diff --git a/notebooks/Convolutional layer tests.ipynb b/notebooks/Convolutional layer tests.ipynb index 8c085cc..f978bfa 100644 --- a/notebooks/Convolutional layer tests.ipynb +++ b/notebooks/Convolutional layer tests.ipynb @@ -96,10 +96,12 @@ " corresponds to `y = conv2d(x, K) + b`.\n", "\n", " Args:\n", - " inputs: Array of layer inputs of shape (batch_size, input_dim).\n", + " inputs: Array of layer inputs of shape \n", + " (batch_size, num_input_channels, input_dim_1, input_dim_2).\n", "\n", " Returns:\n", - " outputs: Array of layer outputs of shape (batch_size, output_dim).\n", + " outputs: Array of layer outputs of shape \n", + " (batch_size, num_output_channels, output_dim_1, output_dim_2).\n", " \"\"\"\n", " raise NotImplementedError()\n", "\n", @@ -121,7 +123,7 @@ "\n", " Returns:\n", " Array of gradients with respect to the layer inputs of shape\n", - " (batch_size, input_dim).\n", + " (batch_size, num_input_channels, input_dim_1, input_dim_2).\n", " \"\"\"\n", " raise NotImplementedError()\n", "\n", @@ -132,7 +134,7 @@ " inputs: array of inputs to layer of shape (batch_size, input_dim)\n", " grads_wrt_to_outputs: array of gradients with respect to the layer\n", " outputs of shape\n", - " (batch_size, num_output-_channels, output_dim_1, output_dim_2).\n", + " (batch_size, num_output_channels, output_dim_1, output_dim_2).\n", "\n", " Returns:\n", " list of arrays of gradients with respect to the layer parameters\n", @@ -232,8 +234,8 @@ " [ 5403., 5469., 5535.]]]]\n", " )\n", " layer = layer_class(\n", - " num_input_channels=kernels.shape[0], \n", - " num_output_channels=kernels.shape[1], \n", + " num_input_channels=kernels.shape[1], \n", + " num_output_channels=kernels.shape[0], \n", " input_dim_1=inputs.shape[2], \n", " input_dim_2=inputs.shape[3],\n", " kernel_dim_1=kernels.shape[2],\n", @@ -319,8 +321,8 @@ " [ 226., 440., 468., 222.],\n", " [ 105., 199., 209., 96.]]]])\n", " layer = layer_class(\n", - " num_input_channels=kernels.shape[0], \n", - " num_output_channels=kernels.shape[1], \n", + " num_input_channels=kernels.shape[1], \n", + " num_output_channels=kernels.shape[0], \n", " input_dim_1=inputs.shape[2], \n", " input_dim_2=inputs.shape[3],\n", " kernel_dim_1=kernels.shape[2],\n", @@ -384,8 +386,8 @@ " true_kernel_grads = true_kernel_grads[:, :, ::-1, ::-1]\n", " true_bias_grads = np.array([-126., 36.])\n", " layer = layer_class(\n", - " num_input_channels=kernels.shape[0], \n", - " num_output_channels=kernels.shape[1], \n", + " num_input_channels=kernels.shape[1], \n", + " num_output_channels=kernels.shape[0], \n", " input_dim_1=inputs.shape[2], \n", " input_dim_2=inputs.shape[3],\n", " kernel_dim_1=kernels.shape[2],\n",