# -*- coding: utf-8 -*- """Data providers. This module provides classes for loading datasets and iterating over batches of data points. """ import pickle import gzip import sys import numpy as np import os from PIL import Image from torch.utils import data from torch.utils.data import Dataset from torchvision import transforms from torchvision.datasets.utils import download_url, check_integrity from mlp import DEFAULT_SEED class DataProvider(object): """Generic data provider.""" def __init__(self, inputs, targets, batch_size, max_num_batches=-1, shuffle_order=True, rng=None): """Create a new data provider object. Args: inputs (ndarray): Array of data input features of shape (num_data, input_dim). targets (ndarray): Array of data output targets of shape (num_data, output_dim) or (num_data,) if output_dim == 1. batch_size (int): Number of data points to include in each batch. max_num_batches (int): Maximum number of batches to iterate over in an epoch. If `max_num_batches * batch_size > num_data` then only as many batches as the data can be split into will be used. If set to -1 all of the data will be used. shuffle_order (bool): Whether to randomly permute the order of the data before each epoch. rng (RandomState): A seeded random number generator. """ self.inputs = inputs self.targets = targets if batch_size < 1: raise ValueError('batch_size must be >= 1') self._batch_size = batch_size if max_num_batches == 0 or max_num_batches < -1: raise ValueError('max_num_batches must be -1 or > 0') self._max_num_batches = max_num_batches self._update_num_batches() self.shuffle_order = shuffle_order self._current_order = np.arange(inputs.shape[0]) if rng is None: rng = np.random.RandomState(DEFAULT_SEED) self.rng = rng self.new_epoch() @property def batch_size(self): """Number of data points to include in each batch.""" return self._batch_size @batch_size.setter def batch_size(self, value): if value < 1: raise ValueError('batch_size must be >= 1') self._batch_size = value self._update_num_batches() @property def max_num_batches(self): """Maximum number of batches to iterate over in an epoch.""" return self._max_num_batches @max_num_batches.setter def max_num_batches(self, value): if value == 0 or value < -1: raise ValueError('max_num_batches must be -1 or > 0') self._max_num_batches = value self._update_num_batches() def _update_num_batches(self): """Updates number of batches to iterate over.""" # maximum possible number of batches is equal to number of whole times # batch_size divides in to the number of data points which can be # found using integer division possible_num_batches = self.inputs.shape[0] // self.batch_size if self.max_num_batches == -1: self.num_batches = possible_num_batches else: self.num_batches = min(self.max_num_batches, possible_num_batches) def __iter__(self): """Implements Python iterator interface. This should return an object implementing a `next` method which steps through a sequence returning one element at a time and raising `StopIteration` when at the end of the sequence. Here the object returned is the DataProvider itself. """ return self def new_epoch(self): """Starts a new epoch (pass through data), possibly shuffling first.""" self._curr_batch = 0 if self.shuffle_order: self.shuffle() def __next__(self): return self.next() def reset(self): """Resets the provider to the initial state.""" inv_perm = np.argsort(self._current_order) self._current_order = self._current_order[inv_perm] self.inputs = self.inputs[inv_perm] self.targets = self.targets[inv_perm] self.new_epoch() def shuffle(self): """Randomly shuffles order of data.""" perm = self.rng.permutation(self.inputs.shape[0]) self._current_order = self._current_order[perm] self.inputs = self.inputs[perm] self.targets = self.targets[perm] def next(self): """Returns next data batch or raises `StopIteration` if at end.""" if self._curr_batch + 1 > self.num_batches: # no more batches in current iteration through data set so start # new epoch ready for another pass and indicate iteration is at end self.new_epoch() raise StopIteration() # create an index slice corresponding to current batch number batch_slice = slice(self._curr_batch * self.batch_size, (self._curr_batch + 1) * self.batch_size) inputs_batch = self.inputs[batch_slice] targets_batch = self.targets[batch_slice] self._curr_batch += 1 return inputs_batch, targets_batch class MNISTDataProvider(DataProvider): """Data provider for MNIST handwritten digit images.""" def __init__(self, which_set='train', batch_size=100, max_num_batches=-1, shuffle_order=True, rng=None): """Create