import argparse def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def get_args(): """ Returns a namedtuple with arguments extracted from the command line. :return: A namedtuple with arguments """ parser = argparse.ArgumentParser( description='Welcome to the MLP course\'s Pytorch training and inference helper script') parser.add_argument('--batch_size', nargs="?", type=int, default=100, help='Batch_size for experiment') parser.add_argument('--continue_from_epoch', nargs="?", type=int, default=-1, help='Epoch you want to continue training from while restarting an experiment') parser.add_argument('--seed', nargs="?", type=int, default=7112018, help='Seed to use for random number generator for experiment') parser.add_argument('--image_num_channels', nargs="?", type=int, default=3, help='The channel dimensionality of our image-data') parser.add_argument('--image_height', nargs="?", type=int, default=32, help='Height of image data') parser.add_argument('--image_width', nargs="?", type=int, default=32, help='Width of image data') parser.add_argument('--num_stages', nargs="?", type=int, default=3, help='Number of convolutional stages in the network. A stage is considered a sequence of ' 'convolutional layers where the input volume remains the same in the spacial dimension and' ' is always terminated by a dimensionality reduction stage') parser.add_argument('--num_blocks_per_stage', nargs="?", type=int, default=5, help='Number of convolutional blocks in each stage, not including the reduction stage.' ' A convolutional block is made up of two convolutional layers activated using the ' ' leaky-relu non-linearity') parser.add_argument('--num_filters', nargs="?", type=int, default=16, help='Number of convolutional filters per convolutional layer in the network (excluding ' 'dimensionality reduction layers)') parser.add_argument('--num_epochs', nargs="?", type=int, default=100, help='Total number of epochs for model training') parser.add_argument('--num_classes', nargs="?", type=int, default=100, help='Number of classes in the dataset') parser.add_argument('--experiment_name', nargs="?", type=str, default="exp_1", help='Experiment name - to be used for building the experiment folder') parser.add_argument('--use_gpu', nargs="?", type=str2bool, default=True, help='A flag indicating whether we will use GPU acceleration or not') parser.add_argument('--weight_decay_coefficient', nargs="?", type=float, default=0, help='Weight decay to use for Adam') parser.add_argument('--block_type', type=str, default='conv_block', help='Type of convolutional blocks to use in our network ' '(This argument will be useful in running experiments to debug your network)') args = parser.parse_args() print(args) return args