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1 Introduction

The aim of this coursework is to further explore the classification of images of handwritten digits using
neural networks. We’ll be using an extended version of the MNIST database, the EMNIST Balanced dataset,
described in Section 2. Part A of the coursework will consist of building baseline deep neural networks for the
EMNIST classification task, implementation and experimentation of the Adam and RMSProp learning rules,
and implementation and experimentation of Batch Normalisation. Part B will concern implementation and
experimentation of convolutional networks. As with the previous coursework, you will need to hand in test files
generated from your code, and a report.

2 Dataset

In this coursework we shall use the EMNIST (Extended MNIST) Balanced dataset, https://www.nist.gov/itl/iad/

image-group/emnist-dataset [Cohen et al., 2017]. EMNIST extends MNIST by including images of handwritten
letters (upper and lower case) as well as handwritten digits. Both EMNIST and MNIST are extracted from
the same underlying dataset, referred to as NIST Special Database 19. Both use the same conversion process
resulting in centred images of dimension 28×28.

Although there are 62 potential classes for EMNIST (10 digits, 26 lower case letters, and 26 upper case letters)
we shall use a reduced label set of 47 different labels. This is because of confusions which arise when trying to
discriminate upper-case and lower-case versions of the same letter, following the data conversion process. In the
47 label set, upper- and lower-case labels are merged for the following letters: C, I, J, K, L, M, O, P, S, U, V, W,
X, Y and Z.

The training set for Balanced EMNIST has about twice the number of examples as MNIST, thus you should
expect the run-time of your experiments to be about twice as long. The expected accuracy rates are lower for
EMNIST than for MNIST (as EMNIST has more classes, and more confusable examples), and differences
in accuracy between different systems should be larger. See Cohen et al. [2017] for some baseline results on
EMNIST, as well as a description of the dataset.

You don’t need to download the EMNIST database from the NIST website, it will be part of the coursework_2
branch from the mlpractical Github repository, discussed in Section 3 below.

3 Code

You should run all of the experiments for the coursework inside the Conda environment you set up in
the first labs. The code for the coursework is available on the course Github repository on a branch
mlp2017-8/coursework_2. To create a local working copy of this branch in your local repository you need to
do the following.

1. Make sure all modified files on the branch you are currently have been committed (see details here if you
are unsure how to do this).

2. Fetch changes to the upstream origin repository by running
git fetch origin
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3. Checkout a new local branch from the fetched branch using
git checkout -b coursework_2 origin/mlp2017-8/coursework_2

You will now have a new branch in your local repository with all the code necessary for the coursework in it.

This branch includes the following additions to your setup:

• A notebook BatchNormalizationLayer_tests.ipynb which includes test functions to check the
implementations of the BatchNorm layer fprop, bprop and grads_wrt_params methods. The Batch-
NormalizationLayer skeleton code can be found in mlp.layers. The tests use the mlp.layers implementation
so be sure to reload your notebook when you update your mlp.layers code.
• A notebook ConvolutionalLayer_tests.ipynb which includes test functions to check the implemen-

tations of the Convolutional layer fprop, bprop and grads_wrt_params methods. The Convolutional-
Layer skeleton code can be found in mlp.layers. The tests use the mlp.layers implementation so be sure to
reload your notebook when you update your mlp.layers code.
• A new ReshapeLayer class in the mlp.layers module. When included in a a multiple layer model, this

allows the output of the previous layer to be reshaped before being forward propagated to the next layer.
• A new EMNISTDataProvider class in the mlp.data_providers module. This class is a small change

to the MNISTDataProvider class, linking to the Balanced EMNIST data, and setting the number of
classes to 47.
• Training, validation, and test sets for the EMNIST Balanced dataset that you will use in this coursework

There will also be a coursework_2/report directory which contains the LaTeX template and style files for
the report. You should copy all these files into the directory which will contain your report.

4 Tasks

Part A: Deep Neural Networks

In part A of the coursework you will focus on using deep neural networks on EMNIST, and you should implement
the Adam and RMSProp learning rules, and Batch Normalisation.

1. Perform baseline experiments using DNNs trained on EMNIST. Obviously there are a lot things that could
be explored including hidden unit activation functions, network architectures, training hyperparameters,
and the use of regularisation and dropout. You cannot explore everything and is best to carefully investigate
a few things in depth.

