.plot_func_def(all_grads, layers) return plt def run_train_iter(self, x, y): self.train() # sets model to training mode (in case batch normalization or other methods have different procedures for training and evaluation) x, y = x.float().to(device=self.device), y.long().to( device=self.device ) # send data to device as torch tensors out = self.model.forward(x) # forward the data in the model loss = F.cross_entropy(input=out, target=y) # compute loss self.optimizer.zero_grad() # set all weight grads from previous training iters to 0 loss.backward() # backpropagate to compute gradients for current iter loss self.optimizer.step() # update network parameters self.learning_rate_scheduler.step() # update learning rate scheduler _, predicted = torch.max(out.data, 1) # get argmax of predictions accuracy = np.mean(list(predicted.eq(y.data).cpu())) # compute accuracy return loss.cpu().data.numpy(), accuracy def run_evaluation_iter(self, x, y): """ Receives the inputs and targets for the model and runs an evaluation iterations. Returns loss and accuracy metrics. :param x: The inputs to the model. A numpy array of shape batch_size, channels, height, width :param y: The targets for the model. A numpy array of shape batch_size, num_classes :return: the loss and accuracy for this batch """ self.eval() # sets the system to validation mode x, y = x.float().to(device=self.device), y.long().to( device=self.device ) # convert data to pytorch tensors and send to the computation device out = self.model.forward(x) # forward the data in the model loss = F.cross_entropy(input=out, target=y) # compute loss _, predicted = torch.max(out.data, 1) # get argmax of predictions accuracy = np.mean(list(predicted.eq(y.data).cpu())) # compute accuracy return loss.cpu().data.numpy(), accuracy def save_model( self, model_save_dir, model_save_name, model_idx, best_validation_model_idx, best_validation_model_acc, ): """ Save the network parameter state and current best val epoch idx and best val accuracy. :param model_save_name: Name to use to save model without the epoch index :param model_idx: The index to save the model with. :param best_validation_model_idx: The index of the best validation model to be stored for future use. :param best_validation_model_acc: The best validation accuracy to be stored for use at test time. :param model_save_dir: The directory to store the state at. :param state: The dictionary containing the system state. """ self.state["network"] = ( self.state_dict() ) # save network parameter and other variables. self.state["best_val_model_idx"] = ( best_validation_model_idx # save current best val idx ) self.state["best_val_model_acc"] = ( best_validation_model_acc # save current best val acc ) torch.save( self.state, f=os.path.join( model_save_dir, "{}_{}".format(model_save_name, str(model_idx)) ), ) # save state at prespecified filepath def load_model(self, model_save_dir, model_save_name, model_idx): """ Load the network parameter state and the best val model idx and best val acc to be compared with the future val accuracies, in order to choose the best val model :param model_save_dir: The directory to store the state at. :param model_save_name: Name to use to save model without the epoch index :param model_idx: The index to save the model with. :return: best val idx and best val model acc, also it loads the network state into the system state without returning it """ state = torch.load( f=os.path.join( model_save_dir, "{}_{}".format(model_save_name, str(model_idx)) ) ) self.load_state_dict(state_dict=state["network"]) return state, state["best_val_model_idx"], state["best_val_model_acc"] def run_experiment(self): """ Runs experiment train and evaluation iterations, saving the model and best val model and val model accuracy after each epoch :return: The summary current_epoch_losses from starting epoch to total_epochs. """ total_losses = { "train_acc": [], "train_loss": [], "val_acc": [], "val_loss": [], } # initialize a dict to keep the per-epoch metrics for i, epoch_idx in enumerate(range(self.starting_epoch, self.num_epochs)): epoch_start_time = time.time() current_epoch_losses = { "train_acc": [], "train_loss": [], "val_acc": [], "val_loss": [], } self.current_epoch = epoch_idx with tqdm.tqdm( total=len(self.train_data) ) as pbar_train: # create a progress bar for training for idx, (x, y) in enumerate(self.train_data): # get data batches loss, accuracy = self.run_train_iter( x=x, y=y ) # take a training iter step current_epoch_losses["train_loss"].append( loss ) # add current iter loss to the train loss list