a new MNIST data provider object. Args: which_set: One of 'train', 'valid' or 'eval'. Determines which portion of the MNIST data this object should provide. batch_size (int): Number of data points to include in each batch. max_num_batches (int): Maximum number of batches to iterate over in an epoch. If `max_num_batches * batch_size > num_data` then only as many batches as the data can be split into will be used. If set to -1 all of the data will be used. shuffle_order (bool): Whether to randomly permute the order of the data before each epoch. rng (RandomState): A seeded random number generator. """ # check a valid which_set was provided assert which_set in ['train', 'valid', 'test'], ( 'Expected which_set to be either train, valid or eval. ' 'Got {0}'.format(which_set) ) self.which_set = which_set self.num_classes = 10 # construct path to data using os.path.join to ensure the correct path # separator for the current platform / OS is used # MLP_DATA_DIR environment variable should point to the data directory data_path = os.path.join( os.environ['MLP_DATA_DIR'], 'mnist-{0}.npz'.format(which_set)) assert os.path.isfile(data_path), ( 'Data file does not exist at expected path: ' + data_path ) # load data from compressed numpy file loaded = np.load(data_path) inputs, targets = loaded['inputs'], loaded['targets'] inputs = inputs.astype(np.float32) # pass the loaded data to the parent class __init__ super(MNISTDataProvider, self).__init__( inputs, targets, batch_size, max_num_batches, shuffle_order, rng) def next(self): """Returns next data batch or raises `StopIteration` if at end.""" inputs_batch, targets_batch = super(MNISTDataProvider, self).next() return inputs_batch, self.to_one_of_k(targets_batch) def to_one_of_k(self, int_targets): """Converts integer coded class target to 1 of K coded targets. Args: int_targets (ndarray): Array of integer coded class targets (i.e. where an integer from 0 to `num_classes` - 1 is used to indicate which is the correct class). This should be of shape (num_data,). Returns: Array of 1 of K coded targets i.e. an array of shape (num_data, num_classes) where for each row all elements are equal to zero except for the column corresponding to the correct class which is equal to one. """ one_of_k_targets = np.zeros((int_targets.shape[0], self.num_classes)) one_of_k_targets[range(int_targets.shape[0]), int_targets] = 1 return one_of_k_targets class EMNISTDataProvider(DataProvider): """Data provider for EMNIST handwritten digit images.""" def __init__(self, which_set='train', batch_size=100, max_num_batches=-1, shuffle_order=True, rng=None, flatten=False): """Create a new EMNIST data provider object. Args: which_set: One of 'train', 'valid' or 'eval'. Determines which portion of the EMNIST data this object should provide. batch_size (int): Number of data points to include in each batch. max_num_batches (int): Maximum number of batches to iterate over in an epoch. If `max_num_batches * batch_size > num_data` then only as many batches as the data can be split into will be used. If set to -1 all of the data will be used. shuffle_order (bool): Whether to randomly permute the order of the data before each epoch. rng (RandomState): A seeded random number generator. """ # check a valid which_set was provided assert which_set in ['train', 'valid', 'test'], ( 'Expected which_set to be either train, valid or eval. ' 'Got {0}'.format(which_set) ) self.which_set = which_set self.num_classes = 47 # construct path to data using os.path.join to ensure the correct path # separator for the current platform / OS is used # MLP_DATA_DIR environment variable should point to the data directory data_path = os.path.join( os.environ['MLP_DATA_DIR'], 'emnist-{0}.npz'.format(which_set)) assert os.path.isfile(data_path), ( 'Data file does not exist at expected path: ' + data_path ) # load data from compressed numpy file loaded = np.load(data_path) print(loaded.keys()) inputs, targets = loaded['inputs'], loaded['targets'] inputs = inputs.astype(np.float32) targets = targets.astype(np.int) if flatten: inputs = np.reshape(inputs, newshape=(-1, 28*28)) else: inputs = np.reshape(inputs, newshape=(-1, 28, 28, 1)) inputs = inputs / 255.0 # pass the loaded data to the parent class __init__ super(EMNISTDataProvider, self).