2. Implement the RMSProp [Tieleman and Hinton, 2012] and Adam [Kingma and Ba, 2015] learn-
ing rules, by defining new classes inheriting from GradientDescendLearningRule in the
mlp/learning_rules.py module. The MomentumLearningRule class is an example of how
to define a learning rules which uses an additional state variable to calculate the updates to the parameters.

3. Perform experiments to compare stochastic gradient descent, RMSProp, and Adam for deep neural network
training on EMNIST, building on your earlier baseline experiments.

4. Implement batch normalisation [Ioffe and Szegedy, 2015] as a class BatchNormalizationLayer. You
need to implement fprop, bprop and grads_wrt_params methods for this class.

5. Verify the correctness of your implementation using the supplied unit tests in
BatchNormalizationLayer_tests.ipynb.

6. Automatically create a test file sXXXXXXX_batchnorm_test.txt, by running the provided program
generate_batchnorm_test.py which uses your BatchNormalizationLayer class methods on a
unique test vector generated using your student ID number.
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7. Perform experiments on EMNIST to investigate the impact of using batch normalisation in deep neural
networks, building on your earlier experiments.

In the above experiments you should use the validation set to assess accuracy. Use the test set at the end to assess
the accuracy of the deep neural network architecture and training setup that you judge to be the best.

Part B: Convolutional Networks

In part B of the coursework you should implement convolutional and max-pooling layers, and carry out
experiments using a convolutional networks with one and two convolutional layers.

1. Implement a convolutional layer as a class ConvolutionalLayer. You need to implement fprop, bprop
and grads_wrt_params methods for this class.

2. Verify the correctness of your implementation using the supplied unit tests in
ConvolutionalLayer_tests.ipynb.

3. Automatically create a test file sXXXXXXX_conv_test.txt, by running the provided program
generate_conv_test.py which uses your ConvolutionalLayer class methods on a unique test
vector generated using your student ID number.

4. Implement a max-pooling layer. Non-overlapping pooling (which was assumed in the lecture presentation)
is required. You may also implement a more generic solution with striding as well.

5. Construct and train networks containing one and two convolutional layers, and max-pooling layers, using
the Balanced EMNIST data, reporting your experimental results. As a default use convolutional kernels of
dimension 5x5 (stride 1) and pooling regions of 2x2 (stride 2, hence non-overlapping). As a default convo-
lutional networks with two convolutional layers, investigate a network with two convolutional+maxpooling
layers with 5 feature maps in the first convolutional layer, and 10 feature maps in the second convolutional
layer.

As before you should mainly use the validation set to assess accuracy, using the test set to assess the accuracy of
the convolutional network you judge to be the best.

5 Unit Tests

Part one of your coursework submission will be the test files generated for batch normalisation
(sXXXXXXX_batchnorm_test.txt) and for the convolutional layer (sXXXXXXX_conv_test.txt), as
described above. Please do not change the names of these files as they will be automatically verified.

6 Report

Part two of your coursework submission, worth 70 marks will be a report. The directory coursework_2/report
contains a template for your report (mlp-cw2-template.txt); the generated pdf file (mlp-cw2-template.pdf)
is also provided, and you should read this file carefully as it contains information about the required structure
and experimentation. The template is written in LaTeX, and we strongly recommend that you write your own
report using LaTeX, using the supplied document style mlp2017 (as in the template).

You should copy the files in the report directory to the directory containing the LaTeX file of your report, as
pdflatex will need to access these files when building the pdf document from the LaTeX source file.
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Your report should be in a 2-column format, based on the document format used for the ICML conference. The
report should be a maximum of 7 pages long, with a further page for references. We will not read or assess any
parts of the report beyond the allowed 7+1 pages.

As before, all figures should be included in your report file as vector graphics; please see the section in
coursework1.pdf about how to do this.

If you make use of any any books, articles, web pages or other resources you should appropriately cite these in
your report. You do not need to cite material from the course lecture slides or lab notebooks.

To create a pdf file mlp-cw2-template.pdf from a LaTeX source file (mlp-cw2-template.tex), you can
run the following in a terminal:

pdflatex mlp-cw2-template
bibtex mlp-cw2-template
pdflatex mlp-cw2-template
pdflatex mlp-cw2-template

(Yes, you have to run pdflatex multiple times, in order for latex to construct the internal document references.)

