Clarifying initializers description: notebook save failed in previous commit.

This commit is contained in:
Matt Graham 2017-01-19 10:49:10 +00:00
parent 223bd971d1
commit c4a662465e

View File

@ -47,7 +47,7 @@
"\n",
"TensorFlow allows complex computation graphs (also known as data flow graphs in TensorFlow parlance) to be defined via a Python interface, with efficient C++ implementations for running the corresponding operations on different devices. TensorFlow also includes tools for automatic gradient computation and a large and growing suite of pre-define operations useful for gradient-based training of machine learning models.\n",
"\n",
"In this notebook we will introduce some of the basic elements of constructing, training and evaluating models with TensorFlow. This will use similar material to some of the [official TensorFlow tutorials](https://www.tensorflow.org/tutorials/) but with an additional emphasis of making links to the material covered in this course last semester. For those who have not used a computational graph framework such as TensorFlow or Theano before you may find the [basic usage tutorial](https://www.tensorflow.org/get_started/basic_usage) useful to go through\n",
"In this notebook we will introduce some of the basic elements of constructing, training and evaluating models with TensorFlow. This will use similar material to some of the [official TensorFlow tutorials](https://www.tensorflow.org/tutorials/) but with an additional emphasis of making links to the material covered in this course last semester. For those who have not used a computational graph framework such as TensorFlow or Theano before you may find the [basic usage tutorial](https://www.tensorflow.org/get_started/basic_usage) useful to go through.\n",
"\n",
"### Installing TensorFlow\n",
"\n",
@ -252,7 +252,7 @@
"\n",
"A standard operation which needs to be called before any other operations on a graph which includes variable nodes is a variable *initializer* operation. This, as the name suggests, initialises the values of the variables in the session to the values defined by the `initial_value` argument when adding the variables to the graph. For instance for the graph we have defined here this will initialise the `weights` variable value in the session to a 2D array of zeros of shape `(784, 10)` and the `biases` variable to a 1D array of shape `(10,)`.\n",
"\n",
"We can create initializer ops for each variable individually using the `initializer` method of the variables in question and then individually run these, however a common pattern is to use the `tf.global_variables_initializer()` function to create a single initializer op which will initialise all globally defined variables in the default graph and then run this as done below."
"We can access initializer ops for each variable individually using the `initializer` property of the variables in question and then individually run these, however a common pattern is to use the `tf.global_variables_initializer()` function to create a single initializer op which will initialise all globally defined variables in the default graph and then run this as done below."
]
},
{