__init__( inputs, targets, batch_size, max_num_batches, shuffle_order, rng) def next(self): """Returns next data batch or raises `StopIteration` if at end.""" inputs_batch, targets_batch = super(EMNISTDataProvider, self).next() return inputs_batch, self.to_one_of_k(targets_batch) def to_one_of_k(self, int_targets): """Converts integer coded class target to 1 of K coded targets. Args: int_targets (ndarray): Array of integer coded class targets (i.e. where an integer from 0 to `num_classes` - 1 is used to indicate which is the correct class). This should be of shape (num_data,). Returns: Array of 1 of K coded targets i.e. an array of shape (num_data, num_classes) where for each row all elements are equal to zero except for the column corresponding to the correct class which is equal to one. """ one_of_k_targets = np.zeros((int_targets.shape[0], self.num_classes)) one_of_k_targets[range(int_targets.shape[0]), int_targets] = 1 return one_of_k_targets class MetOfficeDataProvider(DataProvider): """South Scotland Met Office weather data provider.""" def __init__(self, window_size, batch_size=10, max_num_batches=-1, shuffle_order=True, rng=None): """Create a new Met Office data provider object. Args: window_size (int): Size of windows to split weather time series data into. The constructed input features will be the first `window_size - 1` entries in each window and the target outputs the last entry in each window. batch_size (int): Number of data points to include in each batch. max_num_batches (int): Maximum number of batches to iterate over in an epoch. If `max_num_batches * batch_size > num_data` then only as many batches as the data can be split into will be used. If set to -1 all of the data will be used. shuffle_order (bool): Whether to randomly permute the order of the data before each epoch. rng (RandomState): A seeded random number generator. """ data_path = os.path.join( os.environ['MLP_DATA_DIR'], 'HadSSP_daily_qc.txt') assert os.path.isfile(data_path), ( 'Data file does not exist at expected path: ' + data_path ) raw = np.loadtxt(data_path, skiprows=3, usecols=range(2, 32)) assert window_size > 1, 'window_size must be at least 2.' self.window_size = window_size # filter out all missing datapoints and flatten to a vector filtered = raw[raw >= 0].flatten() # normalise data to zero mean, unit standard deviation mean = np.mean(filtered) std = np.std(filtered) normalised = (filtered - mean) / std # create a view on to array corresponding to a rolling window shape = (normalised.shape[-1] - self.window_size + 1, self.window_size) strides = normalised.strides + (normalised.strides[-1],) windowed = np.lib.stride_tricks.as_strided( normalised, shape=shape, strides=strides) # inputs are first (window_size - 1) entries in windows inputs = windowed[:, :-1] # targets are last entry in windows targets = windowed[:, -1] super(MetOfficeDataProvider, self).__init__( inputs, targets, batch_size, max_num_batches, shuffle_order, rng) class CCPPDataProvider(DataProvider): def __init__(self, which_set='train', input_dims=None, batch_size=10, max_num_batches=-1, shuffle_order=True, rng=None): """Create a new Combined Cycle Power Plant data provider object. Args: which_set: One of 'train' or 'valid'. Determines which portion of data this object should provide. input_dims: Which of the four input dimension to use. If `None` all are used. If an iterable of integers are provided (consisting of a subset of {0, 1, 2, 3}) then only the corresponding input dimensions are included. batch_size (int): Number of data points to include in each batch. max_num_batches (int): Maximum number of batches to iterate over in an epoch. If `max_num_batches * batch_size > num_data` then only as many batches as the data can be split into will be used. If set to -1 all of the data will be used. shuffle_order (bool): Whether to randomly permute the order of the data before each epoch. rng (RandomState): A seeded random number generator. """ data_path = os.path.join( os.environ['MLP_DATA_DIR'], 'ccpp_data.npz') assert os.path.isfile(data_path), ( 'Data file does not exist at expected path: ' + data_path ) # check a valid which_set was provided assert which_set in ['train', 'valid'], ( 'Expected which_set to be either train or valid ' 'Got {0}'.format(which_set) ) # check input_dims are valid if not input_dims is not None: input_dims = set(input_dims) assert input_dims.issubset({0, 1, 2, 3}), ( 'input_dims should be a subset of {0, 1, 2, 3}' ) loaded = np.load(data_path) inputs = loaded[which_set + '_inputs'] if input_dims is not None: inputs = inputs[:, input_dims] targets = loaded[which_set + '_targets'] super(CCPPDataProvider, self).