#!/bin/sh #SBATCH -N 1 # nodes requested #SBATCH -n 1 # tasks requested #SBATCH --partition=Teach-Standard #SBATCH --gres=gpu:1 #SBATCH --mem=12000 # memory in Mb #SBATCH --time=0-08:00:00 export CUDA_HOME=/opt/cuda-9.0.176.1/ export CUDNN_HOME=/opt/cuDNN-7.0/ export STUDENT_ID=$(whoami) export LD_LIBRARY_PATH=${CUDNN_HOME}/lib64:${CUDA_HOME}/lib64:$LD_LIBRARY_PATH export LIBRARY_PATH=${CUDNN_HOME}/lib64:$LIBRARY_PATH export CPATH=${CUDNN_HOME}/include:$CPATH export PATH=${CUDA_HOME}/bin:${PATH} export PYTHON_PATH=$PATH mkdir -p /disk/scratch/${STUDENT_ID} export TMPDIR=/disk/scratch/${STUDENT_ID}/ export TMP=/disk/scratch/${STUDENT_ID}/ mkdir -p ${TMP}/datasets/ export DATASET_DIR=${TMP}/datasets/ # Activate the relevant virtual environment: source /home/${STUDENT_ID}/miniconda3/bin/activate mlp cd .. python train_evaluate_emnist_classification_system.py --filepath_to_arguments_json_file experiment_configs/cifar10_tutorial_config.json