Adding docstrings to costs and removing accuracies.

This commit is contained in:
Matt Graham 2016-09-21 00:54:21 +01:00
parent 8563a47b65
commit dac0729324

View File

@ -1,17 +1,40 @@
# -*- coding: utf-8 -*-
"""Model costs."""
"""Model costs.
This module defines cost functions, with the aim of model training being to
minimise the cost function given a set of inputs and target outputs. The cost
functions typically measure some concept of distance between the model outputs
and target outputs.
"""
import numpy as np
class MeanSquaredErrorCost(object):
"""
"""
"""Mean squared error cost."""
def __call__(self, outputs, targets):
"""Calculates cost function given a batch of outputs and targets.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Scalar cost function value.
"""
return 0.5 * np.mean(np.sum((outputs - targets)**2, axis=1))
def grad(self, outputs, targets):
"""Calculates gradient of cost function with respect to outputs.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Gradient of cost function with respect to outputs.
"""
return outputs - targets
def __repr__(self):
@ -19,14 +42,31 @@ class MeanSquaredErrorCost(object):
class BinaryCrossEntropyCost(object):
"""
"""
"""Binary cross entropy cost."""
def __call__(self, outputs, targets):
"""Calculates cost function given a batch of outputs and targets.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Scalar cost function value.
"""
return -np.mean(
targets * np.log(outputs) + (1. - targets) * np.log(1. - ouputs))
def grad(self, outputs, targets):
"""Calculates gradient of cost function with respect to outputs.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Gradient of cost function with respect to outputs.
"""
return (1. - targets) / (1. - outputs) - (targets / outputs)
def __repr__(self):
@ -34,15 +74,32 @@ class BinaryCrossEntropyCost(object):
class BinaryCrossEntropySigmoidCost(object):
"""
"""
"""Binary cross entropy cost with logistic sigmoid applied to outputs."""
def __call__(self, outputs, targets):
"""Calculates cost function given a batch of outputs and targets.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Scalar cost function value.
"""
probs = 1. / (1. + np.exp(-outputs))
return -np.mean(
targets * np.log(probs) + (1. - targets) * np.log(1. - probs))
def grad(self, outputs, targets):
"""Calculates gradient of cost function with respect to outputs.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Gradient of cost function with respect to outputs.
"""
probs = 1. / (1. + np.exp(-outputs))
return probs - targets
@ -50,25 +107,31 @@ class BinaryCrossEntropySigmoidCost(object):
return 'BinaryCrossEntropySigmoidCost'
class BinaryAccuracySigmoidCost(object):
"""
"""
def __call__(self, outputs, targets):
return ((outputs > 0) == targets).mean()
def ___repr__(self):
return 'BinaryAccuracySigmoidCost'
class CrossEntropyCost(object):
"""
"""
"""Multi-class cross entropy cost."""
def __call__(self, outputs, targets):
"""Calculates cost function given a batch of outputs and targets.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Scalar cost function value.
"""
return -np.mean(np.sum(targets * np.log(outputs), axis=1))
def grad(self, outputs, targets):
"""Calculates gradient of cost function with respect to outputs.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Gradient of cost function with respect to outputs.
"""
return -targets / outputs
def __repr__(self):
@ -76,30 +139,35 @@ class CrossEntropyCost(object):
class CrossEntropySoftmaxCost(object):
"""
"""
"""Multi-class cross entropy cost with Softmax applied to outputs."""
def __call__(self, outputs, targets):
"""Calculates cost function given a batch of outputs and targets.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Scalar cost function value.
"""
probs = np.exp(outputs)
probs /= probs.sum(-1)[:, None]
return -np.mean(np.sum(targets * np.log(probs), axis=1))
def grad(self, outputs, targets):
"""Calculates gradient of cost function with respect to outputs.
Args:
outputs: Array of model outputs of shape (batch_size, output_dim).
targets: Array of target outputs of shape (batch_size, output_dim).
Returns:
Gradient of cost function with respect to outputs.
"""
probs = np.exp(outputs)
probs /= probs.sum(-1)[:, None]
return probs - targets
def __repr__(self):
return 'CrossEntropySoftmaxCost'
class MulticlassAccuracySoftmaxCost(object):
"""
"""
def __call__(self, outputs, targets):
probs = np.exp(outputs)
return np.mean(np.argmax(probs, -1) == np.argmax(targets, -1))
def __repr__(self):
return 'MulticlassAccuracySoftmaxCost'