__init__( inputs, targets, batch_size, max_num_batches, shuffle_order, rng) class EMNISTPytorchDataProvider(Dataset): def __init__(self, which_set='train', batch_size=100, max_num_batches=-1, shuffle_order=True, rng=None, flatten=False, transforms=None): self.numpy_data_provider = EMNISTDataProvider(which_set=which_set, batch_size=batch_size, max_num_batches=max_num_batches, shuffle_order=shuffle_order, rng=rng, flatten=flatten) self.transforms = transforms def __getitem__(self, item): x = self.numpy_data_provider.inputs[item] for augmentation in self.transforms: x = augmentation(x) return x, int(self.numpy_data_provider.targets[item]) def __len__(self): return len(self.numpy_data_provider.targets) class AugmentedMNISTDataProvider(MNISTDataProvider): """Data provider for MNIST dataset which randomly transforms images.""" def __init__(self, which_set='train', batch_size=100, max_num_batches=-1, shuffle_order=True, rng=None, transformer=None): """Create a new augmented MNIST data provider object. Args: which_set: One of 'train', 'valid' or 'test'. Determines which portion of the MNIST data this object should provide. batch_size (int): Number of data points to include in each batch. max_num_batches (int): Maximum number of batches to iterate over in an epoch. If `max_num_batches * batch_size > num_data` then only as many batches as the data can be split into will be used. If set to -1 all of the data will be used. shuffle_order (bool): Whether to randomly permute the order of the data before each epoch. rng (RandomState): A seeded random number generator. transformer: Function which takes an `inputs` array of shape (batch_size, input_dim) corresponding to a batch of input images and a `rng` random number generator object (i.e. a call signature `transformer(inputs, rng)`) and applies a potentiall random set of transformations to some / all of the input images as each new batch is returned when iterating over the data provider. """ super(AugmentedMNISTDataProvider, self).__init__( which_set, batch_size, max_num_batches, shuffle_order, rng) self.transformer = transformer def next(self): """Returns next data batch or raises `StopIteration` if at end.""" inputs_batch, targets_batch = super( AugmentedMNISTDataProvider, self).next() transformed_inputs_batch = self.transformer(inputs_batch, self.rng) return transformed_inputs_batch, targets_batch class Omniglot(data.Dataset): """`CIFAR10 `_ Dataset. Args: root (string): Root directory of dataset where directory ``cifar-10-batches-py`` exists or will be saved to if download is set to True. train (bool, optional): If True, creates dataset from training set, otherwise creates from test set. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ def collect_data_paths(self, root): data_dict = dict() print(root) for subdir, dir, files in os.walk(root): for file in files: if file.endswith('.png'): filepath = os.path.join(subdir, file) class_label = '_'.join(subdir.split("/")[-2:]) if class_label in data_dict: data_dict[class_label].append(filepath) else: data_dict[class_label] = [filepath] return data_dict def __init__(self, root, set_name, transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.root = os.path.abspath(os.path.join(self.root, 'omniglot_dataset')) self.transform = transform self.target_transform = target_transform self.set_name = set_name # training set or test set self.data_dict = self.collect_data_paths(root=self.root) x = [] label_to_idx = {label: idx for idx, label in enumerate(self.data_dict.keys())} y = [] for key, value in self.data_dict.items(): x.extend(value) y.extend(len(value) * [label_to_idx[key]]) y = np.array(y) rng = np.random.RandomState(seed=0) idx = np.arange(len(x)) rng.shuffle(idx) x = [x[current_idx] for current_idx in idx] y = y[idx] train_sample_idx = rng.choice(a=[i for i in range(len(x))], size=int(len(x) * 0.80), replace=False) evaluation_sample_idx = [i for i in range(len(x)) if i not in train_sample_idx] validation_sample_idx = rng.choice(a=[i for i in range(len(evaluation_sample_idx))], size=int(len(evaluation_sample_idx) * 0.40), replace=False) test_sample_idx = [i for i in range(len(evaluation_sample_idx)) if i not in evaluation_sample_idx] if self.set_name=='train': self.data = [item for idx, item in enumerate(x) if idx in train_sample_idx] self.labels = y[train_sample_idx] elif self.set_name=='val': self.data = [item for idx, item in enumerate(x) if idx in validation_sample_idx] self.labels = y[validation_sample_idx] else: self.data = [item for idx, item in enumerate(x) if idx in test_sample_idx] self.labels = y[test_sample_idx] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.labels[index] img = Image.open(img) img.show() if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.data) def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) tmp = self.set_name fmt_str += ' Split: {}\n'.format(tmp) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class CIFAR10(data.Dataset): """`CIFAR10 `_ Dataset. Args: root (string): Root directory of dataset where directory ``cifar-10-batches-py`` exists or will be saved to if download is set to True. train (bool, optional): If True, creates dataset from training set, otherwise creates from test set. