Merge branch 'mlp2017-8/semester_2_materials' of https://github.com/CSTR-Edinburgh/mlpractical into mlp2017-8/semester_2_materials
This commit is contained in:
commit
c3ff1774af
@ -30,4 +30,4 @@ export TMP=/disk/scratch/${STUDENT_ID}/
|
||||
|
||||
source /home/${STUDENT_ID}/miniconda3/bin/activate mlp
|
||||
|
||||
python network_trainer.py --batch_size 128 --epochs 200 --experiment_prefix vgg-net-emnist-sample-exp --dropout_rate 0.4 --batch_norm_use True --strided_dim_reduction True --seed 25012018
|
||||
python emnist_network_trainer.py --batch_size 128 --epochs 200 --experiment_prefix vgg-net-emnist-sample-exp --dropout_rate 0.4 --batch_norm_use True --strided_dim_reduction True --seed 25012018
|
||||
|
@ -1,4 +1,4 @@
|
||||
#GPU Cluster Quick-Start Guide
|
||||
# GPU Cluster Quick-Start Guide
|
||||
|
||||
This guide is intended to guide students into the basics of using the mlp1/mlp2 GPU clusters. It is not intended to be
|
||||
an exhaustive guide that goes deep into micro-details of the Slurm ecosystem. For an exhaustive guide please visit
|
||||
@ -54,7 +54,7 @@ git config --global user.name "[your name]"
|
||||
git config --global user.email "[matric-number]@sms.ed.ac.uk"
|
||||
```
|
||||
9. Now clone the mlpractical repo using ```git clone https://github.com/CSTR-Edinburgh/mlpractical.git```.
|
||||
10. Checkout the mlp_tf_tutorial branch using ```git checkout mlp2017-8/mlp_tf_tutorial```.
|
||||
10. Checkout the semester_2 branch using ```git checkout mlp2017-8/semester_2_materials```.
|
||||
11. ```cd mlpractical``` and then install the required packages using ```pip install -r requirements_gpu.txt```.
|
||||
12. Once this is done you will need to setup the MLP_DATA path using the following block of commands:
|
||||
```bash
|
||||
@ -72,7 +72,7 @@ export MLP_DATA_DIR=$HOME/mlpractical/data
|
||||
13. This includes all of the required installations. Proceed to the next section outlining how to use the slurm cluster
|
||||
management software. Please remember to clean your setup files using ```conda clean -t```
|
||||
|
||||
###Using Slurm
|
||||
### Using Slurm
|
||||
Slurm provides us with some commands that can be used to submit, delete, view, explore current jobs, nodes and resources among others.
|
||||
To submit a job one needs to use ```sbatch script.sh``` which will automatically find available nodes and pass the job,
|
||||
resources and restrictions required. The script.sh is the bash script containing the job that we want to run. Since we will be using the NVIDIA CUDA and CUDNN libraries
|
||||
@ -86,7 +86,7 @@ To submit a job one needs to use ```sbatch script.sh``` which will automatically
|
||||
#SBATCH --mem=16000 # memory in Mb
|
||||
#SBATCH -o outfile # send stdout to outfile
|
||||
#SBATCH -e errfile # send stderr to errfile
|
||||
#SBATCH -t 0:01:00 # time requested in hour:minute:seconds
|
||||
#SBATCH -t 1:00:00 # time requested in hour:minute:seconds
|
||||
|
||||
# Setup CUDA and CUDNN related paths
|
||||
export CUDA_HOME=/opt/cuda-8.0.44
|
||||
@ -161,6 +161,6 @@ cp ~/output /afs/inf.ed.ac.uk/u/s/<studentUUN>
|
||||
|
||||
This should directly copy the files to AFS. Furthermore one can use rsync as shown before.
|
||||
|
||||
##Additional Help
|
||||
## Additional Help
|
||||
|
||||
If you require additional help as usual please post on piazza or ask in the tech support helpdesk.
|
||||
If you require additional help as usual please post on piazza or ask in the tech support helpdesk.
|
||||
|
Loading…
Reference in New Issue
Block a user