diff --git a/mlp/data_providers.py b/mlp/data_providers.py index 3d26d5e..c20063b 100644 --- a/mlp/data_providers.py +++ b/mlp/data_providers.py @@ -101,7 +101,7 @@ class DataProvider(object): self.shuffle() def __next__(self): - self.next() + return self.next() def reset(self): """Resets the provider to the initial state.""" diff --git a/notebooks/03_Multiple_layer_models.ipynb b/notebooks/03_Multiple_layer_models.ipynb index aee4226..613e9ef 100644 --- a/notebooks/03_Multiple_layer_models.ipynb +++ b/notebooks/03_Multiple_layer_models.ipynb @@ -176,8 +176,10 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, + "execution_count": 1, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "import numpy as np\n", @@ -218,7 +220,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "def train_model_and_plot_stats(\n", @@ -234,7 +238,7 @@ "\n", " # Run the optimiser for 5 epochs (full passes through the training set)\n", " # printing statistics every epoch.\n", - " stats, keys = optimiser.train(num_epochs=num_epochs, stats_interval=stats_interval)\n", + " stats, keys, _ = optimiser.train(num_epochs=num_epochs, stats_interval=stats_interval)\n", "\n", " # Plot the change in the validation and training set error over training.\n", " fig_1 = plt.figure(figsize=(8, 4))\n", @@ -270,7 +274,22 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Epoch 5: 1.2s to complete\n", + " error(train)=3.11e-01, acc(train)=9.13e-01, error(valid)=2.92e-01, acc(valid)=9.18e-01\n", + "Epoch 10: 1.2s to complete\n", + " error(train)=2.89e-01, acc(train)=9.20e-01, error(valid)=2.77e-01, acc(valid)=9.23e-01\n", + "Epoch 15: 1.1s to complete\n", + " error(train)=2.79e-01, acc(train)=9.22e-01, error(valid)=2.70e-01, acc(valid)=9.24e-01\n", + "Epoch 20: 0.7s to complete\n", + " error(train)=2.72e-01, acc(train)=9.24e-01, error(valid)=2.66e-01, acc(valid)=9.26e-01\n" + ] + } + ], "source": [ "# Set training run hyperparameters\n", "batch_size = 100 # number of data points in a batch\n", @@ -356,7 +375,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "# Set training run hyperparameters\n", @@ -437,7 +458,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [] }, @@ -451,7 +474,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [] }, @@ -465,7 +490,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [] }, @@ -479,7 +506,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [] }, @@ -536,7 +565,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "import numpy as np\n", @@ -589,7 +620,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "test_inputs = np.array([[0.1, -0.2, 0.3], [-0.4, 0.5, -0.6]])\n", @@ -624,7 +657,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ "test_inputs = np.array([[0.1, -0.2, 0.3], [-0.4, 0.5, -0.6]])\n", @@ -659,18 +694,6 @@ "display_name": "Python 3", "language": "python", "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.2" } }, "nbformat": 4,