current_epoch_losses["train_acc"].append( accuracy ) # add current iter acc to the train acc list pbar_train.update(1) pbar_train.set_description( "loss: {:.4f}, accuracy: {:.4f}".format(loss, accuracy) ) with tqdm.tqdm( total=len(self.val_data) ) as pbar_val: # create a progress bar for validation for x, y in self.val_data: # get data batches loss, accuracy = self.run_evaluation_iter( x=x, y=y ) # run a validation iter current_epoch_losses["val_loss"].append( loss ) # add current iter loss to val loss list. current_epoch_losses["val_acc"].append( accuracy ) # add current iter acc to val acc lst. pbar_val.update(1) # add 1 step to the progress bar pbar_val.set_description( "loss: {:.4f}, accuracy: {:.4f}".format(loss, accuracy) ) val_mean_accuracy = np.mean(current_epoch_losses["val_acc"]) if ( val_mean_accuracy > self.best_val_model_acc ): # if current epoch's mean val acc is greater than the saved best val acc then self.best_val_model_acc = val_mean_accuracy # set the best val model acc to be current epoch's val accuracy self.best_val_model_idx = epoch_idx # set the experiment-wise best val idx to be the current epoch's idx for key, value in current_epoch_losses.items(): total_losses[key].append( np.mean(value) ) # get mean of all metrics of current epoch metrics dict, to get them ready for storage and output on the terminal. save_statistics( experiment_log_dir=self.experiment_logs, filename="summary.csv", stats_dict=total_losses, current_epoch=i, continue_from_mode=( True if (self.starting_epoch != 0 or i > 0) else False ), ) # save statistics to stats file. # load_statistics(experiment_log_dir=self.experiment_logs, filename='summary.csv') # How to load a csv file if you need to out_string = "_".join( [ "{}_{:.4f}".format(key, np.mean(value)) for key, value in current_epoch_losses.items() ] ) # create a string to use to report our epoch metrics epoch_elapsed_time = ( time.time() - epoch_start_time ) # calculate time taken for epoch epoch_elapsed_time = "{:.4f}".format(epoch_elapsed_time) print( "Epoch {}:".format(epoch_idx), out_string, "epoch time", epoch_elapsed_time, "seconds", ) self.state["model_epoch"] = epoch_idx self.save_model( model_save_dir=self.experiment_saved_models, # save model and best val idx and best val acc, using the model dir, model name and model idx model_save_name="train_model", model_idx=epoch_idx, best_validation_model_idx=self.best_val_model_idx, best_validation_model_acc=self.best_val_model_acc, ) self.save_model( model_save_dir=self.experiment_saved_models, # save model and best val idx and best val acc, using the model dir, model name and model idx model_save_name="train_model", model_idx="latest", best_validation_model_idx=self.best_val_model_idx, best_validation_model_acc=self.best_val_model_acc, ) ################################################################ ##### Plot Gradient Flow at each Epoch during Training ###### print("Generating Gradient Flow Plot at epoch {}".format(epoch_idx)) plt = self.plot_grad_flow(self.model.named_parameters()) if not os.path.exists( os.path.join(self.experiment_saved_models, "gradient_flow_plots") ): os.mkdir( os.path.join(self.experiment_saved_models, "gradient_flow_plots") ) # plt.legend(loc="best") plt.savefig( os.path.join( self.experiment_saved_models, "gradient_flow_plots", "epoch{}.pdf".format(str(epoch_idx)), ) ) ################################################################ print("Generating test set evaluation metrics") self.load_model( model_save_dir=self.experiment_saved_models, model_idx=self.best_val_model_idx, # load best validation model model_save_name="train_model", ) current_epoch_losses = { "test_acc": [], "test_loss": [], } # initialize a statistics dict with tqdm.tqdm(total=len(self.test_data)) as pbar_test: # ini a progress bar for x, y in self.test_data: # sample batch loss, accuracy = self.run_evaluation_iter( x=x, y=y ) # compute loss and accuracy by running an evaluation step current_epoch_losses["test_loss"].append(loss) # save test loss current_epoch_losses["test_acc"].append(accuracy) # save test accuracy pbar_test.update(1) # update progress bar status pbar_test.set_description( "loss: {:.4f}, accuracy: {:.4f}".format(loss, accuracy) ) # update progress bar string output test_losses = { key: [np.mean(value)] for key, value in current_epoch_losses.items() } # save test set metrics in dict format save_statistics( experiment_log_dir=self.experiment_logs, filename="test_summary.csv", # save test set metrics on disk in .csv format stats_dict=test_losses, current_epoch=0, continue_from_mode=False, ) return total_losses, test_losses