An alternative, simpler approach uses the latexmk program:

latexmk -pdf mlp-cw2-template

It is worth learning how to use LaTeX effectively, as it is particularly powerful for mathematical and academic
writing. There are many tutorials on the web.

7 Mechanics

Marks: This assignment will be assessed out of 100 marks and forms 25% of your final grade for the course.

Academic conduct: Assessed work is subject to University regulations on academic conduct:
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

Submission: You can submit more than once up until the submission deadline. All submissions are timestamped
automatically. Identically named files will overwrite earlier submitted versions, so we will mark the latest
submission that comes in before the deadline.

If you submit anything before the deadline, you may not resubmit afterward. (This policy allows us to begin
marking submissions immediately after the deadline, without having to worry that some may need to be
re-marked).

If you do not submit anything before the deadline, you may submit exactly once after the deadline, and a late
penalty will be applied to this submission unless you have received an approved extension. Please be aware
that late submissions may receive lower priority for marking, and marks may not be returned within the same
timeframe as for on-time submissions.

Warning: Unfortunately the submit command will technically allow you to submit late even if you submitted
before the deadline (i.e. it does not enforce the above policy). Don’t do this! We will mark the version that
we retrieve just after the deadline, and (even worse) you may still be penalized for submitting late because the
timestamp will update.

For additional information about late penalties and extension requests, see the School web page below. Do not
email any course staff directly about extension requests; you must follow the instructions on the web page.

http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
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Late submission penalty: Following the University guidelines, late coursework submitted without an authorised
extension will be recorded as late and the following penalties will apply: 5 percentage points will be deducted
for every calendar day or part thereof it is late, up to a maximum of 7 calendar days. After this time a mark of
zero will be recorded.

8 Backing up your work

It is strongly recommended you use some method for backing up your work. Those working in their AFS
homespace on DICE will have their work automatically backed up as part of the routine backup of all user
homespaces. If you are working on a personal computer you should have your own backup method in place
(e.g. saving additional copies to an external drive, syncing to a cloud service or pushing commits to your local
Git repository to a private repository on Github). Loss of work through failure to back up does not consitute
a good reason for late submission.

You may additionally wish to keep your coursework under version control in your local Git repository on the
coursework_2 branch.

If you make regular commits of your work on the coursework this will allow you to better keep track of the
changes you have made and if necessary revert to previous versions of files and/or restore accidentally deleted
work. This is not however required and you should note that keeping your work under version control is a
distinct issue from backing up to guard against hard drive failure. If you are working on a personal computer
you should still keep an additional back up of your work as described above.

9 Submission

Your coursework submission should be done electronically using the submit command available on DICE
machines.

Your submission should include

• the unit test files generated for part 1, sXXXXXXX_batchnorm_test.txt and sXXXXXXX_conv_test.txt,
where your student number replaces sXXXXXXX. Please do not change the names of these files.
• your completed report as a PDF file, using the provided template
• any notebook (.ipynb) files you used to run the experiments in
• and your local version of the mlp code including any changes you made to the modules (.py files).

Please do not submit anything else (e.g. log files).

You should copy all of the files to a single directory, coursework2, e.g.

mkdir coursework2
cp reports/coursework2.pdf sXXXXXXX_batchnorm_test.txt sXXXXXXX_conv_test.txt coursework2

and then submit this directory using

submit mlp cw2 coursework2

Please submit the directory, not a zip file, not a tar file.

The submit command will prompt you with the details of the submission including the name of the files /

directories you are submitting and the name of the course and exercise you are submitting for and ask you to
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check if these details are correct. You should check these carefully and reply y to submit if you are sure the files
are correct and n otherwise.

You can amend an existing submission by rerunning the submit command any time up to the deadline. It is
therefore a good idea (particularly if this is your first time using the DICE submit mechanism) to do an initial
run of the submit command early on and then rerun the command if you make any further updates to your
submisison rather than leaving submission to the last minute.

10 Marking Scheme

• Part 1, Unit tests (30 marks).

• Part 2, Report (70 marks). The following aspects will contribute to the mark for your report:

– Abstract - how clear is it? does it cover what is reported in the document

– Introduction - do you clearly outline and motivate the paper, and describe the research questions
investigated?

– Methods – have you carefully described the approaches you have used?

– Experiments – did you carry out the experiments correctly? are the results clearly presented and
described?

– Interpretation and discussion of results

– Conclusions

– Presentation and clarity of report
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