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ base_folder = 'cifar-10-batches-py' url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" filename = "cifar-10-python.tar.gz" tgz_md5 = 'c58f30108f718f92721af3b95e74349a' train_list = [ ['data_batch_1', 'c99cafc152244af753f735de768cd75f'], ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'], ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'], ['data_batch_4', '634d18415352ddfa80567beed471001a'], ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'], ] test_list = [ ['test_batch', '40351d587109b95175f43aff81a1287e'], ] def __init__(self, root, set_name, transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.set_name = set_name # training set or test set if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') # now load the picked numpy arrays rng = np.random.RandomState(seed=0) train_sample_idx = rng.choice(a=[i for i in range(50000)], size=47500, replace=False) val_sample_idx = [i for i in range(50000) if i not in train_sample_idx] if self.set_name=='train': self.data = [] self.labels = [] for fentry in self.train_list: f = fentry[0] file = os.path.join(self.root, self.base_folder, f) fo = open(file, 'rb') if sys.version_info[0] == 2: entry = pickle.load(fo) else: entry = pickle.load(fo, encoding='latin1') self.data.append(entry['data']) if 'labels' in entry: self.labels += entry['labels'] else: self.labels += entry['fine_labels'] fo.close() self.data = np.concatenate(self.data) self.data = self.data.reshape((50000, 3, 32, 32)) self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC self.data = self.data[train_sample_idx] self.labels = np.array(self.labels)[train_sample_idx] print(set_name, self.data.shape) print(set_name, self.labels.shape) elif self.set_name=='val': self.data = [] self.labels = [] for fentry in self.train_list: f = fentry[0] file = os.path.join(self.root, self.base_folder, f) fo = open(file, 'rb') if sys.version_info[0] == 2: entry = pickle.load(fo) else: entry = pickle.load(fo, encoding='latin1') self.data.append(entry['data']) if 'labels' in entry: self.labels += entry['labels'] else: self.labels += entry['fine_labels'] fo.close() self.data = np.concatenate(self.data) self.data = self.data.reshape((50000, 3, 32, 32)) self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC self.data = self.data[val_sample_idx] self.labels = np.array(self.labels)[val_sample_idx] print(set_name, self.data.shape) print(set_name, self.labels.shape) else: f = self.test_list[0][0] file = os.path.join(self.root, self.base_folder, f) fo = open(file, 'rb') if sys.version_info[0] == 2: entry = pickle.load(fo) else: entry = pickle.load(fo, encoding='latin1') self.data = entry['data'] if 'labels' in entry: self.labels = entry['labels'] else: self.labels = entry['fine_labels'] fo.close() self.data = self.data.reshape((10000, 3, 32, 32)) self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC self.labels = np.array(self.labels) print(set_name, self.data.shape) print(set_name, self.labels.shape) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.labels[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.data) def _check_integrity(self): root = self.root for fentry in (self.train_list + self.test_list): filename, md5 = fentry[0], fentry[1] fpath = os.path.join(root, self.base_folder, filename) if not check_integrity(fpath, md5): return False return True def download(self): import tarfile if self._check_integrity(): print('Files already downloaded and verified') return root = self.root download_url(self.url, root, self.filename, self.tgz_md5) # extract file cwd = os.getcwd() tar = tarfile.open(os.path.join(root, self.filename), "r:gz") os.chdir(root) tar.extractall() tar.close() os.chdir(cwd) def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) tmp = self.set_name fmt_str += ' Split: {}\n'.format(tmp) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class CIFAR100(CIFAR10): """`CIFAR100 `_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ]